Healing with Risks: How Zoonotic Potential Influences the Use of Wild Mammals in Traditional Medicine
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Dataset Overview
3.2. Trends in Zoonotic Pathogens Among Medicinal Mammals
3.3. Determinants of Therapeutic Versatility in Medicinal Mammals
4. Discussion
4.1. Trends in Zoonotic Pathogens Among Medicinal Mammals
4.2. Determinants of Therapeutic Versatility in Medicinal Mammals
4.3. Health and Conservation Implications and Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cleaveland, S.; Laurenson, M.K.; Taylor, L.H. Diseases of Humans and Their Domestic Mammals: Pathogen Characteristics, Host Range and the Risk of Emergence. Philos. Trans. R. Soc. B Biol. Sci. 2001, 356, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Shivaprakash, K.N.; Sen, S.; Paul, S.; Kiesecker, J.M.; Bawa, K.S. Mammals, Wildlife Trade, and the next Global Pandemic. Curr. Biol. 2021, 31, 3671–3677.e3. [Google Scholar] [CrossRef] [PubMed]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of Zoonoses: Natural and Unnatural Histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Fernandesferreira, H.; Alves, R.R.N. The Researches on the Hunting in Brazil: A Brief Overview. Ethnobiol. Conserv. 2017, 1–7. [Google Scholar] [CrossRef]
- Sexton, R.; Nguyen, T.; Roberts, D.L. The Use and Prescription of Pangolin in Traditional Vietnamese Medicine. Trop. Conserv. Sci. 2021, 14. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Daszak, P.; Kilpatrick, A.M. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease Emergence. Emerg. Infect. Dis. 2005, 11, 1822–1827. [Google Scholar] [CrossRef]
- Paige, S.B.; Frost, S.D.W.; Gibson, M.A.; Jones, J.H.; Shankar, A.; Switzer, W.M.; Ting, N.; Goldberg, T.L. Beyond Bushmeat: Animal Contact, Injury, and Zoonotic Disease Risk in Western Uganda. Ecohealth 2014, 11, 534–543. [Google Scholar] [CrossRef]
- Tomley, F.M.; Shirley, M.W. Livestock Infectious Diseases and Zoonoses. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2637–2642. [Google Scholar] [CrossRef]
- Van Vliet, N.; Moreno, J.; Gómez, J.; Zhou, W.; Fa, J.E.; Golden, C.; Alves, R.R.N.; Nasi, R. Bushmeat and Human Health: Assessing the Evidence in Tropical and Sub-Tropical Forests. Ethnobiol. Conserv. 2017, 6. [Google Scholar] [CrossRef]
- Linder, A.K.; Jamieson, D.; Nadzam, B.; Jamieson, D.; Stilten, K. Animal Markets and Zoonotic Disease Risk a Global Synthesis of a 15 Country Study; Ministère de l'Aménagement du Territoire et de la Transition Écologique: Paris, France, 2024. [Google Scholar]
- Friant, S.; Paige, S.B.; Goldberg, T.L. Drivers of Bushmeat Hunting and Perceptions of Zoonoses in Nigerian Hunting Communities. PLoS Negl. Trop. Dis. 2015, 9, e0003792. [Google Scholar] [CrossRef]
- Friant, S.; Bonwitt, J.; Ayambem, W.A.; Ifebueme, N.M.; Alobi, A.O.; Otukpa, O.M.; Bennett, A.J.; Shea, C.; Rothman, J.M.; Goldberg, T.L.; et al. Zootherapy as a Potential Pathway for Zoonotic Spillover: A Mixed-Methods Study of the Use of Animal Products in Medicinal and Cultural Practices in Nigeria. One Health Outlook 2022, 4, 5. [Google Scholar] [CrossRef]
- Zeppelini, C.G.; Carneiro, I.d.O.; Mascarenhas de Abreu, P.; Linder, A.K.; Alves, R.R.N.; Costa, F. Wildlife as Food and Medicine in Brazil: A Neglected Zoonotic Risk? Pathogens 2024, 13, 222. [Google Scholar] [CrossRef] [PubMed]
- González-Barrio, D. Zoonoses and Wildlife: One Health Approach. Animals 2022, 12, 480. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Zoonotic Spillover: Understanding Basic Aspects for Better Prevention. Genet. Mol. Biol. 2021, 44, e20200355. [Google Scholar] [CrossRef]
- Alves, R.R.N. Relationships between Fauna and People and the Role of Ethnozoology in Animal Conservation. Ethnobiol. Conserv. 2012, 1. [Google Scholar] [CrossRef]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and Viral Traits Predict Zoonotic Spillover from Mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Cattadori, I.; Hudson, P.J. The Role of Mammals in Emerging Zoonoses. Mammal. Study 2005, 30, S67–S71. [Google Scholar] [CrossRef]
- Xu, R.-H.; He, J.-F.; Meirion, R.E. Epidemiologic Clues to SARS Origin in China. Emerg. Infect. Dis. 2004, 10, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Bhadoria, P.; Gupta, G.; Agarwal, A. Viral Pandemics in the Past Two Decades: An Overview. J. Fam. Med. Prim. Care 2021, 10, 2745. [Google Scholar] [CrossRef]
- Da Silva Policarpo Brito, I.; Borges, A.K.M.; De Faria Lopes, S.; Dias, T.L.P.; Alves, R.R.N. Environmental Influence on the Choice of Medicinal Animals: A Case Study from Northeastern Brazil. J. Ethnobiol. Ethnomed. 2019, 15, 55. [Google Scholar] [CrossRef]
