Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = negative sense RNA viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1870 KB  
Article
A Novel Cogu-like Virus Identified in Wine Grapes
by Jennifer Dahan, Gardenia E. Orellana, Edison Reyes-Proaño, Jungmin Lee and Alexander V. Karasev
Viruses 2025, 17(9), 1175; https://doi.org/10.3390/v17091175 - 28 Aug 2025
Viewed by 713
Abstract
A new negative-strand RNA virus was identified in grapevines from a 38-year-old ‘Chardonnay’ block in Idaho through high-throughput sequencing (HTS) of total RNA. This virus was tentatively named grapevine-associated cogu-like Idaho virus (GaCLIdV). GaCLIdV has three negative-sense, single-stranded RNA genome segments of ca. [...] Read more.
A new negative-strand RNA virus was identified in grapevines from a 38-year-old ‘Chardonnay’ block in Idaho through high-throughput sequencing (HTS) of total RNA. This virus was tentatively named grapevine-associated cogu-like Idaho virus (GaCLIdV). GaCLIdV has three negative-sense, single-stranded RNA genome segments of ca. 7 kb, 1.9 kb, and 1.3 kb, encoding L protein (RNA-dependent RNA polymerase, RdRP), a movement protein (MP), and a nucleocapsid protein (NC), respectively, identified based on pair-wise comparisons with other cogu- and cogu-like viruses. In phylogenetic analysis based on the RdRP, GaCLIdV grouped within the family Phenuiviridae and was placed in a lineage of plant-infecting phenuiviruses as a sister clade of the genus Laulavirus, clustering most closely with switchgrass phenui-like virus 1 (SgPLV-1) and more distantly related to grapevine-associated cogu-like viruses from the Laulavirus and Coguvirus clades. Both GaCLIdV and SgPhLV-1 are proposed to form a new genus, Switvirus, within the family Phenuiviridae. The presence of GaCLIdV in the original ‘Chardonnay’ samples was confirmed by RT-PCR amplification and Sanger sequencing. This new virus was found in five wine grape cultivars and in six vineyards sampled in Idaho and in Oregon during the 2020–2024 seasons. GaCLIdV may have contributed to the decline observed in the old ‘Chardonnay’ block, although the role of the virus in symptom development awaits further investigation. Full article
Show Figures

Figure 1

21 pages, 8833 KB  
Article
Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level
by Judith Olejnik, Kristina Meier, Jarod N. Herrera, Daniel J. DeStasio, Dylan J. Deeney, Elizabeth Y. Flores, Mitchell R. White, Adam J. Hume and Elke Mühlberger
Pathogens 2025, 14(7), 700; https://doi.org/10.3390/pathogens14070700 - 15 Jul 2025
Cited by 1 | Viewed by 757
Abstract
Research on highly pathogenic biosafety level 4 (BSL-4) viruses that are classified as Select Agents involves transferring inactivated materials to lower containment levels for further analysis. Compliance with Select Agent and BSL-4 safety regulations necessitates the validation and verification of inactivation procedures. To [...] Read more.
Research on highly pathogenic biosafety level 4 (BSL-4) viruses that are classified as Select Agents involves transferring inactivated materials to lower containment levels for further analysis. Compliance with Select Agent and BSL-4 safety regulations necessitates the validation and verification of inactivation procedures. To streamline this process, it would be beneficial to use surrogate BSL-2 viruses for inactivation studies. This not only simplifies BSL-4 work but also enables the testing and validation of inactivation procedures in research facilities that lack access to high-containment laboratories yet may receive samples containing highly pathogenic viruses that require efficient and complete inactivation. In this study, we used Hazara virus (HAZV) as a surrogate virus for Crimean–Congo hemorrhagic fever virus to show the efficacy of various inactivation methods. We demonstrate the successful inactivation of HAZV using TRIzol/TRIzol LS and aldehyde fixation. Importantly, the parameters of the aldehyde inactivation of cell pellets differed from those of the monolayers, highlighting the importance of inactivation validation. As part of this study, we also defined specific criteria that must be met by a BSL-2 virus to be used as a surrogate for a closely related BSL-4 virus. Defining these criteria helps identify suitable nonpathogenic surrogates for developing inactivation procedures for highly pathogenic viruses. Full article
Show Figures

