Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Virus Propagation
2.3. Inactivation of HAZV-GFP-Infected Cells Using TRIzol
2.4. Inactivation of rHAZV-GFP Particles Using TRIzol LS
2.5. Inactivation of HAZV-GFP-Infected Cell Monolayers Using Aldehydes
2.6. Inactivation of HAZV-Infected Cell Pellets Using Aldehydes
2.7. Limit of Detection Analysis
2.8. Immunofluorescence Analysis
3. Results
3.1. Reliable and Sensitive Detection of HAZV-GFP Infection
3.1.1. Detection of HAZV-GFP Infection
3.1.2. Results of Limit of Detection Analysis
3.2. TRIzol and TRIzol LS Inactivation of HAZV-GFP
3.2.1. TRIzol Inactivation
3.2.2. TRIzol LS Inactivation
3.3. Aldehyde Inactivation of HAZV-GFP
3.3.1. Aldehyde Inactivation of HAZV-GFP-Infected Cell Monolayers
3.3.2. Aldehyde Inactivation of HAZV-GFP-Infected Cell Pellets
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawman, D.W.; Feldmann, H. Crimean-Congo haemorrhagic fever virus. Nat. Rev. Microbiol. 2023, 21, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Abe, J.; Adkins, S.; Alkhovsky, S.V.; Avsic-Zupanc, T.; Ayllon, M.A.; Bahl, J.; Balkema-Buschmann, A.; Ballinger, M.J.; Kumar Baranwal, V.; et al. Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: Kingdom Orthornavirae: Phylum Negarnaviricota). J. Gen. Virol. 2023, 104, 001864. [Google Scholar] [CrossRef] [PubMed]
- Okesanya, O.J.; Olatunji, G.D.; Kokori, E.; Olaleke, N.O.; Adigun, O.A.; Manirambona, E.; Lucero-Prisno, D.E., 3rd. Looking Beyond the Lens of Crimean-Congo Hemorrhagic Fever in Africa. Emerg. Infect. Dis. 2024, 30, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Kodama, C.; Alhilfi, R.A.; Aakef, I.; Khamasi, A.; Mahdi, S.; Hasan, H.M.; Khaleel, R.I.; Naji, M.M.; Esmaeel, N.K.; Haji-Jama, S.; et al. Epidemiological analysis and potential factors affecting the 2022-23 Crimean-Congo hemorrhagic fever outbreak in Iraq. Eur. J. Public Health 2025, 35, i6–i13. [Google Scholar] [CrossRef] [PubMed]
- Eslava, M.; Carlos, S.; Reina, G. Crimean-Congo Hemorrhagic Fever Virus: An Emerging Threat in Europe with a Focus on Epidemiology in Spain. Pathogens 2024, 13, 770. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Abbas, R.Z.; Alsayeqh, A. Distribution pattern of Crimean-Congo Hemorrhagic Fever in Asia and the Middle East. Front. Public Health 2023, 11, 1093817. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, M.; Avsic-Zupanc, T.; Bino, S.; Bouloy, M.; Burt, F.; Chinikar, S.; Christova, I.; Dedushaj, I.; El-Sanousi, A.; Elaldi, N.; et al. Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. J. Gen. Virol. 2016, 97, 2799–2808. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Brown, K.; Adkins, S.; de la Torre, J.C.; Digiaro, M.; Ergunay, K.; Firth, A.E.; Hughes, H.R.; Junglen, S.; Lambert, A.J.; et al. Promotion of order Bunyavirales to class Bunyaviricetes to accommodate a rapidly increasing number of related polyploviricotine viruses. J. Virol. 2024, 98, e0106924. [Google Scholar] [CrossRef] [PubMed]
- Begum, F.; Wisseman, C.L., Jr.; Casals, J. Tick-borne viruses of West Pakistan. II. Hazara virus, a new agent isolated from Ixodes redikorzevi ticks from the Kaghan Valley, W. Pakistan. Am. J. Epidemiol. 1970, 92, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Marriott, A.C.; Nuttall, P.A. Comparison of the S RNA segments and nucleoprotein sequences of Crimean-Congo hemorrhagic fever, Hazara, and Dugbe viruses. Virology 1992, 189, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Surtees, R.; Ariza, A.; Punch, E.K.; Trinh, C.H.; Dowall, S.D.; Hewson, R.; Hiscox, J.A.; Barr, J.N.; Edwards, T.A. The crystal structure of the Hazara virus nucleocapsid protein. BMC Struct. Biol. 2015, 15, 24. [Google Scholar] [CrossRef] [PubMed]