- Duonamou, L.; Konate, A.; Djossou, S.D.; Mensah, G.A.; Xu, J.; Humle, T. Consumer Perceptions and Reported Wild and Domestic Meat and Fish Consumption Behavior during the Ebola Epidemic in Guinea, West Africa. PeerJ 2020, 8, e9229. [Google Scholar] [CrossRef]
- Adeola, M.O. Importance of Wild Animals and Their Parts in the Culture, Religious Festivals, and Traditional Medicine, of Nigeria. Environ. Conserv. 1992, 19, 125–134. [Google Scholar] [CrossRef]
- Alves, R.R.N.; Borges, A.K.M.; Barboza, R.R.D.; Souto, W.M.S.; Gonçalves-Souza, T.; Provete, D.B.; Albuquerque, U.P. A Global Analysis of Ecological and Evolutionary Drivers of the Use of Wild Mammals in Traditional Medicine. Mamm. Rev. 2021, 51, 293–306. [Google Scholar] [CrossRef]
- Alves, R.R.N.; Rosa, I.L. From Cnidarians to Mammals: The Use of Animals as Remedies in Fishing Communities in NE Brazil. J. Ethnopharmacol. 2006, 107, 259–276. [Google Scholar] [CrossRef]
- Huffman, M.A. Folklore, Animal Self-Medication, and Phytotherapy-Something Old, Something New, Something Borrowed, Some Things True. Planta Med. 2022, 88, 187–199. [Google Scholar] [CrossRef]
- Alonso-Castro, A.J.; Carranza-Álvarez, C.; Maldonado-Miranda, J.J.; Del Rosario Jacobo-Salcedo, M.; Quezada-Rivera, D.A.; Lorenzo-Márquez, H.; Figueroa-Zúñiga, L.A.; Fernández-Galicia, C.; Ríos-Reyes, N.A.; De León-Rubio, M.Á.; et al. Zootherapeutic Practices in Aquismón, San Luis Potosí, México. J. Ethnopharmacol. 2011, 138, 233–237. [Google Scholar] [CrossRef]
- Caetano, R.d.A.; de Albuquerque, U.P.; de Medeiros, P.M. What Are the Drivers of Popularity and Versatility of Medicinal Plants in Local Medical Systems? Acta Bot. Bras. 2020, 34, 256–265. [Google Scholar] [CrossRef]
- Cartaxo, S.L.; de Almeida Souza, M.M.; de Albuquerque, U.P. Medicinal Plants with Bioprospecting Potential Used in Semi-Arid Northeastern Brazil. J. Ethnopharmacol. 2010, 131, 326–342. [Google Scholar] [CrossRef]
- Schaller, M. Parasites, Behavioral Defenses, and the Social Psychological Mechanisms Through Which Cultures Are Evoked; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 2006; Volume 17. [Google Scholar]
- Sarabian, C.; Curtis, V.; McMullan, R. Evolution of Pathogen and Parasite Avoidance Behaviours. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170256. [Google Scholar] [CrossRef]
- Boccuto, D.P.P.; Mor, A.C.M.B.L.; Teixeira, D.V. The Cultural System Biomedical Health in Perspective in the Community Ilé Alákétu Asè Ifá Omo Oyá. Cienc. Saude Coletiva 2022, 27, 989–998. [Google Scholar] [CrossRef]
- Fialho, J. A Eficácia Simbólica Nos Sistemas Tradicionais de Saúde. Cad. Estud. Afr. 2003, 4, 121–133. [Google Scholar] [CrossRef]
- Alves, R.R.N.; Rosa, I.L. Introduction: Toward a Plural Approach to the Study of Medicinal Animals. In Animals in Traditional Folk Medicine: Implications for Conservation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–9. ISBN 9783642290268. [Google Scholar]
- Han, B.A.; Kramer, A.M.; Drake, J.M. Global Patterns of Zoonotic Disease in Mammals. Trends Parasitol. 2016, 32, 565–577. [Google Scholar] [CrossRef]
- Johnson, C.K.; Hitchens, P.L.; Pandit, P.S.; Rushmore, J.; Evans, T.S.; Young, C.C.W.; Doyle, M.M. Global Shifts in Mammalian Population Trends Reveal Key Predictors of Virus Spillover Risk. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192736. [Google Scholar] [CrossRef]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic Host Diversity Increases in Human-Dominated Ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Schaller, M.; Murray, D.R.; Bangerter, A. Implications of the Behavioural Immune System for Social Behaviour and Human Health in the Modern World. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140105. [Google Scholar] [CrossRef]
- Sarabian, C.; Ngoubangoye, B.; Macintosh, A.J. Avoidance of Biological Contaminants through Sight, Smell and Touch in Chimpanzees. R. Soc. Open Sci. 2017, 4, 170968. [Google Scholar] [CrossRef]
- Wardeh, M.; Sharkey, K.J.; Baylis, M. Integration of Shared-Pathogen Networks and Machine Learning Reveals the Key Aspects of Zoonoses and Predicts Mammalian Reservoirs. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192882. [Google Scholar] [CrossRef]
- Wardeh, M.; Risley, C.; Mcintyre, M.K.; Setzkorn, C.; Baylis, M. Database of Host-Pathogen and Related Species Interactions, and Their Global Distribution. Sci. Data 2015, 2, 1500490. [Google Scholar] [CrossRef]
- Scherf, B.D. World Watch List for Domestic Animal Diversity, 3rd ed.; FAO: Rome, Italy, 2000. [Google Scholar]
- Chamberlain, S.; Szoecs, E.; Foster, Z.; Arendsee, Z.; Boettiger, C.; Ram, K. Taxize: Taxonomic Information from Around the Web; R Package Version 0.9.98; rOpenSci 2020. Available online: https://github.com/ropensci/taxize (accessed on 25 January 2024).
