Advancing Laboratory Diagnostics for Future Pandemics: Challenges and Innovations
Abstract
1. Introduction
2. Search Methodology
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection
3. Lessons Learned from Past Epidemics and Pandemics
3.1. Severe Acute Respiratory Syndrome (SARS) Outbreak (2002–2003)
3.2. H1N1pdm09 Pandemic (2009–2010)
3.3. West African Ebola Outbreak (2014–2016)
3.4. Coronavirus Disease (2019–2023)
4. Technological Advances in Epidemic and Pandemic Diagnostics
4.1. Molecular Diagnostics
4.2. Antigen Detection
4.3. Serological Testing
4.4. Next-Generation Sequencing (NGS)
4.5. Point-of-Care Testing (POCT)
4.6. Infectious Virus Quantification
5. Future Goals for Epidemic and Pandemic Diagnostics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Li, W.; Wang, Z.; Yang, W.; Li, E.; Xia, X.; Yan, F.; Chiu, S. Emerging and reemerging infectious diseases: Global trends and new strategies for their prevention and control. Signal Transduct. Target. Ther. 2024, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Matthews, Q.; da Silva, S.J.R.; Norouzi, M.; Pena, L.J.; Pardee, K. Adaptive, diverse and de-centralized diagnostics are key to the future of outbreak response. BMC Biol. 2020, 18, 153. [Google Scholar] [CrossRef]
- WHO Disease Outbreak Reported. 2003. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2003_04_11-en (accessed on 4 September 2025).
- Briand, S.; Mounts, A.; Chamberland, M. Challenges of global surveillance during an influenza pandemic. Public Health 2011, 125, 247–256. [Google Scholar] [CrossRef]
- Ellerbrok, H.; Jacobsen, S.; Patel, P.; Rieger, T.; Eickmann, M.; Becker, S.; Gunther, S.; Naidoo, D.; Schrick, L.; Keeren, K.; et al. External quality assessment study for ebolavirus PCR-diagnostic promotes international preparedness during the 2014–2016 Ebola outbreak in West Africa. PLoS Neglected Trop. Dis. 2017, 11, e0005570. [Google Scholar] [CrossRef]
- Das, S.; Dunbar, S. The COVID-19 Pandemic—A Diagnostic Industry Perspective. Front. Cell. Infect. Microbiol. 2022, 12, 862440. [Google Scholar] [CrossRef]
- U.S. Government Global Health Security Strategy. 2024. Available online: https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/04/Global-Health-Security-Strategy-2024-1.pdf (accessed on 4 September 2025).
- Monis, P.T.; Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect. Genet. Evol. 2006, 6, 2–12. [Google Scholar] [CrossRef]
- Srivastava, P.; Prasad, D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023, 13, 200. [Google Scholar] [CrossRef]
- Pham, J.; Meyer, S.; Nguyen, C.; Williams, A.; Hunsicker, M.; McHardy, I.; Gendlina, I.; Goldstein, D.Y.; Fox, A.S.; Hudson, A.; et al. Performance Characteristics of a High-Throughput Automated Transcription-Mediated Amplification Test for SARS-CoV-2 Detection. J. Clin. Microbiol. 2020, 58, e01669-20. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; Jian, M.; Ding, Z.; Dai, X.; Bao, F.; et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 2018, 38, BSR20181170. [Google Scholar] [CrossRef]
