First Molecular Detection of Porcine Cytomegalovirus (PCMV) and Porcine Lymphotropic Herpesvirus (PLHV) in Domestic Pigs in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Farm Characteristics
2.2. Samples
2.3. Detection of Herpesviruses and Other Viruses in Clinical Samples
2.4. Sequencing and Phylogenetic Analysis
2.5. Statistical Analysis
3. Results
3.1. PCR Reaction and Sequencing
3.2. Phylogenetic Analysis
3.3. Statistical Analysis of Rates of Coinfection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davison, A.J. Herpesvirus Systematics. Vet. Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef]
- Bartha, A. Experiments to reduce the virulence of Aujeszky’s virus (Kísérletek az Aujeszky-féle virus virulenciájának szelídítésére.). Magy. Allatorvosok Lapja 1961, 16, 42–45. [Google Scholar]
- Mettenleiter, T.C.; Lukàcs, N.; Rziha, H.J. Pseudorabies Virus Avirulent Strains Fail to Express a Major Glycoprotein. J. Virol. 1985, 56, 307–311. [Google Scholar] [CrossRef]
- Van Oirschot, J.T.; Rziha, H.J.; Moonen, P.J.L.M.; Pol, J.M.A.; Van Zaane, D. Differentiation of Serum Antibodies from Pigs Vaccinated or Infected with Aujeszky’s Disease Virus by a Competitive Enzyme Immunoassay. J. Gen. Virol. 1986, 67, 1179–1182. [Google Scholar] [CrossRef]
- Freuling, C.M.; Müller, T.F.; Mettenleiter, T.C. Vaccines against Pseudorabies Virus (PrV). Vet. Microbiol. 2017, 206, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Corner, A.H.; Mitchell, D.; Julian, R.J.; Meads, E.B. A Generalized Disease in Piglets Associated with the Presence of Cytomegalic Inclusions. J. Comp. Pathol. Ther. 1964, 74, 192–199, IN27–IN28. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liao, S.; Zhu, L.; Xu, Z.; Zhou, Y. Molecular Epidemiology of Porcine Cytomegalovirus (PCMV) in Sichuan Province, China: 2010–2012. PLoS ONE 2013, 8, e64648. [Google Scholar] [CrossRef]
- Cibulski, S.P.; Pasqualim, G.; Teixeira, T.F.; Varela, A.P.M.; Dezen, D.; Holz, C.L.; Franco, A.C.; Roehe, P.M. Porcine Cytomegalovirus Infection Is Not Associated to the Occurrence of Post-weaning Multisystemic Wasting Syndrome. Vet. Med. Sci. 2015, 1, 23–29. [Google Scholar] [CrossRef]
- Dutra, M.C.; Moreno, L.Z.; Amigo, C.R.; Felizardo, M.R.; Ferreira, T.S.P.; Coutinho, T.A.; Sanches, A.A.; Galvis, J.A.; Moreno, M.; Moreno, A.M. Molecular Survey of Cytomegalovirus Shedding Profile in Commercial Pig Herds in Brazil. J. Infect. Dev. Ctries. 2016, 10, 1268–1270. [Google Scholar] [CrossRef]
- Martín-Valls, G.E.; Li, Y.; Díaz, I.; Cano, E.; Sosa-Portugal, S.; Mateu, E. Diversity of Respiratory Viruses Present in Nasal Swabs under Influenza Suspicion in Respiratory Disease Cases of Weaned Pigs. Front. Vet. Sci. 2022, 9, 1014475. [Google Scholar] [CrossRef]
- Tóth, A.G.; Fiam, R.; Becsei, Á.; Spisák, S.; Csabai, I.; Makrai, L.; Reibling, T.; Solymosi, N. Porcine Cytomegalovirus Detection by Nanopore-Based Metagenomic Sequencing in a Hungarian Pig Farm. bioRxiv 2022. [Google Scholar] [CrossRef]