- GBIF. The GBIF Network. Available online: https://www.gbif.org/the-gbif-network (accessed on 18 October 2022).
- Jones, K.E.; Bielby, J.; Cardillo, M.; Fritz, S.A.; O’Dell, J.; Orme, C.D.L.; Safi, K.; Sechrest, W.; Boakes, E.H.; Carbone, C.; et al. PanTHERIA: A Species-level Database of Life History, Ecology, and Geography of Extant and Recently Extinct Mammals. Ecology 2009, 90, 2648. [Google Scholar] [CrossRef]
- Animalia ANIMALIA.Bio. Available online: https://animalia.bio/ (accessed on 28 October 2022).
- IUCN. Spatial Data Download. Available online: https://www.iucnredlist.org/en (accessed on 3 May 2025).
- Bennett, B.C.; Prance, G.T. Introduced Plants in the Indigenous Pharmacopoeia of Northern South America. Econ. Bot. 2000, 54, 90–102. [Google Scholar] [CrossRef]
- Zuur, A. Generalised Additive Models Applied on Northern Gannets. In A Beginners Guide to Generalized Additive Models with R; Highland Statistics Ltd.: Newburgh, UK, 2012; pp. 1–15. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models; CRAN: Contributed Packages; [R package version 0.4.6]; Comprehensive R Archive Network (CRAN): Vienna, Austria, 2023; Available online: https://cran.r-project.org/package=DHARMa (accessed on 1 January 2025).
- Rousset, F.; Ferdy, J.B. Testing Environmental and Genetic Effects in the Presence of Spatial Autocorrelation. Ecography 2014, 37, 781–790. [Google Scholar] [CrossRef]
- Dray, S. Adespatial: Multivariate Multiscale Spatial Analysis R Package Version 0.3-22; CRAN: Contributed Packages; 2024. https://CRAN.R-project.org/package=adespatial (accessed on 1 January 2025).
- Albery, G.F.; Eskew, E.A.; Ross, N.; Olival, K.J. Predicting the Global Mammalian Viral Sharing Network Using Phylogeography. Nat. Commun. 2020, 11, 2260. [Google Scholar] [CrossRef]
- Leroux, S.J. On the Prevalence of Uninformative Parameters in Statistical Models Applying Model Selection in Applied Ecology. PLoS ONE 2019, 14, e0206711. [Google Scholar] [CrossRef]
- Choo, J.; Nghiem, L.T.P.; Chng, S.; Carrasco, L.R.; Benítez-López, A. Hotspots of Zoonotic Disease Risk from Wildlife Hunting and Trade in the Tropics. Integr. Conserv. 2023, 2, 165–175. [Google Scholar] [CrossRef]
- Han, B.A.; Castellanos, A.A.; Schmidt, J.P.; Fischhoff, I.R.; Drake, J.M. The Ecology of Zoonotic Parasites in the Carnivora. Trends Parasitol. 2021, 37, 1096–1110. [Google Scholar] [CrossRef]
- Veronesi, F.; Deak, G.; Diakou, A. Wild Mesocarnivores as Reservoirs of Endoparasites Causing Important Zoonoses and Emerging Bridging Infections across Europe. Pathogens 2023, 12, 178. [Google Scholar] [CrossRef]
- Park, A.W. Food Web Structure Selects for Parasite Host Range. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191277. [Google Scholar] [CrossRef]
- Byers, J.E.; Schmidt, J.P.; Pappalardo, P.; Haas, S.E.; Stephens, P.R. What Factors Explain the Geographical Range of Mammalian Parasites? Proc. R. Soc. B Biol. Sci. 2019, 286, 20190673. [Google Scholar] [CrossRef]
- Rojas, A.; Germitsch, N.; Oren, S.; Sazmand, A.; Deak, G. Wildlife Parasitology: Sample Collection and Processing, Diagnostic Constraints, and Methodological Challenges in Terrestrial Carnivores. Parasit Vectors 2024, 17, 127. [Google Scholar] [CrossRef]