- Smith, D.R.M.; Duval, A.; Zahar, J.R.; Opatowski, L.; Temime, L.; Hendrickx, N.; Jean, K.; Jijón, S.; Oodally, A.; Shirreff, G.; et al. Rapid antigen testing as a reactive response to surges in nosocomial SARS-CoV-2 outbreak risk. Nat. Commun. 2022, 13, 236. [Google Scholar] [CrossRef]
- Hayden, M.K.; El Mikati, I.K.; Hanson, K.E.; Englund, J.A.; Humphries, R.M.; Lee, F.; Loeb, M.; Morgan, D.J.; Patel, R.; Al Ta’ani, O.; et al. Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Serologic Testing. Clin. Infect. Dis. 2024, ciae121. [Google Scholar] [CrossRef]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. JAMA 2019, 321, 893–894. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef]
- Cherry, J.D. The chronology of the 2002–2003 SARS mini pandemic. Paediatr. Respir. Rev. 2004, 5, 262–269. [Google Scholar] [CrossRef]
- Berger, A.; Drosten, C.; Doerr, H.W.; Sturmer, M.; Preiser, W. Severe acute respiratory syndrome (SARS)—Paradigm of an emerging viral infection. J. Clin. Virol. 2004, 29, 13–22. [Google Scholar] [CrossRef]
- Chan, P.K.; To, W.K.; Ng, K.C.; Lam, R.K.; Ng, T.K.; Chan, R.C.; Wu, A.; Yu, W.C.; Lee, N.; Hui, D.S.; et al. Laboratory diagnosis of SARS. Emerg. Infect. Dis. 2004, 10, 825–831. [Google Scholar] [CrossRef]
- Goddard, N.L.; Delpech, V.C.; Watson, J.M.; Regan, M.; Nicoll, A. Lessons learned from SARS: The experience of the Health Protection Agency, England. Public Health 2006, 120, 27–32. [Google Scholar] [CrossRef]
- Heymann, D.L.; Rodier, G. Global surveillance, national surveillance, and SARS. Emerg. Infect. Dis. 2004, 10, 173–175. [Google Scholar] [CrossRef]
- Grein, T.; Leitmeyer, K.; Mardel, S.; Merianos, A.; Olowokure, B.; Roth, C.; Slattery, R. The WHO response to SARS and preparations for the future. In Learning from SARS: Preparing for the Next Disease Outbreak: Workshop Summary; National Academies Press: Washington, DC, USA, 2004; p. 42. [Google Scholar]
- Shrestha, S.S.; Swerdlow, D.L.; Borse, R.H.; Prabhu, V.S.; Finelli, L.; Atkins, C.Y.; Owusu-Edusei, K.; Bell, B.; Mead, P.S.; Biggerstaff, M.; et al. Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009–April 2010). Clin. Infect. Dis. 2011, 52 (Suppl. 1), S75–S82. [Google Scholar] [CrossRef]
- Hayden, R.T.; Wick, M.T.; Rodriguez, A.B.; Caliendo, A.M.; Mitchell, M.J.; Ginocchio, C.C. A survey-based assessment of United States clinical laboratory response to the 2009 H1N1 influenza outbreak. Arch. Pathol. Lab. Med. 2010, 134, 1671–1678. [Google Scholar] [CrossRef]
- Polansky, L.S.; Outin-Blenman, S.; Moen, A.C. Improved global capacity for influenza surveillance. Emerg. Infect. Dis. 2016, 22, 993. [Google Scholar] [CrossRef]
- Updated Preparedness and Response Framework for Influenza Pandemics. 2014. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr6306a1.htm (accessed on 26 October 2025).
- Guide to Revision of National Pandemic Influenza Preparedness Plans. 2017. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Guide-to-pandemic-preparedness-revised.pdf (accessed on 26 October 2025).
