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Abstract: L. monocytogenes adherence to food-associated abiotic surfaces and the development of
biofilms as one of the underlying reasons for the contamination of ready-to-eat products is well known.
The over-expression of internalins that improves adherence has been noted in cells growing as attached
cells or at elevated incubation temperatures. However, the role of other internalin-independent
surface proteins as adhesins has been uncharacterized to date. Using two strains each of weakly-
and strongly-adherent L. monocytogenes as platforms for temperature-dependent adherence assays
and targeted mRNA analyses, these observations (i.e., sessile- and/or temperature-dependent gene
expression) were further investigated. Microplate fluorescence assays of both surface-adherent strains
exhibited significant (P < 0.05) adherence at higher incubation temperature (42 ◦C). Of the 15 genes
selected for RT-qPCR, at least ten gene transcripts recovered from cells (weakly-adherent strain
CW35, strongly-adherent strain 99-38) subject to various growth conditions were over expressed
[planktonic/30 ◦C (10), sessile/30 ◦C (12), planktonic/42 ◦C (10)] compared to their internal control
(16SrRNA transcripts). Of four genes overexpressed in all three conditions tested, three and one were
implicated as virulence factors and unknown function, respectively. PCR analysis of six unexpressed
genes revealed that CW35 possessed an altered genome. The results suggest the presence of other
internalin-independent adhesins (induced by growth temperature and/or substratum) and that
a group of suspect protein members are worthy of further analysis for their potential role as surface
adhesins. Analysis of the molecular basis of adherence properties of isolates of L. monocytogenes
from food-associated facilities may help identify sanitation regimens to prevent cell attachment and
biofilm formation on abiotic surfaces that could play a role in reducing foodborne illness resulting
from Listeria biofilms.
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1. Introduction

L. monocytogenes is a Gram-positive, intracellular foodborne human pathogen, capable of surviving
antimicrobial hurdles such as limited oxygen [1], degenerative agents associated with immunological
response (phagocytosis) [2], bile salts (10%) [3], and extreme temperatures (−0.4–50 ◦C) [3].
The systemic disease it causes is termed listeriosis and it has a multitude of diagnostic manifestations
such as miscarriage, muscle pain, stillbirth [4], meningitis [5], septicemia [2], pneumonia [6], corneal
ulcers [7], fever, and gastroenteritis [8] in patients. In large outbreaks it has among the highest mortality
rates (20%–25%) as compared to other foodborne pathogens reported by the Centers for Disease
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Control and Prevention [9]. These stress tolerant characteristics have been linked to the pathogen’s
molecular defense mechanisms contributed by proteins with essential roles such as biofilm-associated
protein (BapL) [10], general stress-response regulation by sigma factor B (SigB), membrane lysis
by Listeriolysin O (Hly), and phospholipase during phagocytosis for cell sustainability/viability to
intracellular stresses [2]. Other Listeria virulence factors include adhesins for attachment and invasins
to gain entry into host cells (InlA, lmo0433; InlB, lmo0434; Vip, lmo0320; Ctap, lmo0135; FbpA, lmo1829;
IspC; Ami, lmo2558; LapB, lmo1666; Iap 60, lmo0582) and cell-to-cell movement mediated by the
polymerization of actin (ActA, lmo0204) [2].

Persistence of this bacterium in food products manufactured under standard sanitation
protocols, especially with ready-to-eat (RTE) processed foods such as dairy products, meats,
vegetables, and fish [11,12] are generally caused by cross-contamination of foods contacting
L. monocytogenes-contaminated surfaces. Biofilm formation following initial adherence increases
the cell’s resistance to elimination and removal by current sanitation regimens [13–16]. Isolates of
L. monocytogenes from raw and processed meats and food processing facilities are capable of adhering
to numerous substrate surfaces such as stainless steel, polystyrene, rubber, plastic, and glass, and
different strains display different degrees of adherence [17,18]. They also demonstrated that although
the weak and strongly-adherent variants adhered equally well to biotic cells, the strongly-adherent
strains were more invasive as demonstrated in virulence assays in Caco-2 tissue culture and live mouse
assays [19,20]. Studies by other investigators have demonstrated that adherence strength may be
correlated to incubation temperature [3,21]. To date, four surface-associated adhesins, including inlA,
inlB, bapL, and the Staphylococcus epidermidis ami homolog atl (lmo2558), have been characterized by
different groups for attachment to abiotic surfaces [10,22,23]. However, single mutants (inlA, inlB,
bapL, ami) or double deletions (inlA and inlB) did not abolish abiotic attachment completely suggesting
that adherence is mediated by multiple loci or factors.

The purpose of this study was to examine the expression of surface-associated proteins that
were previously implicated as potential candidates for involvement with surface adherence based on
comparative MS-LC/MS analyses of different phenotypic strains and growth conditions. Insights on
attachment mechansims may provide for more effective sanitation of food processing facilities. In this
study, mRNA levels of gene transcription were evaluated for 15 genes encoding cell surface proteins
identified previously as potentially involved with attachment to abiotic surfaces [24]. These results
are compared to those of Chen et al. [25] who evaluated two genes, inlA and inlB to establish
positive correlations between gene expression and attachment strength of two adherent phenotypes
of L. monocytogenes. Gene targets were determined based on multiple LC-MS/MS comparative
analyses of surface sub-proteome extracts of adherence variants of L. monocytogenes (CW35/weak
vs. 99-38/strong) [24]. A group of 15 genes, including a 16S rRNA reference gene [26], inlA [25],
and 14 other target genes suggested in LC-MS/MS data were utilized for this purpose [24].

2. Results

2.1. Adherence Properties of Various Strains of L. monocytogenes

In the current study, a group of 15 test genes implicated in LC-MS/MS analyses of surface
sub-proteomes of L. monocytogenes as suspect adhesins were derived from (two each) strongly- and
weakly-adherent phenotypic groups of L. monocytogenes; the strains used in the current study were from
the same L. monocytogenes food isolates (i.e., CW35 and 99-38) used in a prior LC-MS/MS study [24].
Using a fluorescent microplate adherence assay [18] (Table 1) eight previously characterized strains of
L. monocytogenes were confirmed as belonging to two distinct adherence groups of L. monocytogenes
(Figures 1 and 2). Strongly-adherent strains (CW50, CW62, CW77, 99-38) gave greater than 10-fold
higher RFU signals than weakly-adherent strains (CW34, CW35, CW52, CW72) in the microplate
adherence assay, agreeing with previous published findings [17–19].