- Valíček, L.; Šmíd, B.; Pleva, V.; Menšík, J. Porcine Cytomegalic Inclusion Disease Virus: Electron Microscopic Study of the Nasal Mucosa. Arch. Gesamte Virusforsch. 1970, 32, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Edington, N.; Plowright, W.; Watt, R.G. Generalized Porcine Cytomegalic Inclusion Disease: Distribution of Cytomegalic Cells and Virus. J. Comp. Pathol. 1976, 86, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Watt, R.G. Virological Study of Two Commercial Pig Herds with Respiratory Disease. Res. Vet. Sci. 1978, 24, 147–153. [Google Scholar] [CrossRef]
- Yoon, K.-J.; Edington, N. Porcine Cytomegalovirus. In Diseases of Swine; Blackwell Publishing: Ames, IA, USA, 2006; pp. 323–330. ISBN 978-0-8138-1703-3. [Google Scholar]
- Hansen, S.; Menandro, M.L.; Franzo, G.; Krabben, L.; Marino, S.F.; Kaufer, B.; Denner, J. Presence of Porcine Cytomegalovirus, a Porcine Roseolovirus, in Wild Boars in Italy and Germany. Arch. Virol. 2023, 168, 55. [Google Scholar] [CrossRef]
- Jurak, I.; Brune, W. Induction of Apoptosis Limits Cytomegalovirus Cross-Species Infection. EMBO J. 2006, 25, 2634–2642. [Google Scholar] [CrossRef]
- Mueller, N.J.; Barth, R.N.; Yamamoto, S.; Kitamura, H.; Patience, C.; Yamada, K.; Cooper, D.K.C.; Sachs, D.H.; Kaur, A.; Fishman, J.A. Activation of Cytomegalovirus in Pig-to-Primate Organ Xenotransplantation. J. Virol. 2002, 76, 4734–4740. [Google Scholar] [CrossRef]
- Yamada, K.; Tasaki, M.; Sekijima, M.; Wilkinson, R.A.; Villani, V.; Moran, S.G.; Cormack, T.A.; Hanekamp, I.M.; Arn, J.S.; Fishman, J.A.; et al. Porcine Cytomegalovirus Infection Is Associated With Early Rejection of Kidney Grafts in a Pig to Baboon Xenotransplantation Model. Transplantation 2014, 98, 411–418. [Google Scholar] [CrossRef]
- Sekijima, M.; Waki, S.; Sahara, H.; Tasaki, M.; Wilkinson, R.A.; Villani, V.; Shimatsu, Y.; Nakano, K.; Matsunari, H.; Nagashima, H.; et al. Results of Life-Supporting Galactosyltransferase Knockout Kidneys in Cynomolgus Monkeys Using Two Different Sources of Galactosyltransferase Knockout Swine. Transplantation 2014, 98, 419–426. [Google Scholar] [CrossRef]
- Denner, J.; Längin, M.; Reichart, B.; Krüger, L.; Fiebig, U.; Mokelke, M.; Radan, J.; Mayr, T.; Milusev, A.; Luther, F.; et al. Impact of Porcine Cytomegalovirus on Long-Term Orthotopic Cardiac Xenotransplant Survival. Sci. Rep. 2020, 10, 17531. [Google Scholar] [CrossRef]
- Ehlers, B.; Ulrich, S.; Goltz, M. Detection of Two Novel Porcine Herpesviruses with High Similarity to Gammaherpesviruses. J. Gen. Virol. 1999, 80, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Chmielewicz, B.; Goltz, M.; Franz, T.; Bauer, C.; Brema, S.; Ellerbrok, H.; Beckmann, S.; Rziha, H.-J.; Lahrmann, K.-H.; Romero, C.; et al. A Novel Porcine Gammaherpesvirus. Virology 2003, 308, 317–329. [Google Scholar] [CrossRef]
- Goltz, M.; Ericsson, T.; Patience, C.; Huang, C.A.; Noack, S.; Sachs, D.H.; Ehlers, B. Sequence Analysis of the Genome of Porcine Lymphotropic Herpesvirus 1 and Gene Expression during Posttransplant Lymphoproliferative Disease of Pigs. Virology 2002, 294, 383–393. [Google Scholar] [CrossRef]
