RT-qPCR Analysis of 15 Genes Encoding Putative Surface Proteins Involved in Adherence of Listeria monocytogenes
Abstract
:1. Introduction
2. Results
2.1. Adherence Properties of Various Strains of L. monocytogenes
2.2. Differential Gene Expression of Two Adherence-Variant Strains of L. monocytogenes
2.3. PCR Amplification of Genes
2.4. The Function and Virulence Information of Overexpressed Genes of L. monocytogenes
3. Discussion
4. Materials and Methods
4.1. L. monocytogenes Strains
4.2. Fluorescent Microplate Adherence Assay
4.3. Extraction, Purification and Evaluation of Chromosomal DNA
4.4. PCR, DNA Agarose Gel Electrophoresis and Sequencing Analysis
4.5. Total RNA Extraction, Purification, cDNA Synthesis, Evaluation, and Real-Time Reverse Transcription PCR
4.5.1. Cells Attached to Glass Beads
4.5.2. Planktonic Cells
4.5.3. Synthesis of cDNA
4.5.4. Real-Time Reverse Transcriptase Quantitative PCR
4.6. Statistical Significant Measurement
5. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sewell, D.; Allen, S.C.; Phillips, C.A. Oxygen limitation induces acid tolerance and impacts simulated gastro-intestinal transit in Listeria monocytogenes J0161. Gut. Path. 2015, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Camejo, A.; Carvalho, F.; Reis, O.; Leitao, E.; Sousa, S.; Cabanes, D. The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2011, 2, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Gorski, L.; Palumbo, J.D.; Mandrell, R.E. Attachment of Listeria monocytogenes to radish tissue is dependent upon temperature and flagellar motility. Appl. Environ. Microbiol. 2003, 69, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Mateus, T.; Silva, J.; Maia, R.L.; Teixeira, P. Listeriosis during Pregnancy: A Public Health Concern. ISRN Obstet. Gynecol. 2013, 2013, 851712. [Google Scholar] [CrossRef] [PubMed]
- Lecuit, M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin. Microbiol. Infect. 2005, 11, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Montero, M.; Rodriguez-Garcia, J.L.; Calvo, P.; Gonzalez, J.M.; Fernandez-Garrido, M.; Loza, E.; Serrano, M. Pneumonia caused by Listeria monocytogenes. Respiration 1995, 62, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.; Alfonso, E.; Gelender, H.; Heidemann, D.; Mendelsohn, A.; Ullman, S.; Miller, D. Corneal ulcer due to Listeria monocytogenes. Cornea 1987, 6, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Dalton, C.B.; Austin, C.C.; Sobel, J.; Hayes, P.S.; Bibb, W.F.; Graves, L.M.; Swaminathan, B.; Proctor, M.E.; Griffin, P.M. An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N. Engl. J. Med. 1997, 336, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Muriana, P.M. Incidence of Listeria monocytogenes in packages of retail franks. J. Food Prot. 1994, 57, 382–386. [Google Scholar]
- Jordan, S.J.; Perni, S.; Glenn, S.; Fernandes, I.; Barbosa, M.; Sol, M.; Tenreiro, R.P.; Chambel, L.; Barata, B.; Zilhao, I.; et al. Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl. Environ. Microbiol. 2008, 74, 5451–5456. [Google Scholar] [CrossRef] [PubMed]