- Pedersen, A.B.; Davies, T.J. Cross-Species Pathogen Transmission and Disease Emergence in Primates. Ecohealth 2009, 6, 496–508. [Google Scholar] [CrossRef]
- Apetrei, C.; Kaur, A.; Lerche, N.W.; Metzger, M.; Pandrea, I.; Hardcastle, J.; Falkenstein, S.; Bohm, R.; Koehler, J.; Traina-Dorge, V.; et al. Molecular Epidemiology of Simian Immunodeficiency Virus SIVsm in U.S. Primate Centers Unravels the Origin of SIVmac and SIVstm. J. Virol. 2005, 79, 8991–9005. [Google Scholar] [CrossRef]
- Muehlenbein, M.P.; Ancrenaz, M.; Sakong, R.; Ambu, L.; Prall, S.; Fuller, G.; Raghanti, M.A. Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo Pygmaeus Morio Following Human Visitation. PLoS ONE 2012, 7, e33357. [Google Scholar] [CrossRef]
- Kalish, M.L.; Wolfe, N.D.; Ndongmo, C.B.; Mcnicholl, J.; Robbins, K.E.; Aidoo, M.; Fonjungo, P.N.; Alemnji, G.; Zeh, C.; Djoko, C.F.; et al. Central African Hunters Exposed to Simian Immunodeficiency Virus. Emerg. Infect. Dis. 2005, 11, 1928–1930. [Google Scholar] [CrossRef]
- Peeters, M.; Courgnaud, V.; Abela, B.; Auzel, P.; Pourrut, X.; Bibollet-Ruche, F.; Loul, S.; Liegeois, F.; Butel, C.; Koulagna, D.; et al. Risk to Human Health from a Plethora of Simian Immunodeficiency Viruses in Primate Bushmeat. Emerg. Infect. Dis. 2002, 8, 451. [Google Scholar] [CrossRef]
- Letafati, A.; Sakhavarz, T. Monkeypox Virus: A Review. Microb. Pathog. 2023, 176, 106027. [Google Scholar] [CrossRef]
- Srinivas, K.; Gagana Sri, R.; Pravallika, K.; Nishitha, K.; Polamuri, S.R. COVID-19 Prediction Based on Hybrid Inception V3 with VGG16 Using Chest X-Ray Images. Multimed. Tools Appl. 2024, 83, 36665–36682. [Google Scholar] [CrossRef]
- da Silva, M.B.; Portela, J.M.; Li, W.; Jackson, M.; Gonzalez-Juarrero, M.; Hidalgo, A.S.; Belisle, J.T.; Bouth, R.C.; Gobbo, A.R.; Barreto, J.G.; et al. Evidence of Zoonotic Leprosy in Pará, Brazilian Amazon, and Risks Associated with Human Contact or Consumption of Armadillos. PLoS Negl. Trop. Dis. 2018, 12, e0006532. [Google Scholar] [CrossRef]
- Deps, P.D.; Alves, B.L.; Gripp, C.G.; Aragão, R.L.; Guedes, B.V.S.; Filho, J.B.; Andreatta, M.K.; Marcari, R.S.; Prates, I.C.A.; Rodrigues, L.C. Contact with Armadillos Increases the Risk of Leprosy in Brazil: A Case Contact with Armadillos Increases the Risk of Leprosy in Brazil: A Case Control Study Control Study. Indian J. Dermatol. Venereol. Leprol. 2008, 74, 338. [Google Scholar] [CrossRef]
- Nash, H.C.; Wong, M.H.G.; Turvey, S.T. Using Local Ecological Knowledge to Determine Status and Threats of the Critically Endangered Chinese Pangolin (Manis Pentadactyla) in Hainan, China. Biol. Conserv. 2016, 196, 189–195. [Google Scholar] [CrossRef]
- Shairp, R.; Veríssimo, D.; Fraser, I.; Challender, D.; Macmillan, D. Understanding Urban Demand for Wild Meat in Vietnam: Implications for Conservation Actions. PLoS ONE 2016, 11, e0134787. [Google Scholar] [CrossRef]
- Xu, L.; Jing, G.; Lau, W.; Xiao, Y. An Overview of Pangolin Trade in China. Traffic Breafing 2016, 1–10. Available online: https://www.pangolinsg.org/wp-content/uploads/sites/35/2018/06/Xu-et-al_-2016_An-Overview-of-Pangolin-Trade-in-China.pdf (accessed on 10 June 2024).