- Surtees, R.; Dowall, S.D.; Shaw, A.; Armstrong, S.; Hewson, R.; Carroll, M.W.; Mankouri, J.; Edwards, T.A.; Hiscox, J.A.; Barr, J.N. Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. J. Virol. 2016, 90, 9305–9316. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, X.; Wang, X.; Dong, H.; Ma, C.; Wang, J.; Liu, B.; Mao, Y.; Wang, Y.; Li, T.; et al. Structural and Functional Diversity of Nairovirus-Encoded Nucleoproteins. J. Virol. 2015, 89, 11740–11749. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.M. Cross plaque neutralization tests with cloned crimean hemorrhagic fever-congo (CHF-C) and Hazara viruses. Proc. Soc. Exp. Biol. Med. 1974, 146, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.A.; Harrison, A.K.; Whitfield, S.G. Bunyaviridae: Morphologic and morphogenetic similarities of Bunyamwera serologic supergroup viruses and several other arthropod-borne viruses. Intervirology 1973, 1, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Kalkan-Yazici, M.; Karaaslan, E.; Cetin, N.S.; Hasanoglu, S.; Guney, F.; Zeybek, U.; Doymaz, M.Z. Cross-Reactive anti-Nucleocapsid Protein Immunity against Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus in Multiple Species. J. Virol. 2021, 95, e02156-20. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Biosafety in Microbiological and Biomedical Laboratories (BMBL), 6th ed.; Centers for Disease Control and Prevention: Atlanta, GA, USA; National Institutes of Health: Bethesda, MD, USA, 2020. [Google Scholar]
- Dowall, S.D.; Findlay-Wilson, S.; Rayner, E.; Pearson, G.; Pickersgill, J.; Rule, A.; Merredew, N.; Smith, H.; Chamberlain, J.; Hewson, R. Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean-Congo hemorrhagic fever virus. J. Gen. Virol. 2012, 93, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Saka, N.; Nishi, Y.; Nishio, M. Nairovirus polymerase mutations associated with the establishment of persistent infection in human cells. J. Virol. 2024, 98, e0169823. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Ohta, K.; Nishio, M. Lethal infection of embryonated chicken eggs by Hazara virus, a model for Crimean-Congo hemorrhagic fever virus. Arch. Virol. 2018, 163, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Saka, N.; Nishio, M. Hazara Orthonairovirus Nucleoprotein Antagonizes Type I Interferon Production by Inhibition of RIG-I Ubiquitination. Viruses 2022, 14, 1965. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.; Alvarez-Rodriguez, B.; Todd, E.; Mankouri, J.; Hewson, R.; Barr, J.N. Hazara Nairovirus Requires COPI Components in both Arf1-Dependent and Arf1-Independent Stages of Its Replication Cycle. J. Virol. 2020, 94, e00766-20. [Google Scholar] [CrossRef] [PubMed]
- Mega, D.F.; Fuller, J.; Alvarez-Rodriguez, B.; Mankouri, J.; Hewson, R.; Barr, J.N. Mutagenic Analysis of Hazara Nairovirus Nontranslated Regions during Single- and Multistep Growth Identifies both Attenuating and Functionally Critical Sequences for Virus Replication. J. Virol. 2020, 94, e00357-20. [Google Scholar] [CrossRef] [PubMed]
- Molinas, A.; Mirazimi, A.; Holm, A.; Loitto, V.M.; Magnusson, K.E.; Vikstrom, E. Protective role of host aquaporin 6 against Hazara virus, a model for Crimean-Congo hemorrhagic fever virus infection. FEMS Microbiol. Lett. 2016, 363, fnw058. [Google Scholar] [CrossRef] [PubMed]
- Flusin, O.; Vigne, S.; Peyrefitte, C.N.; Bouloy, M.; Crance, J.M.; Iseni, F. Inhibition of Hazara nairovirus replication by small interfering RNAs and their combination with ribavirin. Virol. J. 2011, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Salvati, M.V.; Salaris, C.; Monteil, V.; Del Vecchio, C.; Palu, G.; Parolin, C.; Calistri, A.; Bell-Sakyi, L.; Mirazimi, A.; Salata, C. Virus-Derived DNA Forms Mediate the Persistent Infection of Tick Cells by Hazara Virus and Crimean-Congo Hemorrhagic Fever Virus. J. Virol. 2021, 95, e0163821. [Google Scholar] [CrossRef] [PubMed]