- Ruhland, G.J.; Hellwig, M.; Wanner, G.; Fiedler, F. Cell-surface location of Listeria-specific protein p60--detection of Listeria cells by indirect immunofluorescence. J. Gen. Microbiol. 1993, 139, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [PubMed]
- Frank, J.F.; Koffi, R.A. Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J. Food. Prot. 1990, 53, 550–554. [Google Scholar]
- Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in biofilm formation among strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [Google Scholar] [CrossRef] [PubMed]
- Shin Ho, L.; Frank, J.F. Inactivation of surface-adherent Listeria monocytogenes hypochlorite and heat. J. Food Prot. 1991, 54, 4–11. [Google Scholar]
- Kim, T.; Silva, J.L. Quantification of attachment strength of selected foodborne pathogens by the blot succession method. J. Rapid Meth. Automat. Microbiol. 2005, 13, 127–133. [Google Scholar] [CrossRef]
- Kushwaha, K.; Muriana, P.M. Adherence characteristics of Listeria strains isolated from three ready-to-eat meat processing plants. J. Food Prot. 2009, 72, 2125–2131. [Google Scholar] [PubMed]
- Gamble, R.; Muriana, P.M. Microplate fluorescence assay for measurement of the ability of strains of Listeria monocytogenes from meat and meat-processing plants to adhere to abiotic surfaces. Appl. Environ. Microbiol. 2007, 73, 5235–5244. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, K.; Muriana, P.M. Comparison of invasiveness among surface-adherent variants of Listeria monocytogenes in Caco-2 cell culture assays. Int. J. Food Microbiol. 2010, 138, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, K.; Muriana, P.M. Analysis of tissue invasiveness of adherent strains of Listeria monocytogenes by in vivo mouse assay. Int. J. Food. Microbiol. 2010, 141, 104–109. [Google Scholar] [CrossRef] [PubMed]
- McGann, P.; Ivanek, R.; Wiedmann, M.; Boor, K.J. Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae. Appl. Environ. Microbiol. 2007, 73, 2806–2814. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Y.; Kim, T.J.; Jung, Y.S.; Silva, J.L. Attachment strength of Listeria monocytogenes and its internalin-negative mutants. Food Biophys. 2008, 3, 329–332. [Google Scholar] [CrossRef]
- Heilmann, C.; Hussain, M.; Peters, G.; Gotz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 1997, 24, 1013–1024. [Google Scholar] [CrossRef]
- Tiong, H.; Hartson, S.; Muriana, P. Comparison of Surface Proteomes of Adherence Variants of Listeria Monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins. Pathogens 2016, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-Y.; Kim, T.-J.; Silva, J.L.; Jung, Y.-S. Positive correlation between the expression of inlA and inlB genes of Listeria monocytogenes and its attachment strength on glass surface. Food Biophys. 2009, 4, 304–311. [Google Scholar] [CrossRef]
- Tasara, T.; Stephan, R. Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol. Lett. 2007, 269, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Morange, M.; Hevin, B.; Fauve, R.M. Differential heat-shock protein synthesis and response to stress in three avirulent and virulent Listeria species. Res. Immunol. 1993, 144, 667–677. [Google Scholar] [CrossRef]