Pathogens 2016, 5, 60 3 of 19

Gorski noted that L. monocytogenes cells exhibited increased adherence to vegetative surfaces
when higher incubation temperatures were used [3]. This observation was consistent with the results
in the microplate adherence assays whereby both adherence phenotypes of Listeria revealed higher
adherence at 42 ◦C incubation temperature than at 30 ◦C. The findings suggest that temperature
may be an important factor impacting adherence of L. monocytogenes in food manufacturing facilities
(Figure 3) [3].

Morange et al. [27] and Kushwaha and Muriana [19] further reported that the virulence
(i.e., invasiveness) of L. monocytogenes was dependent upon incubation temperature and the strong
adherence phenotype in L. monocytogenes, respectively, and possibly suggesting a correlation between
virulence and adherence factors. In regards to food processing, higher temperatures resulting in greater
levels of adherence could correlate to a greater degree of equipment surface contamination and food
product contamination.

Table 1. Strains of L. monocytogenes used in this study.

Strain a Serotype Adherence phenotype b Origin of isolation Reference

CW34 ND c Weak RTE retail frankfurters [9,18,19]
CW35 ND c Weak RTE retail frankfurters [9,18,19]
CW50 ND c Strong RTE retail frankfurters [9,18,19]
CW52 ND c Weak RTE retail frankfurters [9,18,19]
CW62 ND c Strong RTE retail frankfurters [9,18,19]
CW72 ND c Weak RTE retail frankfurters [9,18,19]
CW77 ND c Strong RTE retail frankfurters [9,18,19]
EGDe 1/2a Strong Animal (EGD derivative) [28]
Jag167 ND c Strong RTE meat processing facilities [17]
99-38 ND c Strong Retail ground beef [18,19]

a L. monocytogenes strains 99-38, CW and Jag were isolates from our collection; b Determined by microplate
adherence assay [18]; c ND, not determined.
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Figure 1. Adherence of various strains of L. monocytogenes using the microplate fluorescence (5,6-
CFDA) adherence assay. Weakly- and strongly-adherent strains are represented by black and red bars, 
respectively. Data bars represent the mean of triplicate replications. Means that share the same 
lowercase letters are not significantly different; means with different letters are significantly different 
(P < 0.05). The error bars indicate standard deviation from the mean. 

Figure 1. Adherence of various strains of L. monocytogenes using the microplate fluorescence (5,6-CFDA)
adherence assay. Weakly- and strongly-adherent strains are represented by black and red bars,
respectively. Data bars represent the mean of triplicate replications. Means that share the same
lowercase letters are not significantly different; means with different letters are significantly different
(P < 0.05). The error bars indicate standard deviation from the mean.
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Figure 2. Comparison of attachment characteristics of L. monocytogenes CW35 (weakly-adherent) and 
99-38 (strongly-adherent) in microplate wells. Enumeration of well cell cultures (left) and attached 
cells (right) after release by treatment with protease. All data represent the means of triplicate 
replications. Means with the same lowercase letters are not significantly different; means with 
different letters are significantly different (P < 0.05). Error bars indicate standard deviation from the 
mean. CFU, colony forming units. 

 
Figure 3. Effect of temperature (30 °C vs 42 °C) on attachment of different adherence-variant strains 
of L. monocytogenes (strongly adherent: Jag167, 99-38, EGDe; weakly adherent: CW35, CW52) as 
determined by the microplate adherence assay. Uninoculated brain heart infusion (BHI) nutrient 
broth was tested as a control. All data represent the means of triplicate replications. Means with the 
same upper/lowercase letters are not significantly different; means with different upper/lower case 
letters are significantly different (P < 0.05). Error bars indicate standard deviation from the mean. RFU, 
relative fluorescence units. 

Figure 2. Comparison of attachment characteristics of L. monocytogenes CW35 (weakly-adherent) and
99-38 (strongly-adherent) in microplate wells. Enumeration of well cell cultures (left) and attached cells
(right) after release by treatment with protease. All data represent the means of triplicate replications.
Means with the same lowercase letters are not significantly different; means with different letters are
significantly different (P < 0.05). Error bars indicate standard deviation from the mean. CFU, colony
forming units.
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Figure 3. Effect of temperature (30 ◦C vs. 42 ◦C) on attachment of different adherence-variant strains
of L. monocytogenes (strongly adherent: Jag167, 99-38, EGDe; weakly adherent: CW35, CW52) as
determined by the microplate adherence assay. Uninoculated brain heart infusion (BHI) nutrient broth
was tested as a control. All data represent the means of triplicate replications. Means with the same
upper/lowercase letters are not significantly different; means with different upper/lower case letters
are significantly different (P < 0.05). Error bars indicate standard deviation from the mean. RFU,
relative fluorescence units.
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2.2. Differential Gene Expression of Two Adherence-Variant Strains of L. monocytogenes

A subset of transcripts of L. monocytogenes total RNA from weakly (CW35) and strongly (99-38)
adherent phenotypes, recovered from various growth conditions such as sessile (bead attached cells)
or planktonic at 42 ◦C or 30 ◦C (control), was quantitated using RT-qPCR relative to 16S rRNA. Strains
of L. monocytogenes were initially selected based on involvement with either raw or processed meat
production since both use raw meat ingredients from similar sources. Subsequent selectivity of strains
was based on adherence characteristics as determined by microplate adherence assay for further
analysis in the current study (Figure 1). Growth conditions were adapted from Hong et al. [29] and
McGann et al. [21] for the reason that the beads used for sessile cells preparation rendered more
surface area of growth than a 96-well microplate. In addition, the incubation temperature (42 ◦C)
was the highest temperature used that rendered significant differential expression of the surface
adhesins corresponding genes, inlA and inlB. Relative transcripts of both strains were obtained using
a relative expression quantification method for analysis of data containing inconsistent amplification
efficiencies [30] (Table 2) and the normalized data was plotted in Figure 4. Overexpressed genes
(expression ≥2-fold or detected only in a single strain) were primarily attained in 99-38 cells recovered
from planktonic at 30 ◦C (7 overexpressed in 99-38 vs. 3 in CW35) and 42 ◦C (7 in 99-38 vs. 3 in
CW35), and from sessile cells at 30 ◦C (10 in 99-38 vs. 2 in CW35) (Table 3). On the other hand,
four overexpressed genes (lmo0202, lmo1293, lmo2505, lmo2656) from both CW35 and 99-38 strains
were detected at either elevated temperature (42 ◦C) or during sessile conditions (Table 4).

