Laboratory Diagnosis of Animal Tuberculosis in Tracing Interspecies Transmission of Mycobacterium bovis
Abstract
:1. Introduction
2. Case Description
2.1. Materials and Methods
2.1.1. Animals and Samples
- Single Intradermal Tuberculin Test
- Comparative Intradermal Tuberculin Test
2.1.2. Mycobacterial Isolation
2.1.3. Identification and Genotyping
- Spoligotyping
- Mycobacterial Interspersed Repetitive Unit–Variable Number Tandem Repeat
2.2. Results
2.2.1. Clinical Examination (Including TST), Necropsy
2.2.2. Bacteriology and Genetic Analysis
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BTB | Bovine tuberculosis |
M. bovis | Mycobacterium bovis |
EFSA | European Food Safety Authority |
MTBC | Mycobacterium tuberculosis complex |
SITT | Single intradermal tuberculin test |
CITT | Comparative intradermal tuberculin test |
MIRU-VNTR | Mycobacterial Interspersed Repetitive Unit–Variable Number Tandem Repeat |
DR | Direct Repeat |
References
- Commission of the European Communities: Commission Decision 2009/342/EC as regards the declaration that certain administrative regions of Italy are officially free of bovine tuberculosis, bovine brucellosis and enzootic-bovine-leukosis, that Poland are officially free of enzootic-bovine-leukosis and that Poland and Slovenia are officially free of bovine tuberculosis. OJEU L 2009, 104, 51–56.
- Krajewska, M.; Kozińska, M.; Orłowska, B.; Welz, M.; Augustynowicz-Kopeć, E.; Anusz, K.; Szulowski, K. Molecular analysis methods in epidemiological investigations of animal tuberculosis in European bison. Eur. Bison Conserv. Newsl. 2015, 8, 79–86. [Google Scholar]
- Welz, M.; Krajewska-Wędzina, M.; Orłowska, B.; Didkowska, A.; Radulski, Ł.; Łoś, P.; Weiner, M.; Anusz, K. The Eradication of M. Caprae Tuberculosis in Wild Boar (Sus Scrofa) in the Bieszczady Mountains, Southern Poland—An Administrative Perspective. J. Vet. Res. 2023, 67, 61–66. [Google Scholar] [CrossRef]
- Krajewska, M. Characterization of Mycobacterium bovis Strains Isolated from Animals in Poland. Ph.D. Thesis, National Veterinary Research Institute, Pulawy, Poland, 2014. [Google Scholar]
- Corner, L.A.; Murphy, D.; Gormley, E. Mycobacterium bovis infection in the Eurasian badger (Meles meles): The disease, pathogenesis, epidemiology and control. J. Comp. Pathol. 2011, 144, 1–24. [Google Scholar] [CrossRef]
- Naranjo, V.; Gortazar, C.; Vicente, J.; de la Fuente, J. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet. Microbiol. 2008, 127, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.V.; Thacker, T.C.; Waters, W.R.; Gortázar, C.; Corner, L.A. Mycobacterium bovis: A Model Pathogen at the Interface of Livestock, Wildlife, and Humans. Vet. Med. Int. 2012, 2012, 236205. [Google Scholar] [CrossRef]
- Krajewska-Wędzina, M.; Miller, M.A.; Didkowska, A.; Kycko, A.; Radulski, Ł.; Lipiec, M.; Weiner, M. The potential risk of international spread of Mycobacterium bovis associated with movement of alpacas. J. Vet. Res. 2022, 66, 53–59. [Google Scholar] [CrossRef]
- Broughan, J.M.; Downs, S.H.; Crawshaw, T.R.; Upton, P.A.; Brewer, J.; Clifton-Hadley, R.S. Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 1: Review of epidemiology and laboratory submissions in Great Britain 2004–2010. Vet. J. 2013, 198, 339–345. [Google Scholar] [CrossRef]