- Ramnath, M.; Rechinger, K.B.; Jänsch, L.; Hastings, J.W.; Knøchel, S.; Gravesen, A. Development of a Listeria monocytogenes EGDe partial proteome reference map and comparison with the protein profiles of food isolates. Appl. Environ. Microbiol. 2003, 69, 3368–3376. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Brown, D.G. Variation in bacterial ATP level and proton motive force due to adhesion to a solid surface. Appl. Environ. Microbiol. 2009, 75, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, K.K.; Milillo, S.R.; Ivy, R.A.; Ho, A.J.; Oliver, H.F.; Wiedmann, M. Listeria monocytogenes F2365 carries several authentic mutations potentially leading to truncated gene products, including inlB, and demonstrates atypical phenotypic characteristics. J. Food. Prot. 2007, 70, 482–488. [Google Scholar] [PubMed]
- Werbrouck, H.; Grijspeerdt, K.; Botteldoorn, N.; van Pamel, E.; Rijpens, N.; van Damme, J.; Uyttendaele, M.; Herman, L.; van Coillie, E. Differential inlA and inlB expression and interaction with human intestinal and liver cells by Listeria monocytogenes strains of different origins. Appl. Environ. Microbiol. 2006, 72, 3862–3871. [Google Scholar] [CrossRef] [PubMed]
- Souaze, F.; Ntodou-Thome, A.; Tran, C.Y.; Rostene, W.; Forgez, P. Quantitative RT-PCR: limits and accuracy. Biotechniques 1996, 21, 280–285. [Google Scholar] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Coton, E.; Coton, M. Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria. J. Microbiol. Methods 2005, 63, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, G.; Karst, U.; Fischer, E.; Wehland, J.; Jansch, L. LEGER: Knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species. Nucleic Acids Res. 2006, 34, D402–D406. [Google Scholar] [CrossRef] [PubMed]
- Moszer, I.; Glaser, P.; Danchin, A. Subtilist: A relational database for the Bacillus subtilis genome. Microbiology 1995, 141, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Tiong, H.K.; Hartson, S.; Muriana, P.M. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry. J. Microbiol. Meth. 2015, 110, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Camejo, A.; Buchrieser, C.; Couvé, E.; Carvalho, F.; Reis, O.; Ferreira, P.; Sousa, S.; Cossart, P.; Cabanes, D. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog. 2009, 5, e1000449. [Google Scholar] [CrossRef] [PubMed]
- Pilgrim, S.; Kolb-Maurer, A.; Gentschev, I.; Goebel, W.; Kuhn, M. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect. Immun. 2003, 71, 3473–3484. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.S.; Hossain, H.; Otten, S.; Kuenne, C.; Kuchmina, K.; Machata, S.; Domann, E.; Chakraborty, T.; Hain, T. Intracellular gene expression profile of Listeria monocytogenes. Infect. Immun. 2006, 74, 1323–1338. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Cazalet, C.; Simoes, N.; Frangeul, L.; Jacquet, C.; Kunst, F.; Martin, P.; Cossart, P.; Glaser, P.; Buchrieser, C. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 2004, 72, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Pizarro-Cerda, J.; Kuhbacher, A.; Cossart, P. Entry of Listeria monocytogenes in mammalian epithelial cells: An updated view. Cold Spring Harb. Perspect. Med. 