- Roychoudhury, S.; Das, A.; Sengupta, P.; Dutta, S.; Roychoudhury, S.; Choudhury, A.P.; Fuzayel Ahmed, A.B.; Bhattacharjee, S.; Slama, P. Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 9411. [Google Scholar] [CrossRef]
- Coccolini, F.; Sartelli, M.; Kluger, Y.; Pikoulis, E.; Karamagioli, E.; Moore, E.E.; Biffl, W.L.; Peitzman, A.; Hecker, A.; Chirica, M.; et al. COVID-19 the Showdown for Mass Casualty Preparedness and Management: The Cassandra Syndrome. World J. Emerg. Surg. 2020, 15, 26. [Google Scholar] [CrossRef]
- Neumann, G.; Kawaoka, Y. The COVID-19 Pandemic—A Potential Role for Antivirals in Mitigating Pandemics. Viruses 2023, 15, 303. [Google Scholar] [CrossRef]
- Plourde, B.T.; Burgess, T.L.; Eskew, E.A.; Roth, T.M.; Stephenson, N.; Foley, J.E. Are Disease Reservoirs Special? Taxonomic and Life History Characteristics. PLoS ONE 2017, 12, e0180716. [Google Scholar] [CrossRef]
- Jiang, X.; Fan, Z.; Li, S.; Yin, H. A Review on Zoonotic Pathogens Associated with Non-Human Primates: Understanding the Potential Threats to Humans. Microorganisms 2023, 11, 246. [Google Scholar] [CrossRef]
- Liu, Z.J.; Qian, X.K.; Hong, M.H.; Zhang, J.L.; Li, D.Y.; Wang, T.H.; Yang, Z.M.; Zhang, L.Y.; Wang, Z.M.; Nie, H.J.; et al. Global View on Virus Infection in Non-Human Primates and Implications for Public Health and Wildlife Conservation. Zool. Res. 2021, 42, 626–632. [Google Scholar] [CrossRef]
- Alves, R.R.N.; Rosa, I.M.L. Biodiversity, Traditional Medicine and Public Health: Where Do They Meet? J. Ethnobiol. Ethnomed. 2007, 3, 14. [Google Scholar] [CrossRef]
- Bonwitt, J.; Kandeh, M.; Dawson, M.; Ansumana, R.; Sahr, F.; Kelly, A.H.; Brown, H. Participation of Women and Children in Hunting Activities in Sierra Leone and Implications for Control of Zoonotic Infections. PLoS Negl. Trop. Dis. 2017, 11, e0005699. [Google Scholar] [CrossRef]
- Morand, S.; McIntyre, K.M.; Baylis, M. Domesticated Animals and Human Infectious Diseases of Zoonotic Origins: Domestication Time Matters. Infect. Genet. Evol. 2014, 24, 76–81. [Google Scholar] [CrossRef]
- Fa, J.E.; Funk, S.M.; Nasi, R. Hunting Wildlife in the Tropics and Subtropics; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Hlay, J.K.; Albert, G.; Batres, C.; Richardson, G.; Placek, C.; Arnocky, S.; Lieberman, D.; Hodges-Simeon, C.R. The Evolution of Disgust for Pathogen Detection and Avoidance. Sci. Rep. 2021, 11, 13468. [Google Scholar] [CrossRef]
- Biggs, D.; Courchamp, F.; Martin, R.; Possingham, H.P. Legal Trade of Africa’s Rhino Horns. Science 2013, 339, 1038–1039. [Google Scholar] [CrossRef]
- Júnior, W.S.F.; Albuquerque, U.P. A Theoretical Review on the Origin of Medicinal Practices in Humans: Echoes from Evolution. Ethnobiol. Conserv. 2018, 7, 3. [Google Scholar] [CrossRef]
- Moura, F.D.B.P.; Marques, J.G.W. Zooterapia popular na Chapada Diamantina: Uma medicina incidental? Ciênc. Saúde Coletiva 2008, 13 (Suppl. 2). [Google Scholar] [CrossRef]
- Santoro, F.R.; Chaves, L.S.; Albuquerque, U.P. Evolutionary Aspects That Guide the Cultural Transmission Pathways in a Local Medical System in Northeast Brazil. Heliyon 2020, 6, e04109. [Google Scholar] [CrossRef]
- Leroy, E.M.; Rouquet, P.; Formenty, P.; Souquière, S.; Kilbourne, A.; Froment, J.M.; Bermejo, M.; Smit, S.; Karesh, W.; Swanepoel, R.; et al. Multiple Ebola Virus Transmission Events and Rapid Decline of Central African Wildlife. Science 2004, 303, 387–390. [Google Scholar] [CrossRef]
- de Macedo, G.C.; Herrera, H.M.; de Oliveira Porfírio, G.E.; Santos, F.M.; de Assis, W.O.; de Andrade, G.B.; Nantes, W.A.G.; de Mendoza, J.H.; Fernández-Llario, P.; de Oliveira, C.E. Brucellosis in the Brazilian Pantanal Wetland: Threat to Animal Production and Wildlife Conservation. Braz. J. Microbiol. 2022, 53, 2287–2297. [Google Scholar] [CrossRef]