- Barandiaran, S.; Martínez Vivot, M.; Pérez, A.M.; Cataldi, A.A.; Zumárraga, M.J. Bovine tuberculosis in domestic pigs: Genotyping and distribution of isolates in Argentina. Res. Vet. Sci. 2015, 103, 44–50. [Google Scholar] [CrossRef]
- Krajewska, M. Gruźlica u ludzi i bydła na Lubelszczyźnie. Życie Wet. 2012, 87, 924–926. [Google Scholar]
- Krajewska-Wędzina, M.; Radulski, Ł.; Waters, W.R.; Didkowska, A.; Zabost, A.; Augustynowicz-Kopeć, E.; Brzezińska, S.; Weiner, M. Mycobacterium bovis Transmission between Cattle and a Farmer in Central Poland. Pathogens 2022, 11, 1170. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar]
- Krajewska-Wędzina, M.; Didkowska, A.; Sridhara, A.A.; Elahi, R.; Johnathan-Lee, A.; Radulski, Ł.; Lipiec, M.; Anusz, K.; Lyashchenko, K.P.; Miller, M.A.; et al. Transboundary tuberculosis: Importation of alpacas infected with Mycobacterium bovis from the United Kingdom to Poland and potential for serodiagnostic assays in detecting tuberculin skin test false-negative animals. Transbound. Emerg. Dis. 2020, 67, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Kamerbeek, J.; Schouls, L.; Kolk, A.; van Agterveld, M.; van Soolingen, D.; Kuijper, S.; Bunschoten, A.; Molhuizen, H.; Shaw, R.; Goyal, M.; et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 1997, 35, 907–914. [Google Scholar] [CrossRef]
- Smith, N.H.; Upton, P. Naming spoligotype patterns for the RD9-deleted lineage of the Mycobacterium tuberculosis complex; www.Mbovis.org. Infect. Genet. Evol. 2012, 12, 873–876. [Google Scholar] [CrossRef]
- Brudey, K.; Driscoll, J.R.; Rigouts, L.; Prodinger, W.M.; Gori, A.; Al-Hajoj, S.A.; Allix, C.; Aristimuño, L.; Arora, J.; Baumanis, V.; et al. Mycobacterium tuberculosis complex genetic diversity: Mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 2006, 6, 23. [Google Scholar] [CrossRef]
- Maghradze, N.; Jugheli, L.; Borrell, S.; Tukvadze, N.; Kempker, R.R.; Blumberg, H.M.; Gagneux, S. Developing customized stepwise MIRU-VNTR typing for tuberculosis surveillance in Georgia. PLoS ONE 2022, 17, e0264472. [Google Scholar] [CrossRef]
- Alonso-Rodríguez, N.; Martínez Lirola, M.; Herránz, M.; Sanchez Benitez, M.; Barroso, P.; Bouza, E.; García de Viedma, D. Evaluation of the new advanced 15-loci MIRU-VNTR genotyping tool in Mycobacterium tuberculosis molecular epidemiology studies. BMC Microbiol. 2008, 8, 34. [Google Scholar] [CrossRef]
- Broughan, J.M.; Crawshaw, T.R.; Downs, S.H.; Brewer, J.; Clifton-Hadley, R.S. Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 2: A review of diagnostic methods. Vet. J. 2013, 198, 346–351. [Google Scholar]
- Gelalcha, B.D.; Zewude, A.; Ameni, G. Tuberculosis Caused by Mycobacterium bovis in a Sheep Flock Colocated with a Tuberculous Dairy Cattle Herd in Central Ethiopia. J. Vet. Med. 2019, 2019, 8315137. [Google Scholar] [CrossRef]
- van der Burgt, G.M.; Drummond, F.; Crawshaw, T.; Morris, S. An outbreak of tuberculosis in Lleyn sheep in the UK associated with clinical signs. Vet. Rec. 2013, 172, 69. [Google Scholar] [CrossRef] [PubMed]
- Konold, T.; Dale, J.; Spiropoulos, J.; Simmons, H.; Godinho, A. Case of TB in a sheep caused by Mycobacterium bovis with transmission to another sheep and a steer in the same building. Vet. Rec. Case Rep. 2020, 8, e001151. [Google Scholar] [CrossRef]