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Grundler, T.; Quednau, N.; Stump, C.; Orian-Rousseau, V.; Ishikawa, H.; Wolburg, H.; Schroten, H.; Tenenbaum, T.; Schwerk, C. The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect. 2013, 15, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Cabanes, D.; Dussurget, O.; Dehoux, P.; Cossart, P. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 2004, 51, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Przybilla, K.; Stuhler, C.; Schauer, K.; Slaghuis, J.; Fuchs, T.M.; Goebel, W. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J. Bacteriol. 2006, 188, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K.; Bichlmaier, A.M.; Mager, E.; Wolff, K.; Ruhland, G.; Fiedler, F. P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch. Microbiol. 2000, 173, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Milohanic, E.; Jonquieres, R.; Cossart, P.; Berche, P.; Gaillard, J.L. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 2001, 39, 1212–1224. [Google Scholar] [CrossRef] [PubMed]
- Milohanic, E.; Jonquieres, R.; Glaser, P.; Dehoux, P.; Jacquet, C.; Berche, P.; Cossart, P.; Gaillard, J.L. Sequence and binding activity of the autolysin-adhesin Ami from epidemic Listeria monocytogenes 4b. Infect. Immun. 2004, 72, 4401–4409. [Google Scholar] [CrossRef] [PubMed]
- Milohanic, E.; Pron, B.; Berche, P.; Gaillard, J.L. Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. European Listeria Genome Consortium. Microbiology 2000, 146, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.A.; Hain, T.; Technow, U.; Darji, A.; Pashalidis, P.; Joseph, S.W.; Chakraborty, T. Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J. Bacteriol. 2003, 185, 6801–6808. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.B.; Fleiszig, S.M.; Evans, D.J.; Radke, C.J. Dynamics of flagellum- and pilus-mediated association of Pseudomonas aeruginosa with contact lens surfaces. Appl. Environ. Microbiol. 2011, 77, 3644–3652. [Google Scholar] [CrossRef] [PubMed]
- Hinsa, S.M.; Espinosa-Urgel, M.; Ramos, J.L.; O’Toole, G.A. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 2003, 49, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Urgel, M.; Salido, A.; Ramos, J.L. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol. 2000, 182, 2363–2369. [Google Scholar] [CrossRef] [PubMed]
- Cucarella, C.; Tormo, M.A.; Knecht, E.; Amorena, B.; Lasa, I.; Foster, T.J.; Penades, J.R. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect. Immun. 2002, 70, 3180–3186. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, C. Adhesion mechanisms of staphylococci. Adv. Exp. Med. Biol. 2011, 715, 105–123. [Google Scholar] [PubMed]
- Renier, S.; Hébraud, M.; Desvaux, M. Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ. Microbiol. 2011, 13, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.-J.; Kaleta, D.T.; Petritis, B.O.; Jiang, H.; Liu, T.; Zhang, X.; Mottaz, H.M.; Varnum, S.M.; Camp, D.G.; Huang, L.; et al. Enhanced detection of low abundance human plasma proteins using a tandem IgY12-supermix immunoaffinity separation strategy. Molec. Cell. Proteom. 2008, 7, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Eginton, P.J.; Holah, J.; Allison, D.G.; Handley, P.S.; Gilbert, P. Changes in the strength of attachment of micro-organisms to surfaces following treatment with disinfectants and cleansing agents. Lett. Appl. Microbiol. 1998, 27, 101–105. [Google Scholar] [CrossRef] [PubMed]