- Parada, L.V. Public health: Life lessons. Nature 2011, 480, S11–S13. [Google Scholar] [CrossRef]
- Frieden, T.R.; Damon, I.; Bell, B.P.; Kenyon, T.; Nichol, S. Ebola 2014—New challenges, new global response and responsibility. N. Engl. J. Med. 2014, 371, 1177–1180. [Google Scholar] [CrossRef]
- Kyobe Bosa, H.; Kamara, N.; Aragaw, M.; Wayengera, M.; Talisuna, A.; Bangura, J.; Mwebesa, H.G.; Katoto, P.; Agyarko, R.K.; Ihekweazu, C.; et al. The west Africa Ebola virus disease outbreak: 10 years on. Lancet Glob. Health 2024, 12, e1081–e1083. [Google Scholar] [CrossRef]
- McNamara, L.A. Ebola Surveillance—Guinea, Liberia, and Sierra Leone. MMWR Suppl. 2016, 65, 35–43. [Google Scholar] [CrossRef]
- Wang, L.; Brima Tia, A.; Xu, B.; Qi, X.; Harding, D. Sustainable Laboratory Capacity Building in Sierra Leone: From Ebola to COVID-19. China CDC Wkly. 2023, 5, 632–636. [Google Scholar] [CrossRef]
- Kadanali, A.; Karagoz, G. An overview of Ebola virus disease. North. Clin. Istanb. 2015, 2, 81–86. [Google Scholar] [CrossRef]
- Presser, L.D.; Coffin, J.; Koivogui, L.; Campbell, A.; Campbell, J.; Barrie, F.; Ngobeh, J.; Souma, Z.; Sorie, S.; Harding, D.; et al. The deployment of mobile diagnostic laboratories for Ebola virus disease diagnostics in Sierra Leone and Guinea. Afr. J. Lab. Med. 2021, 10, 1414. [Google Scholar] [CrossRef] [PubMed]
- Semper, A.E.; Broadhurst, M.J.; Richards, J.; Foster, G.M.; Simpson, A.J.; Logue, C.H.; Kelly, J.D.; Miller, A.; Brooks, T.J.; Murray, M.; et al. Performance of the GeneXpert Ebola Assay for Diagnosis of Ebola Virus Disease in Sierra Leone: A Field Evaluation Study. PLoS Med. 2016, 13, e1001980. [Google Scholar] [CrossRef]
- Katawera, V.; Kohar, H.; Mahmoud, N.; Raftery, P.; Wasunna, C.; Humrighouse, B.; Hardy, P.; Saindon, J.; Schoepp, R.; Makvandi, M.; et al. Enhancing laboratory capacity during Ebola virus disease (EVD) heightened surveillance in Liberia: Lessons learned and recommendations. Pan Afr. Med. J. 2019, 33, 8. [Google Scholar] [CrossRef]
- Haakenstad, A.; Irvine, C.M.S.; Knight, M.; Bintz, C.; Aravkin, A.Y.; Zheng, P.; Gupta, V.; Abrigo, M.R.; Abushouk, A.I.; Adebayo, O.M.J.T.L. Measuring the availability of human resources for health and its relationship to universal health coverage for 204 countries and territories from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 399, 2129–2154. [Google Scholar] [CrossRef] [PubMed]
- Bektemur, G.; Muzoglu, N.; Arici, M.A.; Karaaslan, M.K. Cost analysis of medical device spare parts. Pak. J. Med. Sci. 2018, 34, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Shah, D.; Sayed, S.; Horton, S.; Schroeder, L.F. Availability of essential diagnostics in ten low-income and middle-income countries: Results from national health facility surveys. Lancet Glob. Health 2021, 9, e1553–e1560. [Google Scholar] [CrossRef]
- Gwaza, G.; Pluddemann, A.; McCall, M.; Heneghan, C. Integrated Diagnosis in Africa’s Low- and Middle-Income Countries: What Is It, What Works, and for Whom? A Realist Synthesis. Int. J. Integr. Care 2024, 24, 20. [Google Scholar] [CrossRef]
- Espinal, M.A.; Salomon, M.L.; Periago, M.R. PAHO is Latin America’s Centre for Disease Control and Prevention. Lancet 2025, 405, 694–695. [Google Scholar] [CrossRef]
- Al-Waleedi, A.A.; Thabet, A.A.; Bin Azoon, N.; Dandarwe, A.; Al-Amoudi, A.S.; Al-Gailani, A.; Atef, B. An assessment of the current epidemiological and laboratory capacities for influenza-like illnesses and severe acute respiratory infection surveillance, Yemen 2022. Influenza Other Respir Viruses 2023, 17, e13130. [Google Scholar] [CrossRef]
- Shultz, J.M.; Perlin, A.; Saltzman, R.G.; Espinel, Z.; Galea, S. Pandemic March: 2019 Coronavirus Disease’s First Wave Circumnavigates the Globe. Disaster Med. Public Health Prep. 2020, 14, e28–e32. [Google Scholar] [CrossRef]
- WHO COVID-19 Dashboard. 2023. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 4 September 2025).