- Real, V.V.; Dutra, V.; Nakazato, L.d.F.; Keuroghlian, A. PCR of Salmonella spp., Streptococcus Suis, Brucella Abortus and Porcine Circovirus Type 2 in Free-Living and Captive Peccaries. Rev. Bras. Saúde Prod. Anim. 2010, 11, 858–864. [Google Scholar]
- Chua, K.; Bellini, W.; Rota, P.; Harcourt, B. Nipah Virus: A Recently Emergent Deadly Paramyxovirus. Science 2000, 288, 1432–1435. [Google Scholar] [CrossRef]
- Gama, A.D.S.; de Paula, M.; da Silva, R.R.V.; Ferreira, W.S.; de Medeiros, P.M. Exotic Species as Models to Understand Biocultural Adaptation: Challenges to Mainstream Views of Human-Nature Relations. PLoS ONE 2018, 13, e0196091. [Google Scholar] [CrossRef]
- Albuquerque, U.P.; de Medeiros, P.M.; Ferreira Júnior, W.S.; da Silva, T.C.; da Silva, R.R.V.; Gonçalves-Souza, T. Social-Ecological Theory of Maximization: Basic Concepts and Two Initial Models. Biol. Theory 2019, 14, 73–85. [Google Scholar] [CrossRef]
- de Medeiros, P.; Ladio, A.H.; Albuquerque, U.P. Critérios Locais de Seleção e Uso Diferencial de Plantas Medicinais: Porque Nos Escolhemos o Que Escolhemos; NUPEEA: Montreal, QC, Canada, 2013; ISBN 978-85-63756-21-3. [Google Scholar]
- Casagrande, D.G. Human Taste and Cognition in Tzeltal Maya Medicinal Plant Use. J. Ecol. Anthr. 2000, 4, 57–69. [Google Scholar] [CrossRef]
- Molares, S.; Ladio, A. The Usefulness of Edible and Medicinal Fabaceae in Argentine and Chilean Patagonia: Environmental Availability and Other Sources of Supply. Evid.-Based Complement. Altern. Med. 2012, 2012, 901918. [Google Scholar] [CrossRef]
- Leonti, M.; Sticher, O.; Heinrich, M. Medicinal Plants of the Popoluca, México: Organoleptic Properties as Indigenous Selection Criteria. J. Ethnopharmacol. 2002, 81, 307–315. [Google Scholar] [CrossRef]
- Henrich, J.; Henrich, N. The Evolution of Cultural Adaptations: Fijian Food Taboos Protect against Dangerous Marine Toxins. Proc. R. Soc. B Biol. Sci. 2010, 277, 3715–3724. [Google Scholar] [CrossRef]
- Martin, A.; Caro, T.; Kiffner, C. Prey Preferences of Bushmeat Hunters in an East African Savannah Ecosystem. Eur. J. Wildl. Res. 2013, 59, 137–145. [Google Scholar] [CrossRef]
- Brammer, J.R.; Menzies, A.K.; Carter, L.S.; Giroux-Bougard, X.; Landry-Cuerrier, M.; Leblanc, M.L.; Neelin, M.N.; Studd, E.K.; Humphries, M.M. Weighing the Importance of Animal Body Size in Traditional Food Systems. Facets 2022, 7, 286–318. [Google Scholar] [CrossRef]
- Souto, W.M.S.; Barboza, R.R.D.; Fernandes-Ferreira, H.; Júnior, A.J.C.M.; Monteiro, J.M.; Abi-Chacra, É.d.A.; Alves, R.R.N. Zootherapeutic Uses of Wildmeat and associated Products in the Semiarid region of Brazil: General Aspects and Challenges For. J. Ethnobiol. Ethnomed. 2018, 14, 60. [Google Scholar] [CrossRef]
- Lindenfors, P.; Nunn, C.L.; Jones, K.E.; Cunningham, A.A.; Sechrest, W.; Gittleman, J.L. Parasite Species Richness in Carnivores: Effects of Host Body Mass, Latitude, Geographical Range and Population Density. Glob. Ecol. Biogeogr. 2007, 16, 496–509. [Google Scholar] [CrossRef]
- Poulin, R.; George-Nascimento, M. The Scaling of Total Parasite Biomass with Host Body Mass. Int. J. Parasitol. 2007, 37, 359–364. [Google Scholar] [CrossRef]
- Bezerra, D.M.M.; de Araujo, H.F.P.; Alves, Â.G.C.; Alves, R.R.N. Birds and People in Semiarid Northeastern Brazil: Symbolic and Medicinal Relationships. J. Ethnobiol. Ethnomed. 2013, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Frazão-Moreira, A. The Symbolic Efficacy of Medicinal Plants: Practices, Knowledge, and Religious Beliefs amongst the Nalu Healers of Guinea-Bissau. J. Ethnobiol. Ethnomed. 2016, 12, 24. [Google Scholar] [CrossRef]
- Pilnik, M.S.; Argentim, T.; Kinupp, V.F.; Haverroth, M.; Ming, L.C. Traditional Botanical Knowledge: Food Plants from the Huni Kuĩ Indigenous People, Acre, Western Brazilian Amazon. Rodriguesia 2023, 74, 1–23. [Google Scholar] [CrossRef]