Nightingale [31], and Chen et al. [25] reported that truncated forms of inlA/B are common among
L. monocytogenes food isolates. Similarly, we observed that CW35 chromosomal DNA possessed an
altered form of inlA gene (3-codon deletion detected in the C-terminus) and thus producing truncated
form of InlA protein in all conditions tested relative to 16S rRNA mRNA levels (data not shown).

In addition to expression variations caused by the external factors, the gene of interest might have
mutations at their primer-binding regions, which could reduce the PCR amplification efficiency of that
gene in comparison to other strains, and hence cause false expression levels [32]. As demonstrated
in Table 5, the amplification efficiencies of each gene varied among strains tested (Table 6) and these
amplification differences were corrected thereby validating our expression data [30,33–35].
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Figure 4. Relative transcript expression profiles of select genes from weakly-adherent (CW35) and
strongly-adherent (99-38) strains of L. monocytogenes. Panel A, from cells recovered from planktonic
growth at 30 ◦C. Panel B, from cells attached to glass beads during growth at 30 ◦C. Panel C,
from planktonic cells grown at 42 ◦C. Expression is relative to that of the reference gene, 16S rRNA.
All data bars represent the means of triplicate replications for gene expression RT-qPCR assays. Error
bars indicate the standard deviation from the mean. Expression was normalized (×107 factor) to
eliminate negative expression levels.
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2.3. PCR Amplification of Genes

Of six genes with no detectable mRNA levels, two genes (lmo1076, lmo2558) have been reportedly
absent in both L. monocytogenes serotypes 4a and 4b strains (Tables 2–4) [2]. PCR analysis of these
genes in CW35, 99-38, and EGDe (type strain) genomes with the gene specific primers listed in
Table 6, revealed normal (lmo0434, lmo0587; lmo0723, Figure 5) and altered (lmo1068, lmo1076,
lmo2558; Figure 5) gene sequences based on expected amplimer size. All altered non-lethal genes
were only observed in the CW35 strain. Further PCR analysis of altered genes with different primers
(Table 6) suggested that the alteration was due to a deletion (lmo1076) and nucleotide alterations
(lmo1068, lmo2558) (data not shown), suggesting that CW35 strain possesses altered lmo1068, lmo1076,
and lmo2558 genes that may affect adherence. Thus, alterations observed with lmo1076 and lmo2558
agree with the results reported by Camejo et al. [2].Pathogens 2016, 5, 60 8 of 21 
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Figure 5. PCR products from genomic DNA of L. monocytogenes EDGe (Panel A), 99-38 (Panel B),
and CW35 (Panel C) for PCR nucleotide evaluation of lmo0723, lmo1068, lmo1076, and lmo2558.
Different gene-specific primer pairs were used for PCR amplification and subsequent agarose gel
analysis of products. PCR primer combinations were based on L. monocytogenes type strain EGDe
(Panel A) and tested on 99-38 (Panel B) and CW35 (Panel C). Gene lmo0723 : Lane 1, 0723A (148bp);
2, 0723B (416bp); 3, 0723C (150bp); 4, 0723D (505bp); lmo1068 : 5, 1068A (149bp); 6, 1068B (438bp);
7, 1068C (149bp); 8, 1068D (440bp); 9, 1068E (147bp); lmo1076 : 10, 1076A (470bp); 11, 1076B (150bp);
12, 1076C (146bp); 13, 1076D (991bp); lmo2558 : 14, 2558A (458bp); 15, 2558B (148bp); 16, 2558C (149bp);
17, 2558D (1129bp); 18, 100bp DNA ladder; 19 and 20, positive controls.

2.4. The Function and Virulence Information of Overexpressed Genes of L. monocytogenes

The functions of five genes (of the 15 genes examined) were determined by using Leger [36] and
ListiList [37] post-genome database for Listeria research and functional classification tools, respectively,
as their functions are currently unrevealed [2,38]. They were secreted proteins (2), ribosomal protein
S12-like protein (1), methyl-accepting chemotaxis-like protein (1), and unknown protein (1) (Table 7).
Of the ten remaining genes studied, seven have been experimentally characterized as virulence (6)
and non-virulence (1; lmo2713) [39] factors, whereas two were Iap-like proteins (lmo0394, lmo2505),
Listeria virulence factor [40], and one was not virulence-related as implicated in intracellular down
regulation (lmo2691) [41].
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Table 2. Relative mRNA levels of 15 genes as compared to the reference gene (i.e., 16S rRNA gene).

Gene Name
L. monocytogenes CW35 L. monocytogenes 99-38

Bead-sessile + 30 ◦C a Planktonic + 30 ◦C a Planktonic + 42 ◦C a Bead-sessile + 30 ◦C a Planktonic + 30 ◦C a Planktonic + 42 ◦C a