- McLaughlan, A.M.; Foster, S.J. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology 1998, 144, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Rohde, M.; Chhatwal, G.S.; Hammerschmidt, S. α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 2001, 40, 1273–1287. [Google Scholar] [CrossRef]
- Wilkins, J.C.; Beighton, D.; Homer, K.A. Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis. Appl. Environ. Microbiol. 2003, 69, 5290–5296. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, B.; Koo, O.K.; Kim, K.-P.; Burkholder, K.M.; Mishra, K.K.; Aroonnual, A.; Bhunia, A.K. LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 2010, 156, 2782–2795. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, C.J. Moonlighting proteins. Trends Biochem. Sci. 1999, 24, 8–11. [Google Scholar] [CrossRef]
- Jeffery, C.J. Protein species and moonlighting proteins: Very small changes in a protein’s covalent structure can change its biochemical function. J. Proteom. 2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xia, Y.; Cui, J.; Gu, Z.; Song, Y.; Chen, Y.Q.; Chen, H.; Zhang, H.; Chen, W. The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol. 2014, 16, 15–22. [Google Scholar] [PubMed]
- Xiao, Y.; Cai, Y.; Bommineni, Y.R.; Fernando, S.C.; Prakash, O.; Gilliland, S.E.; Zhang, G. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J. Biol. Chem. 2006, 281, 2858–2867. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R. Quantification on the LightCycler. In Rapid Cycle Real-Time PCR: Methods and Applications; Meuer, S., Wittwer, C., Nakagawara, K.-I., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 21–34. [Google Scholar]
Strain a | Serotype | Adherence phenotype b | Origin of isolation | Reference |
---|---|---|---|---|
CW34 | ND c | Weak | RTE retail frankfurters | [9,18,19] |
CW35 | ND c | Weak | RTE retail frankfurters | [9,18,19] |
CW50 | ND c | Strong | RTE retail frankfurters | [9,18,19] |
CW52 | ND c | Weak | RTE retail frankfurters | [9,18,19] |
CW62 | ND c | Strong | RTE retail frankfurters | [9,18,19] |
CW72 | ND c | Weak | RTE retail frankfurters | [9,18,19] |
CW77 | ND c | Strong | RTE retail frankfurters | [9,18,19] |
EGDe | 1/2a | Strong | Animal (EGD derivative) | [28] |
Jag167 | ND c | Strong | RTE meat processing facilities | [17] |
99-38 | ND c | Strong | Retail ground beef | [18,19] |
Gene Name | L. monocytogenes CW35 | L. monocytogenes 99-38 | ||||
---|---|---|---|---|---|---|
Bead-sessile + 30 °C a | Planktonic + 30 °C a | Planktonic + 42 °C a | Bead-sessile + 30 °C a | Planktonic + 30 °C a | Planktonic + 42 °C a | |
lmo0202 | 2.7E-04 (1.5E-04) | 9.7E-05 (2.7E-05) | 4.4E-03 (9.5E-04) | 5.7E-04 (2.7E-04) | 1.9E-04 (4.9E-05) | 3.6E-03 (1.5E-03) |
lmo0394 | 1.3E-05 (1.5E-05) | 1.8E-04 (1.5E-04) | 0.0E+00 (0.0E+00) | 2.3E-03 (1.0E-03) | 1.9E-05 (9.7E-06) | 8.5E-05 (4.7E-05) |