- Fuller, J.; Surtees, R.A.; Slack, G.S.; Mankouri, J.; Hewson, R.; Barr, J.N. Rescue of Infectious Recombinant Hazara Nairovirus from cDNA Reveals the Nucleocapsid Protein DQVD Caspase Cleavage Motif Performs an Essential Role other than Cleavage. J. Virol. 2019, 93, e00616-19. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, B.E.; Kumar, A.; Gangadharan, B.; Alonzi, D.; Brun, J.; Hill, M.; Bharucha, T.; Bosworth, A.; Graham, V.; Dowall, S.; et al. Exploring the Potential of Iminosugars as Antivirals for Crimean-Congo Haemorrhagic Fever Virus, Using the Surrogate Hazara Virus: Liquid-Chromatography-Based Mapping of Viral N-Glycosylation and In Vitro Antiviral Assays. Pathogens 2023, 12, 399. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Methling, K.; Lalk, M.; Eisenbarth, A.; Keller, M.; Groschup, M.H. Ethanol inactivation of orthonairoviruses in ixodid ticks. Exp. Appl. Acarol. 2021, 85, 75–81. [Google Scholar] [CrossRef] [PubMed]
- CDC; APHIS. Guidance on the Inactivation or Removal of Select Agents and Toxins for Future Use; 7 CFR Part 331, 9 CFR Part 121.3, 42 CFR Part 73.3; The United States Department of Health and Human Services (HHS) and the United States Department of Agriculture (USDA): Washington, DC, USA, 2018. [Google Scholar]
- Pastorino, B.; Touret, F.; Gilles, M.; De Lamballerie, X.; Charrel, R.N. Current status of pathogen handling in European laboratories: Focus on viral inactivation process. Front. Bioeng. Biotechnol. 2024, 12, 1422553. [Google Scholar] [CrossRef] [PubMed]
- Government of Cananda. Biosecurity Addendum to the Canadian Biosafety Standard, 3rd ed.; Government of Canada: Ottawa, ON, Canada, 2024. [Google Scholar]
- Hume, A.J.; Olejnik, J.; White, M.R.; Huang, J.; Turcinovic, J.; Heiden, B.; Bawa, P.S.; Williams, C.J.; Gorham, N.G.; Alekseyev, Y.O.; et al. Heat Inactivation of Nipah Virus for Downstream Single-Cell RNA Sequencing Does Not Interfere with Sample Quality. Pathogens 2024, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, J.; Leon, J.; Michelson, D.; Chowdhary, K.; Galvan-Pena, S.; Benoist, C.; Muhlberger, E.; Hume, A.J. Establishment of an Inactivation Method for Ebola Virus and SARS-CoV-2 Suitable for Downstream Sequencing of Low Cell Numbers. Pathogens 2023, 12, 342. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, J.; Hume, A.J.; Ross, S.J.; Scoon, W.A.; Seitz, S.; White, M.R.; Slutzky, B.; Yun, N.E.; Muhlberger, E. Art of the Kill: Designing and Testing Viral Inactivation Procedures for Highly Pathogenic Negative Sense RNA Viruses. Pathogens 2023, 12, 952. [Google Scholar] [CrossRef] [PubMed]
- Widerspick, L.; Vazquez, C.A.; Niemetz, L.; Heung, M.; Olal, C.; Bencsik, A.; Henkel, C.; Pfister, A.; Brunetti, J.E.; Kucinskaite-Kodze, I.; et al. Inactivation Methods for Experimental Nipah Virus Infection. Viruses 2022, 14, 1052. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Nouchi, T.; Ohta, K.; Nishio, M. Regulation of Hazara virus growth through apoptosis inhibition by viral nucleoprotein. Arch. Virol. 2019, 164, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the Calculation of TCID(50) for Quantitation of Virus Infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Hume, A.J.; Heiden, B.; Olejnik, J.; Suder, E.L.; Ross, S.; Scoon, W.A.; Bullitt, E.; Ericsson, M.; White, M.R.; Turcinovic, J.; et al. Recombinant Lloviu virus as a tool to study viral replication and host responses. PLoS Pathog. 2022, 18, e1010268. [Google Scholar] [CrossRef]
- Welch, S.R.; Davies, K.A.; Buczkowski, H.; Hettiarachchi, N.; Green, N.; Arnold, U.; Jones, M.; Hannah, M.J.; Evans, R.; Burton, C.; et al. Analysis of Inactivation of SARS-CoV-2 by Specimen Transport Media, Nucleic Acid Extraction Reagents, Detergents, and Fixatives. J. Clin. Microbiol. 2020, 58, e01713-20. [Google Scholar] [CrossRef] [PubMed]
- Olschewski, S.; Thielebein, A.; Hoffmann, C.; Blake, O.; Muller, J.; Bockholt, S.; Pallasch, E.; Hinzmann, J.; Wurr, S.; Neddersen, N.; et al. Validation of Inactivation Methods for Arenaviruses. Viruses 2021, 13, 968. [Google Scholar] [CrossRef] [PubMed]