- Ulicsni, V.; Babai, D.; Vadász, C.; Vadász-Besnyői, V.; Báldi, A.; Molnár, Z. Bridging Conservation Science and Traditional Knowledge of Wild Animals: The Need for Expert Guidance and Inclusion of Local Knowledge Holders. Ambio 2019, 48, 769–778. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Yatswako, S.; Oddoh, E.Y. Knowledge, Risk Perception and Mitigation Measures towards Ebola Virus Disease by Potentially Exposed Bushmeat Handlers in North-Central Nigeria: Any Critical Gap? Zoonoses Public Health 2018, 65, 158–167. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, N.; Muhindo, J.; Nyumu, J.; Enns, C.; Massé, F.; Bersaglio, B.; Cerutti, P.; Nasi, R. Understanding Factors That Shape Exposure to Zoonotic and Food-Borne Diseases Across Wild Meat Trade Chains. Hum. Ecol. 2022, 50, 983–995. [Google Scholar] [CrossRef]
- Haq, S.M.; Waheed, M.; Bussmann, R.W. “Traditional” Use in a Global World: Unsustainable Ethnozoological Usage among Himalayan Ethnic Groups Drives Species to Extinction. Biodivers. Conserv. 2024, 33, 1125–1144. [Google Scholar] [CrossRef]
- Romanelli, C.; Cooper, D.; Campbell-Lendrum, D.; Maiero, M.; Karesh, B. Connecting Global Priorities: Biodiversity and Human Health a State of Knowledge Review; World Health Organization and Secretariat for the Convention on Biological Diversity: Geneva, Switzerland, 2015. [Google Scholar]
- Rubalcava-Castillo, F.A.; Sosa-Ramírez, J.; Luna-Ruíz, J.d.J.; Valdivia-Flores, A.G.; Íñiguez-Dávalos, L.I. Seed Dispersal by Carnivores in Temperate and Tropical Dry Forests. Ecol. Evol. 2021, 11, 3794–3807. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Martin Schaefer, H. The Conservation Physiology of Seed Dispersal. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1708–1718. [Google Scholar] [CrossRef]
- Kunz, T.H.; de Torrez, E.B.; Bauer, D.; Lobova, T.; Fleming, T.H. Ecosystem Services Provided by Bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Lacher, T.E.; Davidson, A.D.; Fleming, T.H.; Gómez-Ruiz, E.P.; McCracken, G.F.; Owen-Smith, N.; Peres, C.A.; Vander Wall, S.B. The Functional Roles of Mammals in Ecosystems. J. Mammal. 2019, 100, 942–964. [Google Scholar] [CrossRef]
- Ryser-Degiorgis, M.P. Wildlife Health Investigations: Needs, Challenges and Recommendations. BMC Veter Res. 2013, 9, 223. [Google Scholar] [CrossRef]
- Winck, G.R.; Raimundo, R.L.G.; Fernandes-Ferreira, H.; Bueno, M.G.; D’Andrea, P.S.; Rocha, F.L.; Cruz, G.L.T.; Vilar, E.M.; Brandão, M.; Cordeiro, J.L.P.; et al. Socioecological Vulnerability and the Risk of Zoonotic Disease Emergence in Brazil. Sci. Adv. 2022, 8, eabo5774. [Google Scholar] [CrossRef] [PubMed]
- Cantlay, J.C.; Ingram, D.J.; Meredith, A.L. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia. Ecohealth 2017, 14, 361–388. [Google Scholar] [CrossRef]
- Nieman, W.A.; Leslie, A.J.; Wilkinson, A. Traditional Medicinal Animal Use by Xhosa and Sotho Communities in the Western Cape Province, South Africa. J. Ethnobiol. Ethnomed. 2019, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Djagoun, C.A.M.S.; Akpona, H.A.; Mensah, G.A.; Nuttman, C.; Sinsin, B. Wild Mammals Trade for Zootherapeutic and Mythic Purposes in Benin (West Africa): Capitalizing Species Involved, Provision Sources, and Implications for Conservation. In Animals in Traditional Folk Medicine: Implications for Conservation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 367–381. ISBN 9783642290268. [Google Scholar]
- Assefa, A.; Mesfin, K.; Girmay, T. A Comprehensive Review on Animals and Their Products Used in Traditional Folk Medicine in Ethiopia. J. Ethnobiol. Ethnomed. 2025, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Dehaudt, B.; Amir, Z.; Decoeur, H.; Gibson, L.; Mendes, C.; Moore, J.H.; Nursamsi, I.; Sovie, A.; Luskin, M.S. Common Palm Civets Paradoxurus Hermaphroditus Are Positively Associated with Humans and Forest Degradation with Implications for Seed Dispersal and Zoonotic Diseases. J. Anim. Ecol. 2022, 91, 794–804. [Google Scholar] [CrossRef]