lmo0433 | 5.2E-06 (3.8E-06) | 5.2E-06 (7.0E-07) | 1.1E-05 (5.0E-06) | 3.6E-06 (1.9E-06) | 6.1E-06 (1.3E-06) | 5.6E-06 (3.6E-06) |
lmo0434 | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 4.5E-03 (1.7E-03) | 3.1E-04 (1.1E-04) | 3.3E-03 (8.7E-04) |
lmo0585 | 6.00E-04 (1.94E-04) | 7.59E-06 (4.86E-07) | 0.00E+00 (0.00E+00) | 3.73E-04 (2.07E-04) | 4.04E-05 (2.42E-05) | 1.21E-04 (3.57E-05) |
lmo0587 | 3.3E-04 (1.0E-04) | 4.5E-06 (2.6E-06) | 3.3E-05 (2.0E-05) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) |
lmo0723 | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 3.0E-04 (1.1E-04) | 1.9E-05 (1.3E-05) | 6.3E-05 (2.7E-05) |
lmo1068 | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 9.1E-05 (2.9E-05) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) |
lmo1076 | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 2.9E-03 (5.9E-04) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) |
lmo1293 | 2.7E-04 (1.2E-04) | 2.7E-05 (1.6E-05) | 3.5E-04 (2.3E-04) | 2.8E-04 (1.2E-04) | 5.2E-05 (2.1E-05) | 1.1E-04 (4.7E-05) |
lmo2505 | 3.4E-03 (1.0E-04) | 8.8E-05 (3.8E-05) | 2.9E-04 (7.6E-05) | 3.8E-02 (1.9E-04) | 4.1E-04 (1.5E-04) | 2.5E-03 (9.4E-04) |
lmo2558 | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 1.0E-05 (8.1E-06) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) |
lmo2656 | 4.1E-02 (1.7E-02) | 7.5E-04 (1.6E-04) | 3.9E-03 (3.3E-04) | 8.7E-02 (2.6E-02) | 8.6E-04 (2.7E-04) | 3.8E-03 (2.1E-03) |
lmo2691 | 1.0E-04 (7.2E-05) | 2.5E-05 (1.8E-05) | 0.0E+00 (0.0E+00) | 9.7E-05 (2.4E-05) | 3.3E-06 (2.5E-06) | 7.7E-06 (4.6E-06) |
lmo2713 | 3.8E-07 (1.2E-07) | 0.0E+00 (0.0E+00) | 0.0E+00 (0.0E+00) | 1.1E-02 (2.3E-03) | 2.4E-04 (9.9E-05) | 1.8E-03 (6.6E-04) |
Locus Tag | Planktonic (30 °C) | Sessile (30 °C) | Planktonic (42 °C) | |||
---|---|---|---|---|---|---|
99-38 | CW35 | 99-38 | CW35 | 99-38 | CW35 | |
lmo0202 | 1.95 | -- | 2.1 | -- | -- | -- |
lmo0394 | -- | 9.48 | 176.7 | -- | √ | -- |
lmo0433 | -- | -- | -- | -- | -- | 2 |
lmo0434 | √ | -- | √ | -- | √ | -- |
lmo0585 | 5.3 | -- | -- | 1.6 | √ | -- |
lmo0587 | -- | √ | -- | √ | -- | √ |
lmo0723 | √ | -- | √ | -- | √ | -- |
lmo1068 | -- | -- | √ | -- | -- | -- |
lmo1076 | -- | -- | √ | -- | -- | -- |
lmo1293 | 1.9 | -- | -- | -- | -- | 3.1 |
lmo2505 | 4.6 | -- | 11.3 | -- | 8.4 | -- |
lmo2558 | -- | -- | √ | -- | -- | -- |
lmo2656 | -- | -- | 2.1 | -- | -- | -- |
lmo2691 | -- | 7.4 | -- | -- | √ | -- |
lmo2713 | √ | -- | 28,232.2 | -- | √ | -- |
Gene Annotation | Sessile (30 °C) | Planktonic (42 °C) | ||
---|---|---|---|---|
99-38 a | CW35 a | 99-38 a | CW35 a | |
lmo0202 | 3.0 | 2.8 | 19.1 | 45.1 |
lmo0394 | 118.1 | 0.1 | 4.4 | NA |
lmo0433 | 0.6 | 1.0 | 0.9 | 2.2 |
lmo0434 | 14.2 | NA | 10.4 | NA |
lmo0585 | 9.2 | 79.1 | 3.0 | NA |
lmo0587 | NA | 74.2 | NA | 7.2 |
lmo0723 | 15.9 | NA | 3.3 | NA |
lmo1068 | NA | NA | NA | NA |
lmo1076 | NA | NA | NA | NA |
lmo1293 | 5.4 | 10.0 | 2.2 | 12.8 |
lmo2505 | 94.1 | 38.3 | 6.1 | 3.3 |
lmo2558 | NA | NA | NA | NA |
lmo2656 | 101.5 | 54.7 | 4.4 | 5.2 |
lmo2691 | 29.2 | 4.2 | 2.3 | NA |
lmo2713 | 44.6 | NA | 7.6 | NA |
Gene | CW35 a (E) | 99-38 a (E) | CW35 a (%E) | 99-38 a (%E) |