lmo0202 2.7E-04 (1.5E-04) 9.7E-05 (2.7E-05) 4.4E-03 (9.5E-04) 5.7E-04 (2.7E-04) 1.9E-04 (4.9E-05) 3.6E-03 (1.5E-03)
lmo0394 1.3E-05 (1.5E-05) 1.8E-04 (1.5E-04) 0.0E+00 (0.0E+00) 2.3E-03 (1.0E-03) 1.9E-05 (9.7E-06) 8.5E-05 (4.7E-05)
lmo0433 5.2E-06 (3.8E-06) 5.2E-06 (7.0E-07) 1.1E-05 (5.0E-06) 3.6E-06 (1.9E-06) 6.1E-06 (1.3E-06) 5.6E-06 (3.6E-06)
lmo0434 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 4.5E-03 (1.7E-03) 3.1E-04 (1.1E-04) 3.3E-03 (8.7E-04)
lmo0585 6.00E-04 (1.94E-04) 7.59E-06 (4.86E-07) 0.00E+00 (0.00E+00) 3.73E-04 (2.07E-04) 4.04E-05 (2.42E-05) 1.21E-04 (3.57E-05)
lmo0587 3.3E-04 (1.0E-04) 4.5E-06 (2.6E-06) 3.3E-05 (2.0E-05) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00)
lmo0723 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 3.0E-04 (1.1E-04) 1.9E-05 (1.3E-05) 6.3E-05 (2.7E-05)
lmo1068 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 9.1E-05 (2.9E-05) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00)
lmo1076 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 2.9E-03 (5.9E-04) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00)
lmo1293 2.7E-04 (1.2E-04) 2.7E-05 (1.6E-05) 3.5E-04 (2.3E-04) 2.8E-04 (1.2E-04) 5.2E-05 (2.1E-05) 1.1E-04 (4.7E-05)
lmo2505 3.4E-03 (1.0E-04) 8.8E-05 (3.8E-05) 2.9E-04 (7.6E-05) 3.8E-02 (1.9E-04) 4.1E-04 (1.5E-04) 2.5E-03 (9.4E-04)
lmo2558 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 1.0E-05 (8.1E-06) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00)
lmo2656 4.1E-02 (1.7E-02) 7.5E-04 (1.6E-04) 3.9E-03 (3.3E-04) 8.7E-02 (2.6E-02) 8.6E-04 (2.7E-04) 3.8E-03 (2.1E-03)
lmo2691 1.0E-04 (7.2E-05) 2.5E-05 (1.8E-05) 0.0E+00 (0.0E+00) 9.7E-05 (2.4E-05) 3.3E-06 (2.5E-06) 7.7E-06 (4.6E-06)
lmo2713 3.8E-07 (1.2E-07) 0.0E+00 (0.0E+00) 0.0E+00 (0.0E+00) 1.1E-02 (2.3E-03) 2.4E-04 (9.9E-05) 1.8E-03 (6.6E-04)

a Expression data represents an average of 2 technical replicates for each of 3 biological replicates with the standard deviation of the mean given in parenthesis.



Pathogens 2016, 5, 60 9 of 19

Table 3. Select transcriptional expression comparisons (fold-differences) of L. monocytogenes 99-38 and
CW35 cells under different conditions.

Locus Tag Planktonic (30 ◦C) Sessile (30 ◦C) Planktonic (42 ◦C)

99-38 CW35 99-38 CW35 99-38 CW35
lmo0202 1.95 – 2.1 – – –
lmo0394 – 9.48 176.7 –

√
–

lmo0433 – – – – – 2
lmo0434

√
–

√
–

√
–

lmo0585 5.3 – – 1.6
√

–
lmo0587 –

√
–

√
–

√

lmo0723
√

–
√

–
√

–
lmo1068 – –

√
– – –

lmo1076 – –
√

– – –
lmo1293 1.9 – – – – 3.1
lmo2505 4.6 – 11.3 – 8.4 –
lmo2558 – –

√
– – –

lmo2656 – – 2.1 – – –
lmo2691 – 7.4 – –

√
–

lmo2713
√

– 28,232.2 –
√

–

–: Neutral fold-expression; expression not detected in both strains.
√

: Not determined; gene expression was
not detected in the other strain.

Table 4. Expression fold differences of 15 genes in sessile (30 ◦C) or planktonic (42 ◦C) condition
compared to their planktonic equivalent at 30 ◦C.

Gene Annotation
Sessile (30 ◦C) Planktonic (42 ◦C)

99-38 a CW35 a 99-38 a CW35 a

lmo0202 3.0 2.8 19.1 45.1
lmo0394 118.1 0.1 4.4 NA
lmo0433 0.6 1.0 0.9 2.2
lmo0434 14.2 NA 10.4 NA
lmo0585 9.2 79.1 3.0 NA
lmo0587 NA 74.2 NA 7.2
lmo0723 15.9 NA 3.3 NA
lmo1068 NA NA NA NA
lmo1076 NA NA NA NA
lmo1293 5.4 10.0 2.2 12.8
lmo2505 94.1 38.3 6.1 3.3
lmo2558 NA NA NA NA
lmo2656 101.5 54.7 4.4 5.2
lmo2691 29.2 4.2 2.3 NA
lmo2713 44.6 NA 7.6 NA

a Expression fold difference; a ratio of treatment/control. NA, not available; expression levels were not
detectable. Brackets, group of genes that were overexpressed in both L. monocytogenes 99-38 and CW35 strains
when each condition of sessile and 42 ◦C was used, as compared to growth at 30 ◦C.
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Table 5. Amplification efficiency (E) and the percent efficiency (%E) of each pair of primers (based on
L. monocytogenes EGD-e) as used in the quantitation of RTqPCR transcripts. The CW35 and 99-38
genomic DNA was used as template DNA.

Gene CW35 a (E) 99-38 a (E) CW35 a (%E) 99-38 a (%E)

16S rRNA 1.8 1.8 77.2 84.3
lmo0202 1.7 1.8 72.4 81.7
lmo0394 1.7 1.6 66.5 61.2
lmo0433 1.9 2.0 88.0 99.0
lmo0434 1.6 1.5 55.8 51.7
lmo0585 1.6 1.6 64.3 57.7
lmo0587 1.7 1.9 71.4 86.6
lmo0723 NA 1.7 NA 70.2
lmo1293 1.7 1.8 65.8 82.4
lmo1068 NA 1.8 NA 77.3
lmo1076 NA 1.6 NA 59.2
lmo2505 1.7 1.6 71.4 61.4
lmo2558 NA 1.7 NA 73.2
lmo2656 1.7 1.7 72.4 69.3
lmo2691 1.7 1.9 69.2 88.4
lmo2713 1.8 1.5 78.5 52.6

a CW35, weakly-adherent phenotype; 99-38, strongly-adherent phenotype. NA, not available due to no
signal (Ct).