- COVID-19 Eliminated a Decade of Progress in Global Level of Life Expectancy. 2024. Available online: https://www.who.int/news/item/24-05-2024-covid-19-eliminated-a-decade-of-progress-in-global-level-of-life-expectancy (accessed on 4 September 2025).
- Aguiar, E.; Navas, J.; Pacheco, L.G.C. The COVID-19 Diagnostic Technology Landscape: Efficient Data Sharing Drives Diagnostic Development. Front. Public Health 2020, 8, 309. [Google Scholar] [CrossRef]
- Das, S.; Frank, K.M. Strategies for Scaling up SARS-CoV-2 Molecular Testing Capacity. Clin. Lab. Med. 2022, 42, 261–282. [Google Scholar] [CrossRef]
- Rosella, L.C.; Agrawal, A.; Gans, J.; Goldfarb, A.; Sennik, S.; Stein, J. Large-scale implementation of rapid antigen testing system for COVID-19 in workplaces. Sci. Adv. 2022, 8, eabm3608. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef]
- Hung, I.F.; Cheng, V.C.; Li, X.; Tam, A.R.; Hung, D.L.; Chiu, K.H.; Yip, C.C.; Cai, J.P.; Ho, D.T.; Wong, S.C.; et al. SARS-CoV-2 shedding and seroconversion among passengers quarantined after disembarking a cruise ship: A case series. Lancet Infect. Dis. 2020, 20, 1051–1060. [Google Scholar] [CrossRef]
- Fang, B.; Meng, Q.H. The laboratory’s role in combating COVID-19. Crit. Rev. Clin. Lab. Sci. 2020, 57, 400–414. [Google Scholar] [CrossRef]
- Martinez, M.J.; Cotten, M.; Phan, M.V.T.; Becker, K.; Espasa, M.; Leegaard, T.M.; Lisby, G.; Schneider, U.V.; Casals-Pascual, C. Viral epidemic preparedness: A perspective from five clinical microbiology laboratories in Europe. Clin. Microbiol. Infect. 2024, 30, 582–585. [Google Scholar] [CrossRef]
- Mercer, T.R.; Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.M.; Wunderink, R.G. Severe Respiratory Viral Infections: New Evidence and Changing Paradigms. Infect. Dis. Clin. North. Am. 2017, 31, 455–474. [Google Scholar] [CrossRef]
- van Beuningen, R.; Jim, K.K.; Boot, M.; Ossendrijver, M.; Keijser, B.J.; van de Bovenkamp, J.H.; Melchers, W.J.; Kievits, T. Development of a large-scale rapid LAMP diagnostic testing platform for pandemic preparedness and outbreak response. Biol. Methods Protoc. 2024, 9, bpae090. [Google Scholar] [CrossRef]
- Moron-Lopez, S.; Riveira-Munoz, E.; Urrea, V.; Gutierrez-Chamorro, L.; Avila-Nieto, C.; Noguera-Julian, M.; Carrillo, J.; Mitja, O.; Mateu, L.; Massanella, M.; et al. Comparison of Reverse Transcription (RT)-Quantitative PCR and RT-Droplet Digital PCR for Detection of Genomic and Subgenomic SARS-CoV-2 RNA. Microbiol. Spectr. 2023, 11, e0415922. [Google Scholar] [CrossRef]
- Kinloch, N.N.; Ritchie, G.; Dong, W.; Cobarrubias, K.D.; Sudderuddin, H.; Lawson, T.; Matic, N.; Montaner, J.S.G.; Leung, V.; Romney, M.G.; et al. SARS-CoV-2 RNA Quantification Using Droplet Digital RT-PCR. J. Mol. Diagn. 2021, 23, 907–919. [Google Scholar] [CrossRef]
- Secchi, V.; Armanni, A.; Barbieri, L.; Bruno, A.; Colombo, A.; Fumagalli, S.; Kukushkina, E.A.; Lorenzi, R.; Marchesi, L.; Moukham, H.; et al. Advanced techniques and nanotechnologies for point-of-care testing. Front. Nanotechnol. 2025, 6, 1465429. [Google Scholar] [CrossRef]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef] [PubMed]
- Hanson, K.E.; Azar, M.M.; Banerjee, R.; Chou, A.; Colgrove, R.C.; Ginocchio, C.C.; Hayden, M.K.; Holodiny, M.; Jain, S.; Koo, S.; et al. Molecular Testing for Acute Respiratory Tract Infections: Clinical and Diagnostic Recommendations From the IDSA’s Diagnostics Committee. Clin. Infect. Dis. 2020, 71, 2744–2751. [Google Scholar] [CrossRef]
- Seegene Unveils CURECA™ and STAgora™ at ADLM. 2025. Available online: https://www.seegene.com/press_release/seegene_unveils_cureca_and_stagora_at_adlm_2025_advancing_the_next_stage_of_diagnostics__2025 (accessed on 4 September 2025).