---|---|---|---|---|
16S rRNA | 1.8 | 1.8 | 77.2 | 84.3 |
lmo0202 | 1.7 | 1.8 | 72.4 | 81.7 |
lmo0394 | 1.7 | 1.6 | 66.5 | 61.2 |
lmo0433 | 1.9 | 2.0 | 88.0 | 99.0 |
lmo0434 | 1.6 | 1.5 | 55.8 | 51.7 |
lmo0585 | 1.6 | 1.6 | 64.3 | 57.7 |
lmo0587 | 1.7 | 1.9 | 71.4 | 86.6 |
lmo0723 | NA | 1.7 | NA | 70.2 |
lmo1293 | 1.7 | 1.8 | 65.8 | 82.4 |
lmo1068 | NA | 1.8 | NA | 77.3 |
lmo1076 | NA | 1.6 | NA | 59.2 |
lmo2505 | 1.7 | 1.6 | 71.4 | 61.4 |
lmo2558 | NA | 1.7 | NA | 73.2 |
lmo2656 | 1.7 | 1.7 | 72.4 | 69.3 |
lmo2691 | 1.7 | 1.9 | 69.2 | 88.4 |
lmo2713 | 1.8 | 1.5 | 78.5 | 52.6 |
Gene | Primer Sequence a | Amplicon Size (bp) | Reference |
---|---|---|---|
16S rRNA | F: CGGAGCAACGCCGCGTGTATGAAGAA R: TATTACCGCGGCTGCTGGCACGTAGTTA | 146 | [26,42] This RT-PCR study |
lmo0202 | F: ACGGAGATGCAGTGACAAATG R: TGGATAGGTTAGGCTCGAAATTG | 146 | This RT-PCR study |
lmo0394 | F: GGAAAGTTGGTTATGTTTCAGG R: AAACAGCTTGGGCCAGTAG | 145 | This RT-PCR study |
lmo0433 | F: TGTTACAAGAACCTACGGCACCAACAA R: TTGGCGCTATATTGGGCATATAAGGTGATG | 145 | This RT-PCR study |
lmo0434 | F: AACCTTTCCTTAGACCGATACG R: TTGGTAGACCGATAGCTTATTCAC | 150 | This RT-PCR study |
lmo0585 | F: TGGAACTTCAATCGTGAGTGTTG R: AGTGTTGCGCTTCCTGCTG | 147 | This RT-PCR study |
lmo0587 | F: ACAATAGCGTCCGTTGTATCTGG R: TTACTTCAGCCGTTCCACCAC | 148 | This RT-PCR study |
lmo0723C | F: TGGTTTCGCAGTCGTAGCCGAAGAA R: GCTTCGGATTCGGAAAGACCTGTGTTCA | 150 | This RT-PCR study |
lmo1068A | F: TTCTTGGTGGAGATGTAACAACGACGTATT R: ACTTTCTGGGTTACTCGCACTTACTTCTTT | 149 | This RT-PCR study |
lmo1076C | F: CTAATGGTTTATGGTCTGAGGTTCCAGGT R: ACCGCCTACTTGGAATTGATAGTAAGTTCG | 146 | This RT-PCR study |
lmo1293 | F: TTAGAAGAAGGCCGTGAGATGG R: GCTTCATGTTGAATTGAGTAGCGTAG | 146 | This RT-PCR study |
lmo2505 | F: ATCACGTTCACTTACAAGACCAG R: GAAGATCAAGCAACAGCAATTC | 150 | This RT-PCR study |
lmo2558C | F: AGCTCTAACACTCCAACGAGAAGCTACGA R: TGACGCGACTATATGCAGTGATGGCTTTG | 149 | This RT-PCR study |
lmo2656 | F: CACTATGTTCTTGTAAGTTGTGACC R: AACGTGGCGTATGTACTCG | 147 | This RT-PCR study |
lmo2691 | F: AATGCAACAAGCTCTTCTACACC R: CATGACAGATGCGTACAGGTC | 150 | This RT-PCR study |
lmo2713 | F: AAGGCACGTGAGTCAATCC R: GTAGTAGTGTTAAGTACCTCGGTTCAG | 145 | This RT-PCR study |
1mo1076B | F: CGTTATGCAACGGACAACAC R: ACCATGCCCATCTGCTTTA | 150 | This PCR study |
lmo1076A | F: TATGGCTGCTTTAGTCGTGCCTCA R: TGTCCGTTGCATAACGTCCCTGTA | 470 | This PCR study |
lmo1076D | F: TATGGCTGCTTTAGTCGTGCCTCA R: ACCGCCTACTTGGAATTGATAGTAAGTTCG | 991 | This PCR study |
lmo2558B | F: TTA GGC GGAACAACCCATAC R: AGGCAGTGATTGCTTTATCATATT C | 148 | This PCR study |
lmo2558A | F: TTGCTTCGCGCAACAACAGGATAC R: ACTGTTCCTTTGCCATCACTGTGC | 458 | This PCR study |
lmo2558D | F: TTGCTTCGCGCAACAACAGGATAC R: TGACGCGACTATATGCAGTGATGGCTTTG | 1129 | This PCR study |
lmo1068C | F: TAAGTGCGAGTAACCCAGAAAG R: CCCGCCGACAGATTTACTT | 149 | This PCR study |
lmo1068B | F: CTTGGTGGAGATGTAACAACGACG R: TGGATCTGGTACGCCTATTTGCGA | 438 | This PCR study |
lmo1068D | F: TTCTTGGTGGAGATGTAACAACGACGTATT R: TGGATCTGGTACGCCTATTTGCGA | 440 | This PCR study |
lmo1068E | F: CTTGGTGGAGATGTAACAACGACG R: ACTTTCTGGGTTACTCGCACTTACTTCTTT | 147 | This PCR study |