Table 6. Gene-specific primers used in this study.

Gene Primer Sequence a Amplicon Size (bp) Reference

16S rRNA F: CGGAGCAACGCCGCGTGTATGAAGAA
R: TATTACCGCGGCTGCTGGCACGTAGTTA 146 [26,42] This RT-PCR study

lmo0202 F: ACGGAGATGCAGTGACAAATG
R: TGGATAGGTTAGGCTCGAAATTG 146 This RT-PCR study

lmo0394 F: GGAAAGTTGGTTATGTTTCAGG
R: AAACAGCTTGGGCCAGTAG 145 This RT-PCR study

lmo0433 F: TGTTACAAGAACCTACGGCACCAACAA
R: TTGGCGCTATATTGGGCATATAAGGTGATG 145 This RT-PCR study

lmo0434 F: AACCTTTCCTTAGACCGATACG
R: TTGGTAGACCGATAGCTTATTCAC 150 This RT-PCR study

lmo0585 F: TGGAACTTCAATCGTGAGTGTTG
R: AGTGTTGCGCTTCCTGCTG 147 This RT-PCR study

lmo0587 F: ACAATAGCGTCCGTTGTATCTGG
R: TTACTTCAGCCGTTCCACCAC 148 This RT-PCR study

lmo0723C F: TGGTTTCGCAGTCGTAGCCGAAGAA
R: GCTTCGGATTCGGAAAGACCTGTGTTCA 150 This RT-PCR study

lmo1068A F: TTCTTGGTGGAGATGTAACAACGACGTATT
R: ACTTTCTGGGTTACTCGCACTTACTTCTTT 149 This RT-PCR study

lmo1076C F: CTAATGGTTTATGGTCTGAGGTTCCAGGT
R: ACCGCCTACTTGGAATTGATAGTAAGTTCG 146 This RT-PCR study

lmo1293 F: TTAGAAGAAGGCCGTGAGATGG
R: GCTTCATGTTGAATTGAGTAGCGTAG 146 This RT-PCR study

lmo2505 F: ATCACGTTCACTTACAAGACCAG
R: GAAGATCAAGCAACAGCAATTC 150 This RT-PCR study

lmo2558C F: AGCTCTAACACTCCAACGAGAAGCTACGA
R: TGACGCGACTATATGCAGTGATGGCTTTG 149 This RT-PCR study

lmo2656 F: CACTATGTTCTTGTAAGTTGTGACC
R: AACGTGGCGTATGTACTCG 147 This RT-PCR study

lmo2691 F: AATGCAACAAGCTCTTCTACACC
R: CATGACAGATGCGTACAGGTC 150 This RT-PCR study

lmo2713 F: AAGGCACGTGAGTCAATCC
R: GTAGTAGTGTTAAGTACCTCGGTTCAG 145 This RT-PCR study

1mo1076B F: CGTTATGCAACGGACAACAC
R: ACCATGCCCATCTGCTTTA 150 This PCR study

lmo1076A F: TATGGCTGCTTTAGTCGTGCCTCA
R: TGTCCGTTGCATAACGTCCCTGTA 470 This PCR study
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Table 6. Cont.

Gene Primer Sequence a Amplicon Size (bp) Reference

lmo1076D F: TATGGCTGCTTTAGTCGTGCCTCA
R: ACCGCCTACTTGGAATTGATAGTAAGTTCG 991 This PCR study

lmo2558B F: TTA GGC GGAACAACCCATAC
R: AGGCAGTGATTGCTTTATCATATT C 148 This PCR study

lmo2558A F: TTGCTTCGCGCAACAACAGGATAC
R: ACTGTTCCTTTGCCATCACTGTGC 458 This PCR study

lmo2558D F: TTGCTTCGCGCAACAACAGGATAC
R: TGACGCGACTATATGCAGTGATGGCTTTG 1129 This PCR study

lmo1068C F: TAAGTGCGAGTAACCCAGAAAG
R: CCCGCCGACAGATTTACTT 149 This PCR study

lmo1068B F: CTTGGTGGAGATGTAACAACGACG
R: TGGATCTGGTACGCCTATTTGCGA 438 This PCR study

lmo1068D F: TTCTTGGTGGAGATGTAACAACGACGTATT
R: TGGATCTGGTACGCCTATTTGCGA 440 This PCR study

lmo1068E F: CTTGGTGGAGATGTAACAACGACG
R: ACTTTCTGGGTTACTCGCACTTACTTCTTT 147 This PCR study

lmo0723A F: CGCCGTGCTAATTTCCTTATTC
R:GCCCAGTTCATCTCTACCATT 148 This PCR study

lmo0723B F: TGATGGGCGAACAAATCCAAACCC
R: AACAGCAAGACGTGATTGTTCCGC 416 This PCR study

lmo0723D F: TGATGGGCGAACAAATCCAAACCC
R: GCTTCGGATTCGGAAAGACCTGTGTTCA 505 This PCR study

a F, forward; R, reverse.

Table 7. Functional and virulence information of 15 gene targets.

Locus Tag Gene Name [36]
a Subcellular
Localization Function Virulence Determinant

lmo0202 hly Extracellular [43] Listeriolysin, vacuole escape [2]. Yes. Validated [2].

lmo0394 – ExtracellularP
Listeria extracellular P60 protein,

Iap-like protein, reduced invasion in
mutant [40].

Yes. Not validated [40].

lmo0433 inlA Cell wall [44]

Internalin, promote adhesion to and
invasion into host intestinal epithelial

cells [2]. Promote adhesion to glass
surface [22,25].

Yes. Validated [2,22,25].

lmo0434 inlB Cell wall [44]

Internalin, promote adhesion to and
invasion into host liver cells. Involved
in placental invasion [2] and adhesion

to glass surface [22,25].

Yes. Validated [2,22,25].

lmo0585 – UnknownLP Putative secreted protein [36,37]. Not studied.
lmo0587 – UnknownLP Putative secreted protein [36,37]. Not studied.

lmo0723 – CytoplasmP Methyl-accepting chemotaxis-like
protein [36,37]. Not studied.

lmo1068 – UnknownLP Unknown function [36,37]. Not studied.

lmo1076 aut Cell wall [2]
Promote entry into different

mammalian epithelial cell lines.
Virulence factor [2,45].