- Retterer, C.; Kenny, T.; Zamani, R.; Altamura, L.A.; Kearney, B.; Jaissle, J.; Coyne, S.; Olschner, S.; Harbourt, D. Strategies for Validation of Inactivation of Viruses with Trizol® LS and Formalin Solutions. Appl. Biosaf. 2020, 25, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Haddock, E.; Feldmann, F.; Feldmann, H. Effective Chemical Inactivation of Ebola Virus. Emerg. Infect. Dis. 2016, 22, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Griffiths, A. Development and Testing of a Method for Validating Chemical Inactivation of Ebola Virus. Viruses 2018, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Kochel, T.J.; Kocher, G.A.; Ksiazek, T.G.; Burans, J.P. Evaluation of TRIzol LS Inactivation of Viruses. Appl. Biosaf. 2017, 22, 52–55. [Google Scholar] [CrossRef]
- Blow, J.A.; Dohm, D.J.; Negley, D.L.; Mores, C.N. Virus inactivation by nucleic acid extraction reagents. J. Virol. Methods 2004, 119, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Duh, D.; Nichol, S.T.; Khristova, M.L.; Saksida, A.; Hafner-Bratkovic, I.; Petrovec, M.; Dedushaj, I.; Ahmeti, S.; Avsic-Zupanc, T. The complete genome sequence of a Crimean-Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. Virol. J. 2008, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Connolly-Andersen, A.M.; Moll, G.; Andersson, C.; Akerstrom, S.; Karlberg, H.; Douagi, I.; Mirazimi, A. Crimean-Congo hemorrhagic fever virus activates endothelial cells. J. Virol. 2011, 85, 7766–7774. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wu, Q.; Wu, X.; Peng, C.; Liu, J.; Tang, S.; Zhang, T.; Deng, F.; Shen, S. Differential Cell Line Susceptibility to Crimean-Congo Hemorrhagic Fever Virus. Front. Cell. Infect. Microbiol. 2021, 11, 648077. [Google Scholar] [CrossRef] [PubMed]
- Monteil, V.M.; Wright, S.C.; Dyczynski, M.; Kellner, M.J.; Appelberg, S.; Platzer, S.W.; Ibrahim, A.; Kwon, H.; Pittarokoilis, I.; Mirandola, M.; et al. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat. Microbiol. 2024, 9, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.J.; Caruso, S.; Suen, W.W.; Jackson, S.; Rowe, B.; Marsh, G.A. Evaluation of henipavirus chemical inactivation methods for the safe removal of samples from the high-containment PC4 laboratory. J. Virol. Methods 2021, 298, 114287. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.H.; Johnson, F.B.; Whiting, J.; Roller, P.P. Formaldehyde fixation. J. Histochem. Cytochem. 1985, 33, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.L.; Delbruck, M. The Growth of Bacteriophage. J. Gen. Physiol. 1939, 22, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Knipe, D.M.; Howley, P. Fields Virology, 6th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2013; pp. 42–50. [Google Scholar]
- Olejnik, J.; Forero, A.; Deflube, L.R.; Hume, A.J.; Manhart, W.A.; Nishida, A.; Marzi, A.; Katze, M.G.; Ebihara, H.; Rasmussen, A.L.; et al. Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages. J. Virol. 2017, 91, e00179-17. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Wei, L.; Xie, Y.; Zhao, F.; Huang, Y.; Fan, Z.; Hu, Y.; Wang, L.; Wang, L.; Wang, Y.; et al. Vaccinia virus viability under different environmental conditions and different disinfectants treatment. Biosaf. Health 2024, 6, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Moller, L.; Schunadel, L.; Nitsche, A.; Schwebke, I.; Hanisch, M.; Laue, M. Evaluation of virus inactivation by formaldehyde to enhance biosafety of diagnostic electron microscopy. Viruses 2015, 7, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Duytschaever, G.; Stroher, P.R.; Fonseca, K.; van der Meer, F.; Melin, A.D. Effectiveness of TRIzol in Inactivating Animal Pathogens. Appl. Biosaf. 2023, 28, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Oestereich, L.; Wurr, S.; Becker-Ziaja, B.; Bockholt, S.; Pahlmann, M.; Cadar, D.; Kummerer, B.M.; Gunther, S.; Kerber, R. Establishment of Recombinant Trisegmented Mopeia Virus Expressing Two Reporter Genes for Screening of Mammarenavirus Inhibitors. Viruses 2022, 14, 1869. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; de la Torre, J.C.; Martinez-Sobrido, L. Development of Reverse Genetics for the Prototype New World Mammarenavirus Tacaribe Virus. J. Virol. 2020, 94, e01014-20. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.; Huang, Q.; Jensen, J.; Weber, N.; Mendonca, L.; Ly, H.; Liang, Y. Characterization of bi-segmented and tri-segmented recombinant Pichinde virus particles. J. Virol. 2024, 98, e0079924. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Shieh, W.J.; Huang, Q.; Zaki, S.R.; Liang, Y.; Ly, H. Virulent infection of outbred Hartley guinea pigs with recombinant Pichinde virus as a surrogate small animal model for human Lassa fever. Virulence 2020, 11, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Laing, E.D.; Amaya, M.; Navaratnarajah, C.K.; Feng, Y.R.; Cattaneo, R.; Wang, L.F.; Broder, C.C. Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virol. J. 2018, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Sabir, A.J.; Rong, L.; Broder, C.C.; Amaya, M. Cedar virus biology and its applications as a surrogate for highly pathogenic henipaviruses. Cell Insight 2024, 3, 100181. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, P.; Feldmann, F.; Takada, A.; Crossland, N.A.; Hume, A.J.; Albarino, C.; Kemenesi, G.; Feldmann, H.; Muhlberger, E.; Marzi, A. Pathogenicity of Lloviu and Bombali Viruses in Type I Interferon Receptor Knockout Mice. J. Infect. Dis. 2023, 228, S548–S553. [Google Scholar] [CrossRef] [PubMed]
- Bodmer, B.S.; Breithaupt, A.; Heung, M.; Brunetti, J.E.; Henkel, C.; Muller-Guhl, J.; Rodriguez, E.; Wendt, L.; Winter, S.L.; Vallbracht, M.; et al. In vivo characterization of the novel ebolavirus Bombali virus suggests a low pathogenic potential for humans. Emerg. Microbes Infect. 2023, 12, 2164216. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, P.; O’Donnell, K.L.; Rhoderick, J.F.; Henderson, C.W.; Okumura, A.; Bushmaker, T.; Takada, A.; Clancy, C.S.; Kemenesi, G.; Marzi, A. Lack of Lloviu Virus Disease Development in Ferret Model. Emerg. Infect. Dis. 2024, 30, 2639–2642. [Google Scholar] [CrossRef] [PubMed]
Virus | TCID50 Units | Number of Positive Replicates/ Total Number of Replicates |
---|---|---|
HAZV-GFP | 1 | 2/6 |
10 | 3/6 | |
100 | 6/6 |
BSL-4 Viruses | Genome Organization | BSL-2 Surrogate | Expression of Fluorescent Protein | References |
---|---|---|---|---|
henipaviruses | NNS RNA | Cedar virus | yes | [63,64] |
filoviruses | NNS RNA | no | N/A | |
arenaviruses | SNS RNA 2 segments | Morogoro virus | no | [41] |
Mopeia virus | yes 1 | [59] | ||
Tacaribe virus | yes | [60] | ||
Pichinde virus | yes 1 | [61,62] | ||
nairoviruses | SNS RNA 3 segments | HAZV | yes | [22,27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olejnik, J.; Meier, K.; Herrera, J.N.; DeStasio, D.J.; Deeney, D.J.; Flores, E.Y.; White, M.R.; Hume, A.J.; Mühlberger, E. Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level. Pathogens 2025, 14, 700. https://doi.org/10.3390/pathogens14070700
Olejnik J, Meier K, Herrera JN, DeStasio DJ, Deeney DJ, Flores EY, White MR, Hume AJ, Mühlberger E. Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level. Pathogens. 2025; 14(7):700. https://doi.org/10.3390/pathogens14070700
Chicago/Turabian StyleOlejnik, Judith, Kristina Meier, Jarod N. Herrera, Daniel J. DeStasio, Dylan J. Deeney, Elizabeth Y. Flores, Mitchell R. White, Adam J. Hume, and Elke Mühlberger. 2025. "Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level" Pathogens 14, no. 7: 700. https://doi.org/10.3390/pathogens14070700
APA StyleOlejnik, J., Meier, K., Herrera, J. N., DeStasio, D. J., Deeney, D. J., Flores, E. Y., White, M. R., Hume, A. J., & Mühlberger, E. (2025). Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level. Pathogens, 14(7), 700. https://doi.org/10.3390/pathogens14070700