Figure 1

16 pages, 4244 KB  
Article
Interactions Between Hantavirus Nucleoprotein and Glycoproteins: A Quantitative Fluorescence Microscopy Study
by Amit Koikkarah Aji, Titas Mandal and Salvatore Chiantia
Viruses 2025, 17(7), 940; https://doi.org/10.3390/v17070940 - 2 Jul 2025
Viewed by 572
Abstract
Orthohantaviruses are tri-segmented negative-sense RNA viruses that can cause severe pathologies in humans. Currently, limited information exists on the molecular interactions driving orthohantavirus assembly in infected cells. Specifically, it is not clear how its glycoproteins (i.e., Gn and Gc) interact with other viral [...] Read more.
Orthohantaviruses are tri-segmented negative-sense RNA viruses that can cause severe pathologies in humans. Currently, limited information exists on the molecular interactions driving orthohantavirus assembly in infected cells. Specifically, it is not clear how its glycoproteins (i.e., Gn and Gc) interact with other viral or host molecules. In this study, we use one- and two-color Number and Brightness fluorescence microscopy approaches to quantitatively characterize the interactions between orthohantavirus glycoproteins and the nucleoprotein in transfected cells. Our results indicate that orthohantavirus nucleoprotein homo-interactions are strongly affected by the host environment. Furthermore, we report evidence of Gc–nucleoprotein interactions, based on (i) the high fluorescence cross-correlation between these two proteins and (ii) the increased Gc-Gc interactions observed in the presence of nucleoprotein. Finally, experiments on a Gc deletion mutant suggest that the observed protein–protein interactions are mediated by the cytoplasmic tail of Gc. In conclusion, this study provides new insights into the role of the interactions between orthohantavirus glycoproteins and nucleoprotein in the context of viral assembly. Full article
(This article belongs to the Special Issue Microscopy Methods for Virus Research)
Show Figures

Figure 1

14 pages, 844 KB  
Review
The Role of Chemical Modifications in the Genome of Negative-Sense RNA Viruses on the Innate Immune Response
by María-Alejandra Ceballos and Mónica L. Acevedo
Viruses 2025, 17(6), 795; https://doi.org/10.3390/v17060795 - 30 May 2025
Viewed by 984
Abstract
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the [...] Read more.
Negative-sense RNA viruses comprise a wide array of viral families, such as Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, and Morbillivirus, all of which are adept at inciting significant epidemic outbreaks. Throughout their replication cycle, these viruses engage in a variety of RNA modifications, during both the co-transcriptional and post-transcriptional phases, which are mediated by specific enzymatic activities. These chemical alterations play a critical role in shaping viral fitness, particularly in terms of evading innate immune responses. Key chemical modifications, such as adenosine methylation, 2′-O methylation of nucleosides, and adenosine-to-inosine editing, play critical roles in determining the stability, translational efficiency, and immune recognition of viral RNA. These modifications can reduce the activation of immune sensors, thereby suppressing interferon production and broader antiviral responses. In contrast, certain modifications may enhance immune recognition, which opens avenues for novel vaccine and antiviral strategy development. A comprehensive understanding of these RNA chemical modifications and their implications for virus–host interactions is essential for advancing therapeutic strategies aimed at manipulating innate immunity and optimizing the efficacy of RNA-based vaccines. This review examines the mechanisms and implications of RNA chemical modifications in negative-sense RNA viruses, emphasizing their dual roles in either evading or activating the innate immune system. Full article
(This article belongs to the Special Issue Functional and Structural Features of Viral RNA Elements)
Show Figures