- Souto, W.M.S.; Mourão, J.S.; Barboza, R.R.D.; Mendonça, L.E.T.; Lucena, R.F.P.; Confessor, M.V.A.; Vieira, W.L.S.; Montenegro, P.F.G.P.; Lopez, L.C.S.; Alves, R.R.N. Medicinal Animals Used in Ethnoveterinary Practices of the “Cariri Paraibano”, NE Brazil. J. Ethnobiol. Ethnomed. 2011, 7, 30. [Google Scholar] [CrossRef]
- Teixeira, J.V.D.S.; Dos Santos, J.S.; Guanaes, D.H.A.; da Rocha, W.D.; Schiavetti, A. Uses of Wild Vertebrates in Traditional Medicine by Farmers in the Region Surrounding the Serra Do Conduru State Park (Bahia, Brazil). Biota Neotrop. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Meyer, C.; Kreft, H.; Guralnick, R.; Jetz, W. Global Priorities for an Effective Information Basis of Biodiversity Distributions. Nat. Commun. 2015, 6, 8221. [Google Scholar] [CrossRef]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to Zoonotic Spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Zipfel, C.M.; Garnier, R.; Bansal, S. Global Estimates of Mammalian Viral Diversity Accounting for Host Sharing. Nat. Ecol. Evol. 2019, 3, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
Species | Order | RI | Body Part Used | Virus (n) | Protozoa (n) | Bacteria (n) | Fungi (n) | Helminths (n) |
---|---|---|---|---|---|---|---|---|
Ursus arctos | Carnivora | 1.54 | Unspecified | 7 | 2 | 5 | 2 | 12 |
Mephitis macroura | Carnivora | 1.55 | Meat, fat | 1 | 0 | 0 | 0 | 0 |
Ursus americanus | Carnivora | 1.58 | Unspecified | 9 | 2 | 3 | 1 | 12 |
Ursus maritimus | Carnivora | 1.58 | Blood, Carapace, Nails, Fat, Lard, Feet, Flesh, Skin, Tail, Urine, Whole Animal | 6 | 4 | 1 | 1 | 4 |
Dasypus novemcinctus | Cingulata | 1.66 | Blood, Carapace, Nails, Fat, Lard, Feet, Meat, Skin, Tail, Urine, Whole Animal | 3 | 3 | 1 | 0 | 2 |
Manis gigantea | Pholidota | 1.8 | Blood, Bones, Brain, Eyes, Fat, Flesh, Head, Scales, Whole animal, Body, Claws, Meat, Scales | 0 | 0 | 1 | 0 | 0 |
Model | k | LogLik | AICc | Δ | Weight |
---|---|---|---|---|---|
1. Zoonotic potential | 0.295 | 367.191 | −720.381 | 0.000 | 0.295 |
2. Body mass (g) | 0.169 | 366.635 | −719.271 | 1.110 | 0.169 |
3. Feeding habitat | 0.152 | 367.529 | −719.058 | 1.323 | 0.152 |
4. Zoonotic potential + body mass (g) | 0.146 | 369.487 | −718.974 | 1.407 | 0.146 |
5. Zoonotic potential + feeding habit | 0.090 | 370.003 | −718.006 | 2.375 | 0.090 |
6. Body mass (g) + feeding habitat | 0.068 | 369.732 | −717.464 | 2.917 | 0.068 |
Gamma (zoonotic potential + body mass (g) + feeding habit) | 0.048 | 370.380 | −716.761 | 3.620 | 0.048 |
Null | 0.029 | 362.891 | −715.783 | 4.598 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, H.M.; Beltrão, M.G.; Borges, A.K.M.; Silva, W.R.G.d.; Oliveira, D.V.B.; Alves, R.R.N. Healing with Risks: How Zoonotic Potential Influences the Use of Wild Mammals in Traditional Medicine. Pathogens 2025, 14, 640. https://doi.org/10.3390/pathogens14070640
Pereira HM, Beltrão MG, Borges AKM, Silva WRGd, Oliveira DVB, Alves RRN. Healing with Risks: How Zoonotic Potential Influences the Use of Wild Mammals in Traditional Medicine. Pathogens. 2025; 14(7):640. https://doi.org/10.3390/pathogens14070640
Chicago/Turabian StylePereira, Heliene Mota, Mayara Guimarães Beltrão, Anna Karolina Martins Borges, Weslley Ruan Guimarães da Silva, Danilo Vicente Batista Oliveira, and Rômulo Romeu Nóbrega Alves. 2025. "Healing with Risks: How Zoonotic Potential Influences the Use of Wild Mammals in Traditional Medicine" Pathogens 14, no. 7: 640. https://doi.org/10.3390/pathogens14070640
APA StylePereira, H. M., Beltrão, M. G., Borges, A. K. M., Silva, W. R. G. d., Oliveira, D. V. B., & Alves, R. R. N. (2025). Healing with Risks: How Zoonotic Potential Influences the Use of Wild Mammals in Traditional Medicine. Pathogens, 14(7), 640. https://doi.org/10.3390/pathogens14070640