- Tucker, A.W.; McNeilly, F.; Meehan, B.; Galbraith, D.; McArdle, P.D.; Allan, G.; Patience, C. Methods for the Exclusion of Circoviruses and Gammaherpesviruses from Pigs. Xenotransplantation 2003, 10, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Garkavenko, O.; Muzina, M.; Muzina, Z.; Powels, K.; Elliott, R.B.; Croxson, M.C. Monitoring for Potentially Xenozoonotic Viruses in New Zealand Pigs. J. Med. Virol. 2004, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- McMahon, K.J.; Minihan, D.; Campion, E.M.; Loughran, S.T.; Allan, G.; McNeilly, F.; Walls, D. Infection of Pigs in Ireland with Lymphotropic γ-Herpesviruses and Relationship to Postweaning Multisystemic Wasting Syndrome. Vet. Microbiol. 2006, 116, 60–68. [Google Scholar] [CrossRef]
- Dall Agnol, A.M.; Leme, R.A.; Suphoronski, S.A.; Oliveira, T.E.S.; Possatti, F.; Saporiti, V.; Headley, S.A.; Alfieri, A.A.; Alfieri, A.F. Porcine Lymphotropic Herpesvirus DNA Detection in Multiple Organs of Pigs in Brazil. Braz. J. Microbiol. 2020, 51, 2145–2152. [Google Scholar] [CrossRef]
- Franzo, G.; Drigo, M.; Legnardi, M.; Grassi, L.; Menandro, M.L.; Pasotto, D.; Cecchinato, M.; Tucciarone, C.M. Porcine Gammaherpesviruses in Italian Commercial Swine Population: Frequent but Harmless. Pathogens 2021, 10, 47. [Google Scholar] [CrossRef]
- Ehlers, B.; Lowden, S. Novel Herpesviruses of Suidae: Indicators for a Second Genogroup of Artiodactyl Gammaherpesviruses. J. Gen. Virol. 2004, 85, 857–862. [Google Scholar] [CrossRef]
- Porto, G.S.; Leme, R.A.; Dall Agnol, A.M.; Souza, T.C.G.D.D.; Alfieri, A.A.; Alfieri, A.F. Porcine Lymphotropic Herpesvirus (Gammaherpesvirinae) DNA in Free-Living Wild Boars (Sus Scrofa Linnaeus, 1758) in Brazil. J. Vet. Sci. 2021, 22, e81. [Google Scholar] [CrossRef]
- Fiebig, U.; Krüger, L.; Denner, J. Determination of the Copy Number of Porcine Endogenous Retroviruses (PERV) in Auckland Island Pigs Repeatedly Used for Clinical Xenotransplantation and Elimination of PERV-C. Microorganisms 2024, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Goltz, M.; Ehlers, B. Characterization of the DNA Polymerase Loci of the Novel Porcine Lymphotropic Herpesviruses 1 and 2 in Domestic and Feral Pigs. J. Gen. Virol. 1999, 80, 3199–3205. [Google Scholar] [CrossRef]
- Auer, A.; Schweitzer, L.; Kübber-Heiss, A.; Posautz, A.; Dimmel, K.; Seitz, K.; Beiglböck, C.; Riedel, C.; Rümenapf, T. Porcine Circoviruses and Herpesviruses Are Prevalent in an Austrian Game Population. Pathogens 2022, 11, 305. [Google Scholar] [CrossRef]
- Huang, C.A.; Fuchimoto, Y.; Gleit, Z.L.; Ericsson, T.; Griesemer, A.; Scheier-Dolberg, R.; Melendy, E.; Kitamura, H.; Fishman, J.A.; Ferry, J.A.; et al. Posttransplantation Lymphoproliferative Disease in Miniature Swine after Allogeneic Hematopoietic Cell Transplantation: Similarity to Human PTLD and Association with a Porcine Gammaherpesvirus. Blood 2001, 97, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Nijland, M.L.; Kersten, M.J.; Pals, S.T.; Bemelman, F.J.; Ten Berge, I.J.M. Epstein-Barr Virus–Positive Posttransplant Lymphoproliferative Disease After Solid Organ Transplantation: Pathogenesis, Clinical Manifestations, Diagnosis, and Management. Transplant. Direct 2016, 2, e48. [Google Scholar] [CrossRef] [PubMed]