Figure 1

33 pages, 1407 KB  
Article
Detection and In Vivo Validation of Dichorhavirus e-Probes in Meta-Transcriptomic Data via Microbe Finder (MiFi®) Discovers a Novel Host and a Possible New Strain of Orchid Fleck Virus
by Avijit Roy, Jonathan Shao, Andres S. Espindola, Daniel Ramos Lopez, Gabriel Otero-Colina, Yazmín Rivera, Vessela A. Mavrodieva, Mark K. Nakhla, William L. Schneider and Kitty Cardwell
Viruses 2025, 17(3), 441; https://doi.org/10.3390/v17030441 - 19 Mar 2025
Cited by 1 | Viewed by 799
Abstract
Dichorhavirus is a recently accepted plant virus genus within the family Rhabdoviridae. Species assigned to the genus consist of bi-segmented, negative sense, single-stranded RNA viruses and are transmitted by Brevipalpus spp. Currently, there are five recognized species and two unclassified members in [...] Read more.
Dichorhavirus is a recently accepted plant virus genus within the family Rhabdoviridae. Species assigned to the genus consist of bi-segmented, negative sense, single-stranded RNA viruses and are transmitted by Brevipalpus spp. Currently, there are five recognized species and two unclassified members in the genus Dichorhavirus. Four out of seven-orchid fleck virus (OFV), citrus leprosis virus N, citrus chlorotic spot virus, and citrus bright spot virus-can infect citrus and produce leprosis disease-like symptoms. The E-probe Diagnostic for Nucleic Acid Analysis (EDNA) was developed to reduce computational effort and then integrated within Microbe-Finder (MiFi®) online platform to design and evaluate e-probes in raw High Throughput Sequencing (HTS) data. During this study, Dichorhavirus genomes were downloaded from public databases and e-probes were designed using the MiProbe incorporated into the MiFi® platform. Three different sizes of e-probes, 40, 60, and 80 nucleotides, were developed and selected based on whole genome comparisons with near-neighbor genomes. For curation, each e-probe was searched in the NCBI nucleotide sequence database using BLASTn. All the e-probes that had hits with non-target species with ≥90% identities were removed. The sensitivity and specificity of Dichorhavirus genus, species, strain, and variant-specific e-probes were validated in vivo using HTS meta-transcriptomic libraries generated from Dichorhavirus-suspected citrus, orchid, and ornamentals. Through downstream analysis of HTS data, EDNA not only detected the known hosts of OFV but also discovered an unknown host leopard plant (Farfugium japonicum), and the possible existence of a new ornamental strain of OFV in nature. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

22 pages, 4371 KB  
Article
AMPK Activation Downregulates TXNIP, Rab5, and Rab7 Within Minutes, Thereby Inhibiting the Endocytosis-Mediated Entry of Human Pathogenic Viruses
by Viktoria Diesendorf, Veronica La Rocca, Michelle Teutsch, Haisam Alattar, Helena Obernolte, Kornelia Kenst, Jens Seibel, Philipp Wörsdörfer, Katherina Sewald, Maria Steinke, Sibylle Schneider-Schaulies, Manfred B. Lutz and Jochen Bodem
Cells 2025, 14(5), 334; https://doi.org/10.3390/cells14050334 - 24 Feb 2025
Viewed by 1773
Abstract
Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis. Beyond limiting dextran uptake, this activation [...] Read more.
Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis. Beyond limiting dextran uptake, this activation prevents endocytic uptake of human pathogenic enveloped and non-enveloped, positive- and negative-stranded RNA viruses, such as yellow fever, dengue, tick-borne encephalitis, chikungunya, polio, rubella, rabies lyssavirus, and SARS-CoV-2, not only in mammalian and insect cells but also in precision-cut lung slices and neuronal organoids. ULK1 activation inhibited enveloped viruses but not EV71. However, receptor presentation at the cytoplasmic membrane remained unaffected, indicating that receptor binding was unchanged, while later stages of endocytosis were targeted via two distinct pathways. Drug-induced activation of the AMPK pathway reduced early endocytic factor TXNIP by suppressing translation. In contrast, the amounts of Rab5 and the late endosomal marker Rab7 decreased due to translation inactivation and ULK1-dependent proteasome activation within minutes. Furthermore, activation of AMPK hindered the late replication steps of SARS-CoV-2 by reducing viral RNAs and proteins and the endo-lysosomal markers LAMP1 and GRP78, suggesting a reduction in early and late endosomes and lysosomes. Inhibition of the PI3K and mTORC2 pathways, which sense amino acid and growth factor availability, promotes AMPK activity and blocks viral entry. Our results indicate that AMPK and ULK1 emerge as restriction factors of cellular endocytosis, impeding the receptor-mediated endocytic entry of enveloped and non-enveloped RNA viruses. Full article
Show Figures