- Azar, M.M.; Landry, M.L. Detection of Influenza A and B Viruses and Respiratory Syncytial Virus by Use of Clinical Laboratory Improvement Amendments of 1988 (CLIA)-Waived Point-of-Care Assays: A Paradigm Shift to Molecular Tests. J. Clin. Microbiol. 2018, 56, e00367-18. [Google Scholar] [CrossRef]
- Ford, L.; Lee, C.; Pray, I.W.; Cole, D.; Bigouette, J.P.; Abedi, G.R.; Bushman, D.; Delahoy, M.J.; Currie, D.W.; Cherney, B.; et al. Epidemiologic Characteristics Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antigen-Based Test Results, Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) Cycle Threshold Values, Subgenomic RNA, and Viral Culture Results From University Testing. Clin. Infect. Dis. 2021, 73, e1348–e1355. [Google Scholar] [CrossRef]
- Barlev-Gross, M.; Weiss, S.; Ben-Shmuel, A.; Sittner, A.; Eden, K.; Mazuz, N.; Glinert, I.; Bar-David, E.; Puni, R.; Amit, S.; et al. Spike vs nucleocapsid SARS-CoV-2 antigen detection: Application in nasopharyngeal swab specimens. Anal. Bioanal. Chem. 2021, 413, 3501–3510. [Google Scholar] [CrossRef]
- Arumugam, S.; Ma, J.; Macar, U.; Han, G.; McAulay, K.; Ingram, D.; Ying, A.; Chellani, H.H.; Chern, T.; Reilly, K.; et al. Rapidly adaptable automated interpretation of point-of-care COVID-19 diagnostics. Commun. Med. 2023, 3, 91. [Google Scholar] [CrossRef]
- In Vitro Diagnostics EUAs. 2023. Available online: https://www.fda.gov/medical-devices/covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-2 (accessed on 4 September 2025).
- Kilic, A.; Hiestand, B.; Palavecino, E. Evaluation of Performance of the BD Veritor SARS-CoV-2 Chromatographic Immunoassay Test in Patients with Symptoms of COVID-19. J. Clin. Microbiol. 2021, 59, e00260-21. [Google Scholar] [CrossRef]
- Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Spijker, R.; Taylor-Phillips, S.; Adriano, A.; Beese, S.; Dretzke, J.; Ferrante di Ruffano, L.; et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020, 6, CD013652. [Google Scholar] [CrossRef]
- Talbot, H.K.; Falsey, A.R. The diagnosis of viral respiratory disease in older adults. Clin. Infect. Dis. 2010, 50, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Stern, D.; Meyer, T.C.; Treindl, F.; Mages, H.W.; Krueger, M.; Skiba, M.; Krueger, J.P.; Zobel, C.M.; Schreiner, M.; Grossegesse, M.J.S.R. A bead-based multiplex assay covering all coronaviruses pathogenic for humans for sensitive and specific surveillance of SARS-CoV-2 humoral immunity. Sci. Rep. 2023, 13, 21846. [Google Scholar] [CrossRef]
- Eryilmaz, M.; Goncharov, A.; Han, G.R.; Joung, H.A.; Ballard, Z.S.; Ghosh, R.; Zhang, Y.; Di Carlo, D.; Ozcan, A. A Paper-Based Multiplexed Serological Test to Monitor Immunity against SARS-COV-2 Using Machine Learning. ACS Nano 2024, 18, 16819–16831. [Google Scholar] [CrossRef]
- Harvey, R.A.; Rassen, J.A.; Kabelac, C.A.; Turenne, W.; Leonard, S.; Klesh, R.; Meyer, W.A., 3rd; Kaufman, H.W.; Anderson, S.; Cohen, O.; et al. Association of SARS-CoV-2 Seropositive Antibody Test With Risk of Future Infection. JAMA Intern. Med. 2021, 181, 672–679. [Google Scholar] [CrossRef]
- Nordgren, J.; Sharma, S.; Olsson, H.; Jamtberg, M.; Falkeborn, T.; Svensson, L.; Hagbom, M. SARS-CoV-2 rapid antigen test: High sensitivity to detect infectious virus. J. Clin. Virol. 2021, 140, 104846. [Google Scholar] [CrossRef]
- Interim Guidelines for COVID-19 Antibody Testing. 2019. Available online: https://archive.cdc.gov/www_cdc_gov/coronavirus/2019-ncov/hcp/testing/antibody-tests-guidelines.html (accessed on 4 September 2025).