- Muñoz Mendoza, M.; de Juan, L.; Menéndez, S.; Ocampo, A.; Mourelo, J.; Sáez, J.L.; Domínguez, L.; Gortázar, C.; García Marín, J.F.; Balseiro, A. Tuberculosis due to Mycobacterium bovis and Mycobacterium caprae in sheep. Vet. J. 2012, 191, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hartemink, N.; Byrne, A.W.; Gormley, E.; McGrath, G.; Tratalos, J.A.; Breslin, P.; More, S.J.; de Jong, M.C.M. Inferring bovine tuberculosis transmission between cattle and badgers via the environment and risk mapping. Front. Vet. Sci. 2023, 10, 1233173. [Google Scholar] [CrossRef] [PubMed]
- Pesciaroli, M.; Alvarez, J.; Boniotti, M.B.; Cagiola, M.; Di Marco, V.; Marianelli, C.; Pacciarini, M.; Pasquali, P. Tuberculosis in domestic animal species. Res. Vet. Sci. 2014, 97, 78–85. [Google Scholar] [CrossRef]
- Hlokwe, T.M.; Sutton, D.; Page, P.; Michel, A.L. Isolation and molecular characterization of Mycobacterium bovis causing pulmonary tuberculosis and epistaxis in a Thoroughbred horse. BMC Vet. Res. 2016, 12, 179. [Google Scholar] [CrossRef]
- Sarradell, J.E.; Alvarez, J.; Biscia, M.; Zumarraga, M.; Wunschmann, A.; Armien, A.G.; Perez, A.M. Mycobacterium bovis infection in a horse with granulomatous enterocolitis. J. Vet. Diagn. Investig. 2015, 27, 203–205. [Google Scholar] [CrossRef]
- Pavlik, I.; Jahn, P.; Dvorska, L.; Bartos, M.; Novotny, L.; Halouzka, R. Mycobacterial infections in horses: A review of the literature. Vet. Med. Czech 2004, 49, 427–440. [Google Scholar] [CrossRef]
- Borkowska, D.I.; Napiórkowska, A.M.; Brzezińska, S.A.; Kozińska, M.; Zabost, A.T.; Augustynowicz-Kopeć, E.M. From Latent Tuberculosis Infection to Tuberculosis. News in Diagnostics (QuantiFERON-Plus). Pol. J. Microbiol. 2017, 30, 5–8. [Google Scholar] [CrossRef]
- WOAH Terrestrial Manual 2022, Chapter 3.1.13. –Mammalian tuberculosis (Infection with Mycobacterium tuberculosis Complex). Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/202406_Chapter_3.01.13_MAMMALIAN%20TB.pdf (accessed on 22 April 2025).
- Collins, D.M.; Erasmuson, S.K.; Stephens, D.M.; Yates, G.F.; De Lisle, G.W. DNA fingerprinting of Mycobacterium bovis strains by restriction fragment analysis and hybridization with insertion elements IS1081 and IS6110. J. Clin. Microbiol. 1993, 31, 1143–1147. [Google Scholar] [CrossRef]
- Couvin, D.; David, A.; Zozio, T.; Rastogi, N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect. Genet. Evol. 2019, 72, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Leal, V.; Liandris, E.; Pacciarini, M.; Botelho, A.; Kenny, K.; Loyo, B.; Fernández, R.; Bezos, J.; Domínguez, L.; de Juan, L.; et al. Direct PCR on tissue samples to detect Mycobacterium tuberculosis complex: An alternative to the bacteriological culture. J. Clin. Microbiol. 2021, 59, e01404-20. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Leal, V.; Farrell, D.; Romero, B.; Álvarez, J.; Juan, L.; Gordon, S.V. Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Front. Vet. Sci. 2021, 8, 780018. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.; Boschiroli, M.L.; Gueneau, E.; Rochelet, M.; Payne, A.; de Cruz, K.; Blieux, A.L.; Fossot, C.; Hartmann, A. First molecular detection of Mycobacterium bovis in environmental samples from a French region with endemic bovine tuberculosis. J. Appl. Microbiol. 2016, 120, 1193–1207. [Google Scholar] [CrossRef]