Graphical abstract

25 pages, 3560 KB  
Article
Dimerization of Rabies Virus Phosphoprotein and Phosphorylation of Its Nucleoprotein Enhance Their Binding Affinity
by Euripedes de Almeida Ribeiro, Cédric Leyrat, Francine C. A. Gérard and Marc Jamin
Viruses 2024, 16(11), 1735; https://doi.org/10.3390/v16111735 - 4 Nov 2024
Cited by 1 | Viewed by 2087
Abstract
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order Mononegavirales. P multimerization and N phosphorylation [...] Read more.
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order Mononegavirales. P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models. We found that RABV P binds with nanomolar affinity to both circular and linear N-RNA complexes and that the dimerization of P protein enhances the binding affinity by 15–30-fold as compared to the monomeric fragments, but less than expected for a bivalent ligand, in which the binding domains are connected by a flexible linker. We also showed that the phosphorylation of N at Ser389 creates high-affinity sites on the polymeric N-RNA complex that enhance the binding affinity of P by a factor of about 360. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 3554 KB  
Article
Bunyamwera Virus Infection of Wolbachia-Carrying Aedes aegypti Mosquitoes Reduces Wolbachia Density
by Daniella A. Lefteri, Stephanie M. Rainey, Shivan M. Murdochy and Steven P. Sinkins
Viruses 2024, 16(8), 1336; https://doi.org/10.3390/v16081336 - 21 Aug 2024
Viewed by 1583
Abstract
Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia [...] Read more.
Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia is against negative-sense RNA viruses. Therefore, the effect of Wolbachia on Bunyamwera virus (BUNV) infection in Aedes aegypti was investigated using wMel and wAlbB, two strains currently used in Wolbachia releases for dengue control, as well as wAu, a strain that typically persists at a high density and is an extremely efficient blocker of positive-sense viruses. Wolbachia was found to reduce BUNV infection in vitro but not in vivo. Instead, BUNV caused significant impacts on density of all three Wolbachia strains following infection of Ae. aegypti mosquitoes. The ability of Wolbachia to successfully persist within the mosquito and block virus transmission is partially dependent on its intracellular density. However, reduction in Wolbachia density was not observed in offspring of infected mothers. This could be due in part to a lack of transovarial transmission of BUNV observed. The results highlight the importance of understanding the complex interactions between multiple arboviruses, mosquitoes and Wolbachia in natural environments, the impact this can have on maintaining protection against diseases, and the necessity for monitoring Wolbachia prevalence at release sites. Full article
(This article belongs to the Special Issue The Impact of Wolbachia on Virus Infection)
Show Figures

Figure 1

11 pages, 1523 KB  
Article
Discovery and Genomic Analysis of Three Novel Viruses in the Order Mononegavirales in Leafhoppers
by Jiajing Xiao, Binghua Nie, Meng-En Chen, Danfeng Ge and Renyi Liu
Viruses 2024, 16(8), 1321; https://doi.org/10.3390/v16081321 - 19 Aug 2024
Cited by 1 | Viewed by 1677
Abstract
Leafhoppers are economically important pests and may serve as vectors for pathogenic viruses that cause substantial crop damage. In this study, using deep transcriptome sequencing, we identified three novel viruses within the order Mononegavirales, including two viruses belonging to the family Rhabdoviridae [...] Read more.
Leafhoppers are economically important pests and may serve as vectors for pathogenic viruses that cause substantial crop damage. In this study, using deep transcriptome sequencing, we identified three novel viruses within the order Mononegavirales, including two viruses belonging to the family Rhabdoviridae and one to the family Lispiviridae. The complete genome sequences were obtained via the rapid amplification of cDNA ends and tentatively named Recilia dorsalis rhabdovirus 1 (RdRV1, 14,251 nucleotides, nt), Nephotettix virescens rhabdovirus 1 (NvRV1, 13,726 nt), and Nephotettix virescens lispivirus 1 (NvLV1, 14,055 nt). The results of a phylogenetic analysis and sequence identity comparison suggest that RdRV1 and NvRV1 represent novel species within the family Rhabdoviridae, while NvLV1 is a new virus belonging to the family Lispiviridae. As negative-sense single-strand RNA viruses, RdRV1 and NvRV1 contain the conserved transcription termination signal and intergenic trinucleotides in the non-transcribed region. Intergenomic sequence and transcriptome profile analyses suggested that all these genes were co-transcriptionally expressed in these viral genomes, facilitated by specific intergenic trinucleotides and putative transcription initiation sequences. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