Yes. Validated [45].

lmo1293 glpD CytoplasmP Glycerol-3-phosphate dehydrogenase.
Promote intracellular virulence [46]. Yes. Validated [46].

lmo2505 spl Cell wallL
Peptidoglycan lytic protein P45 [47].
Iap-like protein, reduced invasion in

mutant [40].
Yes. Not validated [40].

lmo2558 ami Extracellular [2]
Autolytic amidase, promote adhesion

to mammalian epithelial cells.
Virulence factor [2,48–50].

Yes. Validated [48–50].

lmo2656 rpsL Cell wallL Ribosomal protein S12 [36,37]. Not studied.

lmo2691 murA Cell wallL
Autolysin, N-acetylmuramidase,

promote cell separation [51]. No. Not validated [41].

lmo2713 – Cell wall [41]
Unknown, secreted protein with

1 GW repeat [36,37]. Internalin-like
protein [41].

No. Validated[39,41].

a Subcellular localization of the gene products were determined using in-silico prediction tools [Leger (L);
Psort (P)] as described [38] and experiments.
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3. Discussion

L. monocytogenes is often detected in food processing plants and its persistence is related to its
ability to survive in environments of low temperature, pH, water activity, and the ability to form
bioflms. Molecular factors involved in bacterial adherence to various abiotic surfaces has been
documented by many groups [17,18,22,23,52–56]. Researchers have noted that L. monocytogenes
may have multiple surface adhesins (i.e., InlA, InlB, and BapL) that participate in surface
adherence [10,22,25]. It is also worth noting that the bapL gene is not present in all strongly adherent
L. monocytogenes isolates [57].

In the current study, a subset of transcripts from 15 putative surface-associated adhesins
overexpressed primarily in the strongly-adherent strain, L. monocytogenes 99-38. This could suggest
characterizations of a group of potential adhesins. Listeria strains investigated in this study exhibited
more adherence than previous reports [18,19]. This could be caused by the high temperature incubation
(42 ◦C) of L. monocytogenes which could result in elevated expression of InlA and InlB surface adhesins,
as noted by McGann et al. [21]. Chen et al. [22] confirmed that the adherence of L. monocytogenes cells
on glass surfaces may be enhanced by a synergistic activity of these surface proteins and that it may be
positively correlated to their expression levels [25]. Gorski et al. [3] noted that adherence of Listeria cells
to contact surfaces was independent of flagella, and hence this gene was not analyzed in this study.

When relative gene expression levels were compared between L. monocytogenes CW35 and
99-38 strains, the latter strain possessed more overexpressed genes (Table 3) implicating that the
strongly-adherent L. monocytogenes 99-38 expressed more proteins involved in surface adherence.
The expression profiles of these genes (i.e., lmo0202, lmo0434, lmo1293, lmo2505, lmo2656, lmo2713)
were consistent with the protein profiles attained with LC-MS/MS for surface extracts of the 99-38
Listeria cells attached to beads (Table 3A) [24]. Of four abundant proteins detected by LC-MS/MS in
surface extracts from planktonic cells of 99-38 at 30 ◦C [24], only one member (lmo0723) correlated with
gene expression profiles in this study. These inconsistent profiles could be partly due to the competitive
(physical) detection of protein abundancy by LC-MS/MS vs. targeted gene expression studies using
real-time RT-PCR as explained by others [58]. Chen et al. [22,25] observed that L. monocytogenes
attached more strongly when the transcript levels of inlA/B were abundant. Surprisingly, the CW35
strain demonstrated low adherence on beads even though its relative inlA transcripts were similar
to the control (planktonic, 30 ◦C) (Table 2). This observation could suggest the involvement of other
adhesins [19].

Chen et al. [25] and Gorski et al. [3] reported that other surface adhesins are considerable and
that attachment is temperature-regulated, respectively. Gene expression analysis of other select
surface-associated gene products recovered from sessile or planktonic cells grown at 42 ◦C revealed
that most of the genes tested were differentially up-regulated in one strain or another (Tables 2–4).
Of four genes that appear to be upregulated in both strains when held as sessile attached cells at
42 ◦C (Table 2), two products (lmo0202, lmo1293) have been implicated in Listeria adaptation of
host intracellular stresses whereas the function of lmo2656 is unknown [39,41,46]. On the other
hand, two strain-specific upregulated genes (lmo2691, lmo2713) exhibited intracellular upregulations,
as reported by the same groups. Camejo and et al. [2] report of Listeria virulence factors lmo0202
(hly), lmo1076 (aut), lmo2558 (ami), and lmo2691 (murA) that are involved in vacuole escape, invasion,
adhesion, and autolysis, respectively [2]. However, none of them have been reportedly associated with
Listeria adhesion to abiotic surfaces.

Chen et al. [2,22] reported that both surface-associated InlA and InlB proteins of L. monocytogenes
promote attachment equally well to mammalian epithelial cells as well as abiotic surface adherence.
Various groups have revealed that attached cells of L. monocytogenes to different substrate surfaces can
be easily removed with protein denaturants [18,59] suggesting the proteinaceous nature of adherence
factors. A mammalian epithelial cell adhesin, Ami, is known to have high levels of amino acid
sequence homology to Staphylococcus aureus major autolysin (atlE) that contributes to cell adherence to
polystyrene, hence suggesting that this gene may also be involved in abiotic attachment [23,48–50,60].
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The genes used in this study were primarily surface-associated proteins (10), unknown (3),
and cytoplasmic related (2) (Table 7). The detection of cytoplasmic-surface related proteins by
LC-MS/MS analysis of surface extracts of L. monocytogenes suggests the involvement of moonlighting
proteins that have multiple functions and locations [24,61–66]. Cytoplasmic protein lmo1293 shows
considerable involvement in Listeria adherence as indicated by overexpressed levels of mRNA under
all conditions and strains tested (Table 4). The data presented herein suggests that these genes are
worthy of further investigations for potential roles as surface adhesins. Information on new adhesins
may benefit food processors through improved sanitation regimens were enzyme-based sanitizers are
increasingly being used to combat Listeria biofilms in food processing facilities to ensure RTE food
products safe from contamination with L. monocytogenes as a public health concern.