lmo0723A | F: CGCCGTGCTAATTTCCTTATTC R:GCCCAGTTCATCTCTACCATT | 148 | This PCR study |
lmo0723B | F: TGATGGGCGAACAAATCCAAACCC R: AACAGCAAGACGTGATTGTTCCGC | 416 | This PCR study |
lmo0723D | F: TGATGGGCGAACAAATCCAAACCC R: GCTTCGGATTCGGAAAGACCTGTGTTCA | 505 | This PCR study |
Locus Tag | Gene Name [36] | a Subcellular Localization | Function | Virulence Determinant |
---|---|---|---|---|
lmo0202 | hly | Extracellular [43] | Listeriolysin, vacuole escape [2]. | Yes. Validated [2]. |
lmo0394 | -- | ExtracellularP | Listeria extracellular P60 protein, Iap-like protein, reduced invasion in mutant [40]. | Yes. Not validated [40]. |
lmo0433 | inlA | Cell wall [44] | Internalin, promote adhesion to and invasion into host intestinal epithelial cells [2]. Promote adhesion to glass surface [22,25]. | Yes. Validated [2,22,25]. |
lmo0434 | inlB | Cell wall [44] | Internalin, promote adhesion to and invasion into host liver cells. Involved in placental invasion [2] and adhesion to glass surface [22,25]. | Yes. Validated [2,22,25]. |
lmo0585 | -- | UnknownLP | Putative secreted protein [36,37]. | Not studied. |
lmo0587 | -- | UnknownLP | Putative secreted protein [36,37]. | Not studied. |
lmo0723 | -- | CytoplasmP | Methyl-accepting chemotaxis-like protein [36,37]. | Not studied. |
lmo1068 | -- | UnknownLP | Unknown function [36,37]. | Not studied. |
lmo1076 | aut | Cell wall [2] | Promote entry into different mammalian epithelial cell lines. Virulence factor [2,45]. | Yes. Validated [45]. |
lmo1293 | glpD | CytoplasmP | Glycerol-3-phosphate dehydrogenase. Promote intracellular virulence [46]. | Yes. Validated [46]. |
lmo2505 | spl | Cell wallL | Peptidoglycan lytic protein P45 [47]. Iap-like protein, reduced invasion in mutant [40]. | Yes. Not validated [40]. |
lmo2558 | ami | Extracellular [2] | Autolytic amidase, promote adhesion to mammalian epithelial cells. Virulence factor [2,48,49,50]. | Yes. Validated [48,49,50]. |
lmo2656 | rpsL | Cell wallL | Ribosomal protein S12 [36,37]. | Not studied. |
lmo2691 | murA | Cell wallL | Autolysin, N-acetylmuramidase, promote cell separation [51]. | No. Not validated [41]. |
lmo2713 | -- | Cell wall [41] | Unknown, secreted protein with 1 GW repeat [36,37]. Internalin-like protein [41]. | No. Validated[39,41]. |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiong, H.K.; Muriana, P.M. RT-qPCR Analysis of 15 Genes Encoding Putative Surface Proteins Involved in Adherence of Listeria monocytogenes. Pathogens 2016, 5, 60. https://doi.org/10.3390/pathogens5040060
Tiong HK, Muriana PM. RT-qPCR Analysis of 15 Genes Encoding Putative Surface Proteins Involved in Adherence of Listeria monocytogenes. Pathogens. 2016; 5(4):60. https://doi.org/10.3390/pathogens5040060
Chicago/Turabian StyleTiong, Hung King, and Peter M. Muriana. 2016. "RT-qPCR Analysis of 15 Genes Encoding Putative Surface Proteins Involved in Adherence of Listeria monocytogenes" Pathogens 5, no. 4: 60. https://doi.org/10.3390/pathogens5040060
APA StyleTiong, H. K., & Muriana, P. M. (2016). RT-qPCR Analysis of 15 Genes Encoding Putative Surface Proteins Involved in Adherence of Listeria monocytogenes. Pathogens, 5(4), 60. https://doi.org/10.3390/pathogens5040060