- VanDevanter, D.R.; Warrener, P.; Bennett, L.; Schultz, E.R.; Coulter, S.; Garber, R.L.; Rose, T.M. Detection and Analysis of Diverse Herpesviral Species by Consensus Primer PCR. J. Clin. Microbiol. 1996, 34, 1666–1671. [Google Scholar] [CrossRef]
- Li, Y.; Sthal, C.; Bai, J.; Liu, X.; Anderson, G.; Fang, Y. Development of a Real-Time RT-qPCR Assay for the Detection of Porcine Respirovirus 1. J. Virol. Methods 2021, 289, 114040. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Jhelum, H.; Papatsiros, V.; Papakonstantinou, G.; Krabben, L.; Kaufer, B.; Denner, J. Screening for Viruses in Indigenous Greek Black Pigs. Microorganisms 2024, 12, 315. [Google Scholar] [CrossRef]
- Halecker, S.; Hansen, S.; Krabben, L.; Ebner, F.; Kaufer, B.; Denner, J. How, Where and When to Screen for Porcine Cytomegalovirus (PCMV) in Donor Pigs for Xenotransplantation. Sci. Rep. 2022, 12, 21545. [Google Scholar] [CrossRef]
- Basso, W.; Marti, H.; Hilbe, M.; Sydler, T.; Stahel, A.; Bürgi, E.; Sidler, X. Clinical Cystoisosporosis Associated to Porcine Cytomegalovirus (PCMV, Suid Herpesvirus 2) Infection in Fattening Pigs. Parasitol. Int. 2017, 66, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Larska, M.; Krzysiak, M.K.; Jabłoński, A.; Kęsik, J.; Bednarski, M.; Rola, J. Hepatitis E Virus Antibody Prevalence in Wildlife in Poland. Zoonoses Public Health 2015, 62, 105–110. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.K.; Graham, S.P. The Pig as an Amplifying Host for New and Emerging Zoonotic Viruses. One Health 2022, 14, 100384. [Google Scholar] [CrossRef]
- Fishman, J.A.; Patience, C. Xenotransplantation: Infectious Risk Revisited. Am. J. Transplant. 2004, 4, 1383–1390. [Google Scholar] [CrossRef]
- Denner, J. Porcine Lymphotropic Herpesviruses (PLHVs) and Xenotranplantation. Viruses 2021, 13, 1072. [Google Scholar] [CrossRef] [PubMed]
- Brema, S.; Lindner, I.; Goltz, M.; Ehlers, B. Development of a Recombinant Antigen-based ELISA for the Sero-detection of Porcine Lymphotropic Herpesviruses. Xenotransplantation 2008, 15, 357–364. [Google Scholar] [CrossRef]
- Plowright, W.; Edington, N.; Watt, R.G. The Behaviour of Porcine Cytomegalovirus in Commercial Pig Herds. J. Hyg. 1976, 76, 125–135. [Google Scholar] [CrossRef]
- Tajima, T.; Hironao, T.; Kajikawa, T.; Suzuki, Y.; Kawamura, H. Detection of the Antibodies against Porcine Cytomegalovirus from Whole Blood Collected on the Blood Sampling Paper. J. Vet. Med. Sci. 1994, 56, 189–190. [Google Scholar] [CrossRef]
- Woźniak, A.; Cybulski, P.; Denes, L.; Balka, G.; Stadejek, T. Detection of Porcine Respirovirus 1 (PRV1) in Poland: Incidence of Co-Infections with Influenza A Virus (IAV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Herds with a Respiratory Disease. Viruses 2022, 14, 148. [Google Scholar] [CrossRef]