- Gu, W.; Miller, S.; Chiu, C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu. Rev. Pathol. 2019, 14, 319–338. [Google Scholar] [CrossRef]
- Marjanovic, S.; Romanelli, R.J.; Ali, G.C.; Leach, B.; Bonsu, M.; Rodriguez-Rincon, D.; Ling, T. COVID-19 Genomics UK (COG-UK) Consortium: Final Report. Rand Health Q. 2022, 9, 24. [Google Scholar]
- McCrone, J.T.; Hill, V.; Bajaj, S.; Pena, R.E.; Lambert, B.C.; Inward, R.; Bhatt, S.; Volz, E.; Ruis, C.; Dellicour, S.; et al. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 2022, 610, 154–160. [Google Scholar] [CrossRef]
- Chen, S.; Ouyang, T.; Wang, K.; Hou, X.; Zhang, R.; Li, M.; Zhang, H.; He, Q.; Li, X.; Liu, Z.; et al. Application of metagenomic next-generation sequencing in pathogen detection of lung infections. Front. Cell. Infect. Microbiol. 2025, 15, 1513603. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.; Servellita, V.; Stryke, D.; Kelly, E.; Streithorst, J.; Sumimoto, N.; Foresythe, A.; Huh, H.J.; Nguyen, J.; Oseguera, M.J.N.c. Laboratory validation of a clinical metagenomic next-generation sequencing assay for respiratory virus detection and discovery. Nat. Commun. 2024, 15, 9016. [Google Scholar] [CrossRef]
- Guzman-Cole, C.; Huang, A.D. nf-UnO pipeline: A metagenomic co-assembly pipeline for novel pathogen detection from mNGS outbreak sets. Bioinformatics 2025, 41, btaf436. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2020, 8, 602659. [Google Scholar] [CrossRef]
- Zayed, B.A.; Ali, A.N.; Elgebaly, A.A.; Talaia, N.M.; Hamed, M.; Mansour, F.R. Smartphone-based point-of-care testing of the SARS-CoV-2: A systematic review. Sci. Afr. 2023, 21, e01757. [Google Scholar] [CrossRef]
- Un, K.C.; Wong, C.K.; Lau, Y.M.; Lee, J.C.; Tam, F.C.; Lai, W.H.; Lau, Y.M.; Chen, H.; Wibowo, S.; Zhang, X.; et al. Observational study on wearable biosensors and machine learning-based remote monitoring of COVID-19 patients. Sci. Rep. 2021, 11, 4388. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Song, M.; Lao, X.; Pang, S.-Y.; Liu, Y.; Wong, M.-C.; Ma, Y.; Yang, M.; Hao, J. Rapid and ultrasensitive detection of SARS-CoV-2 spike protein based on upconversion luminescence biosensor for COVID-19 point-of-care diagnostics. Mater. Des. 2022, 223, 111263. [Google Scholar] [CrossRef]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Yimer, S.A.; Booij, B.B.; Tobert, G.; Hebbeler, A.; Oloo, P.; Brangel, P.; L’Azou Jackson, M.; Jarman, R.; Craig, D.; Avumegah, M.S.; et al. Rapid diagnostic test: A critical need for outbreak preparedness and response for high priority pathogens. BMJ Glob. Health 2024, 9, e014386. [Google Scholar] [CrossRef]
- Baer, A.; Kehn-Hall, K. Viral concentration determination through plaque assays: Using traditional and novel overlay systems. J. Vis. Exp. 2014, e52065. [Google Scholar] [CrossRef]
- Battegay, M.; Cooper, S.; Althage, A.; Bänziger, J.; Hengartner, H.; Zinkernagel, R.M. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24-or 96-well plates. J. Virol. Methods 1991, 33, 191–198. [Google Scholar] [CrossRef]