- Grooms, D.L.; Bolin, S.R.; Plastow, J.L.; Lim, A.; Hattey, J.; Durst, P.T.; Rust, S.R.; Allen, M.S.; Buskirk, D.D.; Smith, R.W. Survival of Mycobacterium bovis during forage ensiling. Am. J. Vet. Res. 2019, 80, 87–94. [Google Scholar] [CrossRef]
Animal Species, Age, Sex | Skin Fold Thickness Before Tuberculin Supervision (In mm) | Skin Fold Thickness After 72 h (In mm) | Nature of Reaction/Result |
---|---|---|---|
mare, 14 years old | 4.0 | 5.0 | limited hard/negative |
mare, 8 years old | 4.13 | 8.0 | diffuse painful infiltration/positive |
cow, 2 years old | 6.6 | 13.0 | limited hard/positive |
cow, 6 months old | 6.0 | 6.8 | limited hard/negative |
sheep (female), 6 years old | no measurement | no measurement | limited hard/positive |
alpaca (female), 6 years old | no measurement | no measurement | diffuse infiltration, diameter 5 cm/positive |
dog (female), 5 years old | no measurement | no measurement | no reaction/negative |
dog, (female), 8 years old | no measurement | no measurement | no reaction/negative |
cat (female), 6 years old | no measurement | no measurement | no reaction/negative |
Animal Species, Age, Sex | Type of Tuberculin | Skin Fold Thickness After 72 h (In mm) | Skin Fold Thickness After 72 h (In mm) | Nature of Reaction/Result |
---|---|---|---|---|
mare, 14 years old | Bovitubal | 3.0 | 3.1 | no reaction/negative |
Avitubal | 3.5 | 4.0 | no reaction/negative | |
cow, 6 months old | Bovitubal | 9.5 | 12.5 | limited hard/questionable |
Avitubal | 10.0 | 10.5 | no reaction/negative |
Animal Species | Hybridisation Pattern of the Strain | Octagonal Code | Spoligotype (Mbovis.org Database) | Spoligotype (SITVIT Database) |
---|---|---|---|---|
horse | 664073777757600 | SB0666 | M. bovis _2 678 | |
cow 1 | 664073777757600 | SB0666 | M. bovis _2 678 | |
cow 2 | 664073777757600 | SB0666 | M. bovis _2 678 | |
sheep | 664073777757600 | SB0666 | M. bovis _2 678 | |
alpaca | 664073777757600 | SB0666 | M. bovis _2 678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szacawa, E.; Kozieł, N.; Brzezińska, S.; Augustynowicz-Kopeć, E.; Weiner, M.; Szulowski, K.; Krajewska-Wędzina, M. Laboratory Diagnosis of Animal Tuberculosis in Tracing Interspecies Transmission of Mycobacterium bovis. Pathogens 2025, 14, 459. https://doi.org/10.3390/pathogens14050459
Szacawa E, Kozieł N, Brzezińska S, Augustynowicz-Kopeć E, Weiner M, Szulowski K, Krajewska-Wędzina M. Laboratory Diagnosis of Animal Tuberculosis in Tracing Interspecies Transmission of Mycobacterium bovis. Pathogens. 2025; 14(5):459. https://doi.org/10.3390/pathogens14050459
Chicago/Turabian StyleSzacawa, Ewelina, Nina Kozieł, Sylwia Brzezińska, Ewa Augustynowicz-Kopeć, Marcin Weiner, Krzysztof Szulowski, and Monika Krajewska-Wędzina. 2025. "Laboratory Diagnosis of Animal Tuberculosis in Tracing Interspecies Transmission of Mycobacterium bovis" Pathogens 14, no. 5: 459. https://doi.org/10.3390/pathogens14050459
APA StyleSzacawa, E., Kozieł, N., Brzezińska, S., Augustynowicz-Kopeć, E., Weiner, M., Szulowski, K., & Krajewska-Wędzina, M. (2025). Laboratory Diagnosis of Animal Tuberculosis in Tracing Interspecies Transmission of Mycobacterium bovis. Pathogens, 14(5), 459. https://doi.org/10.3390/pathogens14050459