4. Materials and Methods

4.1. L. monocytogenes Strains

Initial adherence assays were carried out with eight strains of L. monocytogenes (weakly adherent
strains: CW34, CW35, CW52, SM3; strongly adherent strains: CW50, CW62, CW77, JAG167, 99-38).
Two adherent forms of L. monocytogenes (CW35, 99-38) were chosen for further analysis (real-time
RT-PCR). All ‘CW’ strains originated from RTE retail frankfurters whereas strains 99-38 and SM3 were
isolated from retail ground beef while JAG167 was isolated from an RTE meat processing plant [9,17,19].
The bacterial strains were cultured by transferring 100 µL of thawed frozen culture suspension into
9 mL of brain heart infusion (BHI) broth (Difco; Becton-Dickinson, Franklin Lakes, NJ, USA), incubated
overnight (18 to 24 h) at 30 ◦C and subcultured twice before experimental tests. Frozen culture stocks
were prepared from 9 mL of overnight culture, centrifuged, resuspended in 2 mL of sterile BHI broth
(containing 10% glycerol) and stored at −76 ◦C.

4.2. Fluorescent Microplate Adherence Assay

An adherence ability was characterized as described by Gamble and Muriana [18,19]. A consistent
positive correlation between cell adhesion abilities and the viable count has been validated by many
groups [17,19,20]. Briefly, each Listeria strain was cultured at 30 ◦C and diluted 5-log in fresh BHI
broth, and 200 µL was transferred into designated wells of a sterile 96-well black polystyrene untreated
microplates (Nunc, Roskilde, Denmark) with a clear lid, wrapped with Parafilm (Alcan Packaging,
Neenah, WI, USA), and incubated at 30 ◦C for 24 h. Subsequently, the plate was washed three
times with Tris buffer (pH 7.4, 0.05 M) in a Biotec Elx405 Magna automated plate washer (Ipswich,
Suffolk, UK) to remove loosely adhered cells, and the plate washer was afterwards sanitized with
200 ppm of sodium hypochlorite (pH 6.5) after each use. The cells were subjected to another cycle of
incubation in fresh BHI broth (200 µL), which was followed by washing. After the final incubation
and washing, the cells were suspended in 200 µL of 5,6-carboxy-fluorescein diacetate (5,6-CFDA;
Invitrogen, Carlsbad, CA, USA) fluorescent substrate solution, incubated at 30 ◦C for 15 min, washed
(as mentioned above), and suspended with the same Tris buffer (200 µL). The plate was then read from
above in a Tecan GENios fluorescent plate reader (Phoenix Research Products, Hayward, CA, USA)
using a fixed signal gain of 75% (unless otherwise specified) with an excitation wavelength of 485 nm
and a detection wavelength of 535 nm.

4.3. Extraction, Purification and Evaluation of Chromosomal DNA

Chromosomal DNA was extracted using the glass bead collision method of Coton and Coton
with minor modifications [35]. Briefly, pelleted overnight cells of L. monocytogenes were resuspended
with sterile DI water and spun down twice before subjected to bead collision in Tris buffer (10 mM,
pH 8) to shear the cells and release cytosolic components. Chromosomal DNA and cell debris were
spun to form supernatant and pellet, respectively. Supernatant containing DNA was aspirated into
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sterile Eppendorf tubes and stored at −20 ◦C. The quality of DNA was verified using a NanoDrop®
ND-1000 spectrophotometer (Thermo Scientific, South San Francisco, CA, USA) and PCR.

4.4. PCR, DNA Agarose Gel Electrophoresis and Sequencing Analysis

PCR mixtures for amplification of genes were prepared according to the manufacturer’s directions
for GoTaq Flexi DNA Polymerase (Promega, Madison, WI, USA). Briefly, each amplification contained
0.2 mM deoxynucleoside triphosphate mix (Fisher Scientific, Fair Lawn, NJ, USA), 1.5 mM MgCl2
(Promega), 1.25 U GoTaq polymerase (Promega), and 0.4 µM of primers (IDT, Coralville, IA, USA)
(Table 6). The reaction conditions were programmed as follows: initial denaturation of 5 min at
95 ◦C, followed by 40 cycles of 1 min denaturation at 95 ◦C, annealing for 40 s (primer-dependent
temperature; Table 1), extension for 60 s at 72 ◦C (Table 1), and a final extension cycle of 72 ◦C for
10 min before holding at 4 ◦C in a PTC-200 thermal cycler (MJ Research, Bio-Rad, Hercules, CA, USA).
All nucleotide oligomers used in this study were generated from the specific DNA sequences of the
L. monocytogenes type strain EGDe (NCBI) type strain by Integrated DNA technology (IDT).

PCR products were examined by agarose gel electrophoresis and purified using a Wizard SV Gel
and PCR clean-up kit (Promega), and submitted to the Department of Biochemistry and Molecular
Biology Recombinant DNA and Protein core facility (Oklahoma State University, Stillwater, OK) for
sequence identification with a ABI 3730 DNA analyzer.

4.5. Total RNA Extraction, Purification, cDNA Synthesis, Evaluation, and Real-Time Reverse Transcription PCR

4.5.1. Cells Attached to Glass Beads

Strains of L. monocytogenes were grown in screw cap bottles containing glass beads (5 mm, 80 g)
immersed in BHI broth for 18 h at 30 ◦C or 42◦C. Each day (for 6 days), bottles of L. monocytogenes
incubated with glass beads were decanted, washed (1× PBS) on a rotating machine (10 min per wash),
and followed by another six daily cycles of incubation in fresh BHI prior to cell harvesting for total
RNA extraction. At the end of incubation and washing, attached cells were harvested by gentle
shaking with a reciprocating vortex shaker (MRC, Cincinnati, OH, USA) using RNAzol®RT solution
and transferred into sterile Eppendorf tubes.

4.5.2. Planktonic Cells

Pelleted cells of various strains of L. monocytogenes in sterile Eppendorf tubes were prepared from
1 mL of overnight cultures in BHI broth at 30 ◦C or 42 ◦C, and washed 3 times by suspension with
1× PBS prior to total RNA extraction.