- LaBarre, D.D.; Lowy, R.J. Improvements in methods for calculating virus titer estimates from TCID50 and plaque assays. J. Virol. Methods 2001, 96, 107–126. [Google Scholar] [CrossRef]
- Pastorino, B.; Touret, F.; Gilles, M.; Luciani, L.; de Lamballerie, X.; Charrel, R.N. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses 2020, 12, 624. [Google Scholar] [CrossRef]
- Vafadar, A.; Takallu, S.; Alashti, S.K.; Rashidi, S.; Bahrani, S.; Tajbakhsh, A.; Mirzaei, E.; Savardashtaki, A. Advancements in microfluidic platforms for rapid biomarker diagnostics of infectious diseases. Microchem. J. 2024, 208, 112296. [Google Scholar] [CrossRef]
- Srimathi, S.R.; Ignacio, M.A.; Rife, M.; Tai, S.; Milton, D.K.; Scull, M.A.; DeVoe, D.L. Microfluidic digital focus assays for the quantification of infectious influenza virus. Lab Chip 2025, 25, 2004–2016. [Google Scholar] [CrossRef]
- Desmarets, L.; Callens, N.; Hoffmann, E.; Danneels, A.; Lavie, M.; Couturier, C.; Dubuisson, J.; Belouzard, S.; Rouille, Y. A reporter cell line for the automated quantification of SARS-CoV-2 infection in living cells. Front. Microbiol. 2022, 13, 1031204. [Google Scholar] [CrossRef]
- van Kampen, J.J.A.; van de Vijver, D.; Fraaij, P.L.A.; Haagmans, B.L.; Lamers, M.M.; Okba, N.; van den Akker, J.P.C.; Endeman, H.; Gommers, D.; Cornelissen, J.J.; et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 2021, 12, 267. [Google Scholar] [CrossRef]
- Parums, D.V. Editorial: The 2025 World Health Assembly Pandemic Agreement and the 2024 Amendments to the International Health Regulations Combine for Pandemic Preparedness and Response. Med. Sci. Monit. 2025, 31, e950411. [Google Scholar] [CrossRef]
- Barnsley, G.; Mesa, D.O.; Hogan, A.B.; Winskill, P.; A Torkelson, A.; Walker, D.G.; Ghani, A.C.; Watson, O.J. Impact of the 100 days mission for vaccines on COVID-19: A mathematical modelling study. Lancet Glob. Health 2024, 12, e1764–e1774. [Google Scholar] [CrossRef]
- Agard, A.; Elsheikh, O.; Bell, D.; Relich, R.F.; Schmitt, B.H.; Sadowski, J.; Fadel, W.; Webb, D.H.; Dbeibo, L.; Kelley, K. Clinical comparison and agreement of PCR, antigen, and viral culture for the diagnosis of COVID-19: Clinical Agreement Between Diagnostics for COVID19. J. Clin. Virol. Plus 2022, 2, 100099. [Google Scholar] [CrossRef]
- Nkengasong, J.N.; Yao, K.; Onyebujoh, P. Laboratory medicine in low-income and middle-income countries: Progress and challenges. Lancet 2018, 391, 1873–1875. [Google Scholar] [CrossRef]
- Okesanya, O.J.; Olatunji, G.; Manirambona, E.; Oluebube, M.M.; Rasheed, A.A.; Olaleke, N.O.; Ogunlayi, A.C.; Ogaya, J.B.; Oladipo, E.K.; Igbalajobi, O.A.; et al. Synergistic fight against future pandemics: Lessons from previous pandemics. Infez. Med. 2023, 31, 429–439. [Google Scholar] [CrossRef]

| Diagnostic Challenges | Technological Advances | Lessons Learned | |
|---|---|---|---|
| SARS (2002–2003) |
|
|
|
| H1N1pdm09 (2009–2010) |
|
|
|
| Ebola (2014–2016) |
|
|
|