11 pages, 1537 KB  
Communication
Genetic Characterization of Two Novel Insect-Infecting Negative-Sense RNA Viruses Identified in a Leaf Beetle, Aulacophora indica
by Meng-Nan Chen, Zhuang-Xin Ye, Ke-Hui Feng, Jing-Na Yuan, Jian-Ping Chen, Chuan-Xi Zhang, Jun-Min Li and Qian-Zhuo Mao
Insects 2024, 15(8), 615; https://doi.org/10.3390/insects15080615 - 15 Aug 2024
Cited by 1 | Viewed by 1688
Abstract
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue [...] Read more.
Herbivorous insects harbor a variety of insect-specific viruses (ISVs) some of which are considered to be valuable biological agents for potential applications in biological defense and control strategies. Leaf beetles with chewing mouthparts are particularly known for their capacity to disrupt plant tissue while feeding, often creating openings that can act as entry points for plant pathogens. In this study, we have identified two new negative-sense RNA viruses infecting the leaf beetle Aulacophora indica, an important member of the Chrysomelidae family. These recently discovered viruses belong to the viral families Nyamiviridae and Chuviridae and have been preliminarily named Aulacophora indica nyami-like virus 1 (AINlV1) and Aulacophora indica chu-like virus 1 (AIClV1), respectively. The complete genomic sequences of these viruses were obtained using rapid amplification of cDNA ends (RACE) techniques. Detailed analysis of their genomic structures has confirmed their similarity to other members within their respective families. Furthermore, analysis of virus-derived small interfering RNA (vsiRNA) demonstrated a high abundance and typical vsiRNA pattern of AINlV1 and AIClV1, offering substantial evidence to support their classification as ISVs. This research enhances our understanding of viral diversity within insects. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

23 pages, 2561 KB  
Review
Non-Ebola Filoviruses: Potential Threats to Global Health Security
by Yannick Munyeku-Bazitama, Francois Edidi-Atani and Ayato Takada
Viruses 2024, 16(8), 1179; https://doi.org/10.3390/v16081179 - 23 Jul 2024
Cited by 6 | Viewed by 2968
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has [...] Read more.
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013–2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 3012 KB  
Article
Molecular Characterization of a Novel Rubodvirus Infecting Raspberries
by Ondřej Lenz, Igor Koloniuk, Tatiana Sarkisová, Radek Čmejla, Lucie Valentová, Martina Rejlová, Jiří Sedlák, Dag-Ragnar Blystad, Bijaya Sapkota, Zhibo Hamborg, Jiunn Luh Tan, Rostislav Zemek, Přibylová Jaroslava and Jana Fránová
Viruses 2024, 16(7), 1074; https://doi.org/10.3390/v16071074 - 3 Jul 2024
Cited by 2 | Viewed by 1685
Abstract
A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit [...] Read more.
A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus. Full article
(This article belongs to the Special Issue Plant-Infecting Negative-Strand RNA Viruses 2025)
Show Figures

Figure 1

17 pages, 1895 KB  
Article
Novel Betanucleorhabdoviruses Infecting Elderberry (Sambucus nigra L.): Genome Characterization and Genetic Variability
by Dana Šafářová, Thierry Candresse, Jana Veselská and Milan Navrátil
Pathogens 2024, 13(6), 445; https://doi.org/10.3390/pathogens13060445 - 24 May 2024
Cited by 1 | Viewed by 1336
Abstract
The genus Betanucleorhabdovirus includes plant viruses with negative sense, non-segmented, single-stranded RNA genomes. Here, we characterized putative novel betanucleorhabdoviruses infecting a medically important plant, elderberry. Total RNA was purified from the leaves of several plants, ribodepleted and sequenced using the Illumina platform. Sequence [...] Read more.
The genus Betanucleorhabdovirus includes plant viruses with negative sense, non-segmented, single-stranded RNA genomes. Here, we characterized putative novel betanucleorhabdoviruses infecting a medically important plant, elderberry. Total RNA was purified from the leaves of several plants, ribodepleted and sequenced using the Illumina platform. Sequence data analysis led to the identification of thirteen contigs of approximately 13.5 kb, showing a genome structure (3′-N-P-P3-M-G-L-5′) typical of plant rhabdoviruses. The detected isolates showed 69.4 to 98.9% pairwise nucleotide identity and had the highest identity among known viruses (64.7–65.9%) with tomato betanucleorhabdovirus 2. A detailed similarity analysis and a phylogenetic analysis allowed us to discriminate the elderberry isolates into five groups, each meeting the sequence-based ICTV demarcation criterion in the Betanucleorhabdovirus genus (lower than 75% identity for the complete genome). Hence, the detected viruses appear to represent five novel, closely related betanucleorhabdoviruses, tentatively named Sambucus betanucleorhabdovirus 1 to 5. Full article
(This article belongs to the Special Issue Advances in Plant Viruses)
Show Figures