- Schuele, L.; Lizarazo-Forero, E.; Cassidy, H.; Strutzberg-Minder, K.; Boehmer, J.; Schuetze, S.; Loebert, S.; Lambrecht, C.; Harlizius, J.; Friedrich, A.W.; et al. First Detection of Porcine Respirovirus 1 in Germany and the Netherlands. Transbound. Emerg. Dis. 2021, 68, 3120–3125. [Google Scholar] [CrossRef]
- Dénes, L.; Cságola, A.; Schönhardt, K.; Halas, M.; Solymosi, N.; Balka, G. First Report of Porcine Parainfluenza Virus 1 (Species Porcine Respirovirus 1) in Europe. Transbound. Emerg. Dis. 2021, 68, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
Age Group | Herpesvirus | SuHV-2/PCMV | SuHV-3/PLHV-1 | IAV | PPIV1/PRV1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weeks of Age | n/N | % | CI | n/N | % | CI | n/N | % | CI | n/N | % | CI | n/N | % | CI |
6 | 3/15 | 20.0 | 0.0–40.2 | 1/15 | 6.7 | 0.0–19.3 | 2/15 | 13.3 | 0.0–30.5 | 0/15 | 0.0 | 0.0 | 4/15 | 26.7 | 4.3–49.1 |
8 | 12/15 | 80.0 | 59.8–100 | 8/15 | 53.3 | 28.1–78.6 | 4/15 | 26.7 | 4.3–49.1 | 4/15 | 26.7 | 4.3–49.1 | 0/15 | 0.0 | 0.0 |
10 | 12/15 | 80.0 | 59.8–100 | 7/15 | 46.7 | 21.4–71.9 | 5/15 | 33.3 | 9.5–57.2 | 1/15 | 6.7 | 0.0–19.3 | 0/15 | 0.0 | 0.0 |
TOTAL | 27/45 | 60.0 | 45.7–74.3 | 16/45 | 35.6 | 21.6–49.5 | 11/45 | 24.4 | 11.9–37.0 | 5/45 | 11.1 | 1.9–20.3 | 4/45 | 8.9 | 0.6–17.2 |
Variable A | Variable B | n | nA-neg/nB-neg | nA-pos/nB-neg | nB-pos/na-neg | nB-pos/na-pos | χ2 | p |
---|---|---|---|---|---|---|---|---|
SuHV-2/PCMV | IAV | 45 | 27 | 13 | 2 | 3 | 1.4669 | 0.226 |
SuHV-2/PCMV | PPIV1 | 45 | 23 | 16 | 6 | 0 | 3.8196 | 0.051 |
SuHV-3/PLHV-1 | IAV | 45 | 30 | 10 | 4 | 1 | 0.0602 | 0.806 |
SuHV-3/PLHV-1 | PPIV1/PRV1 | 45 | 28 | 11 | 6 | 0 | 2.2398 | 0.143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulski, P.; Socha, W.; Jabłoński, A.; Kondratiuk, R.; Rybkowska, W.; Stadejek, T.; Larska, M. First Molecular Detection of Porcine Cytomegalovirus (PCMV) and Porcine Lymphotropic Herpesvirus (PLHV) in Domestic Pigs in Poland. Pathogens 2025, 14, 396. https://doi.org/10.3390/pathogens14040396
Cybulski P, Socha W, Jabłoński A, Kondratiuk R, Rybkowska W, Stadejek T, Larska M. First Molecular Detection of Porcine Cytomegalovirus (PCMV) and Porcine Lymphotropic Herpesvirus (PLHV) in Domestic Pigs in Poland. Pathogens. 2025; 14(4):396. https://doi.org/10.3390/pathogens14040396
Chicago/Turabian StyleCybulski, Piotr, Wojciech Socha, Artur Jabłoński, Radosław Kondratiuk, Weronika Rybkowska, Tomasz Stadejek, and Magdalena Larska. 2025. "First Molecular Detection of Porcine Cytomegalovirus (PCMV) and Porcine Lymphotropic Herpesvirus (PLHV) in Domestic Pigs in Poland" Pathogens 14, no. 4: 396. https://doi.org/10.3390/pathogens14040396
APA StyleCybulski, P., Socha, W., Jabłoński, A., Kondratiuk, R., Rybkowska, W., Stadejek, T., & Larska, M. (2025). First Molecular Detection of Porcine Cytomegalovirus (PCMV) and Porcine Lymphotropic Herpesvirus (PLHV) in Domestic Pigs in Poland. Pathogens, 14(4), 396. https://doi.org/10.3390/pathogens14040396