| COVID-19 (2019–2023) |
|
|
|
| Technology | Limit of Detection (LoD) | Sensitivity/Specificity | Approx. Turnaround Time (TAT) | Cost per Test | Throughput | Technical Complexity & Infrastructure | Vulnerability to Variants | Typical Regulatory Status |
|---|---|---|---|---|---|---|---|---|
| PCR/RT-PCR | 102–103 copies/mL | High (>95%)/High (>95%) | 60–120 min (after extraction) | $10–$15 | Medium to High (with automation) | High (thermal cycler, lab, trained staff) | Low (if target conserved) | FDA-Cleared, CE-Marked, WHO EUL |
| LAMP | 102–104 copies/mL | Comparable to PCR/High | 30–60 min | <$10 | Medium to High (platform-dependent) | Low to Medium (isothermal block, simple reader) | Low (if target conserved) | Increasing EUAs/Approvals |
| RPA | 102–103 copies/mL | High/High (platform-dependent) | 10–20 min | <$10 | Low | Very Low (isothermal, portable) | Low (if target conserved) | Emerging, some EUAs |
| TMA | 101–102 copies/mL | Very High/Very High | 30–60 min | $10–$15 | High (integrated automated systems) | Medium (dedicated automated instrument) | Low (if target conserved) | FDA-Cleared (e.g., blood screening) |
| ddPCR | 1–10 copies per reaction | Very High/Very High | 180–240 min | >$150 | Low to Medium | High (droplet generator, reader, expert analysis) | Low (if target conserved) | Typical LDT-based |
| Antigen Test | 104–106 copies/mL | Moderate-High/High (varies with viral load) | 15–30 min | <$10 | Low to Medium | Very Low (visual read, no instrument) | High (if target epitope mutates) | FDA EUA/Approval, WHO EUL, CE-Marked |
| Serology (IgG/IgM) | N/A (qualitative) | Moderate-High/Moderate-High (varies by assay) | 15 min–2 h | <$10 | Low to High (platform-dependent) | Low (LFA) to High (CLIA/ELISA) | Low to Moderate (if antigenic drift) | FDA EUA/Approval, CE-Marked |
| NGS/mNGS | Targeted NGS 102–104 mNGS 103–105 | Very High/High (bioinformatics-dependent) | 24–72 h | >$150 | Low (per sample) | Very High (sequencer, computing, bioinformaticians) | None (agnostic) | Typical LDT-based |
| POCT | NAAT-POCT 102–104 antigen-POCT 104–106 | High/High | 20–45 min | $10–$15 | Low | Low (all-in-one cartridge system) | Low (if target conserved) | FDA-Cleared (CLIA-waived) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Meng, Q.H. Advancing Laboratory Diagnostics for Future Pandemics: Challenges and Innovations. Pathogens 2025, 14, 1135. https://doi.org/10.3390/pathogens14111135
Chen L, Meng QH. Advancing Laboratory Diagnostics for Future Pandemics: Challenges and Innovations. Pathogens. 2025; 14(11):1135. https://doi.org/10.3390/pathogens14111135
Chicago/Turabian StyleChen, Lechuang, and Qing H. Meng. 2025. "Advancing Laboratory Diagnostics for Future Pandemics: Challenges and Innovations" Pathogens 14, no. 11: 1135. https://doi.org/10.3390/pathogens14111135
APA StyleChen, L., & Meng, Q. H. (2025). Advancing Laboratory Diagnostics for Future Pandemics: Challenges and Innovations. Pathogens, 14(11), 1135. https://doi.org/10.3390/pathogens14111135