Figure 1

17 pages, 9649 KB  
Article
The Main Protease of Middle East Respiratory Syndrome Coronavirus Induces Cleavage of Mitochondrial Antiviral Signaling Protein to Antagonize the Innate Immune Response
by Mariska van Huizen, Xavier M. Vendrell, Heidi L. M. de Gruyter, A. Linda Boomaars-van der Zanden, Yvonne van der Meer, Eric J. Snijder, Marjolein Kikkert and Sebenzile K. Myeni
Viruses 2024, 16(2), 256; https://doi.org/10.3390/v16020256 - 5 Feb 2024
Cited by 7 | Viewed by 2214
Abstract
Mitochondrial antiviral signaling protein (MAVS) is a crucial signaling adaptor in the sensing of positive-sense RNA viruses and the subsequent induction of the innate immune response. Coronaviruses have evolved multiple mechanisms to evade this response, amongst others, through their main protease (Mpro [...] Read more.
Mitochondrial antiviral signaling protein (MAVS) is a crucial signaling adaptor in the sensing of positive-sense RNA viruses and the subsequent induction of the innate immune response. Coronaviruses have evolved multiple mechanisms to evade this response, amongst others, through their main protease (Mpro), which is responsible for the proteolytic cleavage of the largest part of the viral replicase polyproteins pp1a and pp1ab. Additionally, it can cleave cellular substrates, such as innate immune signaling factors, to dampen the immune response. Here, we show that MAVS is cleaved in cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV), but not in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This cleavage was independent of cellular negative feedback mechanisms that regulate MAVS activation. Furthermore, MERS-CoV Mpro expression induced MAVS cleavage upon overexpression and suppressed the activation of the interferon-β (IFN-β) and nuclear factor-κB (NF-κB) response. We conclude that we have uncovered a novel mechanism by which MERS-CoV downregulates the innate immune response, which is not observed among other highly pathogenic coronaviruses. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

17 pages, 4577 KB  
Article
Heat Inactivation of Nipah Virus for Downstream Single-Cell RNA Sequencing Does Not Interfere with Sample Quality
by Adam J. Hume, Judith Olejnik, Mitchell R. White, Jessie Huang, Jacquelyn Turcinovic, Baylee Heiden, Pushpinder S. Bawa, Christopher J. Williams, Nickolas G. Gorham, Yuriy O. Alekseyev, John H. Connor, Darrell N. Kotton and Elke Mühlberger
Pathogens 2024, 13(1), 62; https://doi.org/10.3390/pathogens13010062 - 9 Jan 2024
Cited by 6 | Viewed by 4359
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies are instrumental to improving our understanding of virus–host interactions in cell culture infection studies and complex biological systems because they allow separating the transcriptional signatures of infected versus non-infected bystander cells. A drawback of using biosafety level (BSL) [...] Read more.
Single-cell RNA sequencing (scRNA-seq) technologies are instrumental to improving our understanding of virus–host interactions in cell culture infection studies and complex biological systems because they allow separating the transcriptional signatures of infected versus non-infected bystander cells. A drawback of using biosafety level (BSL) 4 pathogens is that protocols are typically developed without consideration of virus inactivation during the procedure. To ensure complete inactivation of virus-containing samples for downstream analyses, an adaptation of the workflow is needed. Focusing on a commercially available microfluidic partitioning scRNA-seq platform to prepare samples for scRNA-seq, we tested various chemical and physical components of the platform for their ability to inactivate Nipah virus (NiV), a BSL-4 pathogen that belongs to the group of nonsegmented negative-sense RNA viruses. The only step of the standard protocol that led to NiV inactivation was a 5 min incubation at 85 °C. To comply with the more stringent biosafety requirements for BSL-4-derived samples, we included an additional heat step after cDNA synthesis. This step alone was sufficient to inactivate NiV-containing samples, adding to the necessary inactivation redundancy. Importantly, the additional heat step did not affect sample quality or downstream scRNA-seq results. Full article
Show Figures

Figure 1

Back to TopTop