Both washed adhered and pelleted planktonic cells were lysed by repeated pipetting in 1 mL of
RNAzol®RT solution (MRC) for total RNA extraction, as instructed by manufacturer. Residual DNA
was removed with gDNA wipe-out reagent included in the QIAGEN QuantiTect Reverse Transcription
Kit (QIAGEN, Valencia, CA, USA) as instructed by the manufacturer. A 2.8 µL reaction mixture of
genomic DNA (gDNA) wipe-out solution contained 0.15 µg of total RNA, 0.4 µL of gDNA Wipeout
Buffer (7×), and RNase-free water. This reaction mixture was subsequently incubated in a water bath
at 42 ºC for 2 min. The degradation of DNA was verified by PCR amplification of one of the genes to
be assayed (lmo0202, hly) using RNA extract containing 1 µg of RNA as the potential PCR template.
RNA purity and integrity were verified with UV absorbance ratio (260/280) and denaturing agarose
gel (1.5%) analysis, respectively. The RNA concentration was determined with a NanoDrop ND-1000
spectrophotometer (NanoDrop Products, Wilmington, DE, USA) measured at 260 nm. RNA samples
were kept at −80 ◦C for storage.

4.5.3. Synthesis of cDNA

Synthesis of cDNA was performed using the same Qiagen kit above (QuantiTect Reverse
Transcription Kit) as described by manufacturer. A 4 µL volume of cDNA synthesis buffer contained
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0.2 µL Quantiscript Reverse Transcriptase, 0.8 µL of Quantiscript RT Buffer (5×), 0.2 µL of RT Primer
Mix, and approximate 2.8 µL of the remaining reaction product. The reaction was then carried out at
42 ◦C for 30 min and finally at 95 ◦C for 3 min to inactivate reverse transcriptase enzyme. The formation
of cDNA in the synthesis buffer was verified by PCR amplification of the hly gene with 0.5 µL of cDNA
synthesis product as the template and agarose gel electrophoresis. The concentration was determined
with a NanoDrop ND-1000 spectrophotometer measured at 260 nm. Samples of cDNA were stored
at −20 ◦C.

4.5.4. Real-Time Reverse Transcriptase Quantitative PCR

Real-time reverse transcriptase quantitative PCR (real-time RT-qPCR) of first-strand cDNA was
prepared using the QuantiTect SYBR Green PCR Kit (QIAGEN) and performed in a MyiQ Real-Time
PCR Detection System (Bio-Rad) as described by Xiao et al. [67]. Briefly, 10 µL of PCR reaction
mixtures contained 5 µL of QuantiTect SYBR Green PCR Master Mix, 0.2 µg of the first-strand cDNA,
and 0.3 µM of gene-specific primers as listed in Table 2. The real-time PCR reactions were carried out
in 96-microwell plates (Axygen) for production of ~150 bp amplicons: initial denaturation at 95 ◦C
for 10 min, and 40 cycles of denaturation at 94 ◦C for 15 s, annealing at 50–60 ◦C (based on individual
PCR thermal gradient analysis) for 20 s, and extension at 72 ◦C for 1 min. The specificity of PCR
amplifications were verified by melting curve analysis and agarose gel electrophoresis of real-time PCR
products (between 50–60 ◦C and 95 ◦C). The relative expression ratios of specific genes of one strain of
L. monocytogenes to the other were measured based on the crossing point and amplification efficiency
(E) values normalized to a reference gene (16S rRNA). Expression ratio analysis (1) used the following
relative quantification method, delta Ct [30,33,34] as derived from Pfaffl’s and Livak’s 2–∆∆CT method
for relative quantification of gene expression to accommodate different PCR amplification efficiencies
of a gene (2). PCR amplification efficiency was obtained using the formula (2) as described [30,68].
The amplification efficiency of primer sets can be found in Table 5.

Relative Expression Ratio = [(ERef)
CTTest /(ETarget)CTTest ]/[(ERef)

CTcalibrator /(ETarget)CTcalibrator ] (1)

Amplification Efficiency = E = {[10 (−1/slope)] − 1} × 100 (2)

Identities of a subset of PCR products (i.e., lmo0202, lmo0723, lmo1293, lmo2505, lmo2656,
lmo1076 amplicons) were verified by DNA sequencing at the OSU core facility.

4.6. Statistical Significant Measurement

Comparison studies (attachment strength or expression values) either within each strain or
between strains yielded pairs of mean bars with respective standard deviation (error bars). Student’s
t-test in Sigmaplot 13 was used to analyze each pair of means for determination of significant difference.
Statistically significant differences between means compared were called at P < 0.05.

5. Conclusion

Adherence of L. monocytogenes to abiotic surfaces is a serious problem impacting sanitation in
food manufacturing industry affecting persistence of the organism that may result in contamination of
RTE products and human listeriosis transmitted through ingestion of contaminated foods. The ability
to adhere promotes initial attachment that can lead to more fully-developed biofilms that are difficult
to remove and can resist sanitization regimens. Attachment can be attributed to a group of genes
encoding surface adhesins. The current relative mRNA expression study suggested new suspect
adhesins based on observations with strain-specific and inducible gene expression profiles, supported
by current literature on the function of closely related genes. The genes that were examined encode 5
functionally unknown proteins (lmo0723, lmo0585, lmo0587, lmo1068, lmo2656), 4 virulence proteins
(lmo0202, lmo1076, lmo1293, lmo2558), 2 that were similar to other virulence proteins (i.e., Iap: lmo0394,
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lmo2505) and 2 that were not associated with virulence (lmo2691, lmlo2713). These additional roles
as potential adhesins would further qualify them as moonlighting proteins. Knowledge of different
conditions that are capable of regulating a group of adhesin genes and understanding the mechanisms
leading to Listeria attachment, may help prevent facility contamination by manipulating physical
and biological conditions. These results imply that more than one surface protein may regulate the
adherence property (jointly or independently) and the role of overexpressed genes in Listeria adherence
should be further investigated as to whether they contribute to persistent biofilms.
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