Beyond the Virus: The Collateral Impact of COVID-19 on Antimicrobial Consumption, Microbial Resistance, and Pharmacoeconomics
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Hospitalizations and Mortality
3.2. Antimicrobial Use
3.2.1. Defined Daily Dose (DDD)
3.2.2. Days of Therapy (DOT)
3.3. Healthcare-Associated Infections
Microbiological Profile of Healthcare-Associated Infections
3.4. Financial Impact
3.5. Pharmacist Activities
3.6. Adverse Drug Reactions
3.7. Linear Regression Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADR | Adverse drug reaction |
| BSI | Bloodstream infection |
| DDD | Defined daily dose |
| DOT | Days of therapy |
| ECMO | Extracorporeal membrane oxygenation |
| HAI | Healthcare-associated infection |
| ICU | Intensive care unit |
| OLS | Ordinary least squares |
| SDU | Step-down unit |
| UTI | Urinary tract infection |
| VAP | Ventilator-associated pneumonia |
| VAP—SDU | Ventilator-associated pneumonia in the step-down unit |
| VAP—ICU | Ventilator-associated pneumonia in the intensive care unit |
| WHO | World Health Organization |
| WLS | Weighted least squares |
References
- Witt, L.S.; Howard-Anderson, J.R.; Jacob, J.T.; Gottlieb, L.B. The Impact of COVID-19 on Multidrug-Resistant Organisms Causing Healthcare-Associated Infections: A Narrative Review. JAC Antimicrob. Resist. 2022, 5, dlac130. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial Resistance (AMR) in COVID-19 Patients: A Systematic Review and Meta-Analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Stewardship Programmes in Health-Care Facilities in Low- and Middle-Income Countries: A WHO Practical Toolkit. JAC Antimicrob. Resist. 2019, 1, dlz072. [Google Scholar] [CrossRef]
- Pierce, J.; Stevens, M.P. COVID-19 and Antimicrobial Stewardship: Lessons Learned, Best Practices, and Future Implications. Int. J. Infect. Dis. 2021, 113, 103. [Google Scholar] [CrossRef]
- Elshenawy, R.A.; Umaru, N.; Alharbi, A.B.; Aslanpour, Z. Antimicrobial Stewardship Implementation Before and During the COVID-19 Pandemic in the Acute Care Settings: A Systematic Review. BMC Public Health 2023, 23, 309. [Google Scholar] [CrossRef]
- Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. [Google Scholar] [CrossRef] [PubMed]
- Adrie, C.; Garrouste-Orgeas, M.; Ibn Essaied, W.; Schwebel, C.; Darmon, M.; Mourvillier, B.; Ruckly, S.; Dumenil, A.S.; Kallel, H.; Argaud, L.; et al. Attributable Mortality of ICU-Acquired Bloodstream Infections: Impact of the Source, Causative Micro-Organism, Resistance Profile and Antimicrobial Therapy. J. Infect. 2017, 74, 131–141. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária (ANVISA). Anvisa Nota Técnica GVIMS-GGTES N° 05-2017: Orientações para Prevenção e Controle de Infecções pela Resistência Microbiana em Serviços de Saúde. Brasília, DF, Brazil. 2017. Available online: https://www.gov.br/anvisa/pt-br/assuntos/servicosdesaude/publicacoes (accessed on 4 November 2025).
- ATCDDD. ATC/DDD Index. Available online: https://atcddd.fhi.no/atc_ddd_index_and_guidelines/atc_ddd_index/ (accessed on 18 August 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Sills, J.M. World Health Organization Adverse Reaction Terminology Dictionary. Drug Inf. J. 1989, 23, 211–216. [Google Scholar] [CrossRef]
- Siegel, S.; Para Baixar, D. Estatística Não-Paramétrica Para Ciências Do Comportamento PDF; Artmed Editora: São Paulo, Brazil, 2006. [Google Scholar]
- Kosambi, D.D. An Extension of the Least-Squares Method for Statistical Estimation. Ann. Eugen. 1947, 13, 257–261. [Google Scholar] [CrossRef]
- Charnet, R.; Freire, C.D.L.; Charnet, E.M.; Bonvino, H. Análise de Modelos de Regressão Linear Com Aplicações; Editora da Unicamp: Campinas, Brazil, 2008. [Google Scholar]
- Royston, J.P. An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples. Appl. Stat. 1982, 31, 115. [Google Scholar] [CrossRef]
- Pfaff, B. Analysis of Integrated and Cointegrated Time Series with R. In Analysis of Integrated and Cointegrated Time Series with R; Springer: New York, NY, USA, 2008. [Google Scholar]
- Menezes-Filho, N.; Komatsu, B.K.; Villares, L. The Impacts of COVID-19 Hospitalizations on Non-COVID-19 Deaths and Hospitalizations: A Panel Data Analysis Using Brazilian Municipalities. PLoS ONE 2023, 18, e0295572. [Google Scholar] [CrossRef]
- Kadri, S.S.; Sun, J.; Lawandi, A.; Strich, J.R.; Busch, L.M.; Keller, M.; Babiker, A.; Yek, C.; Malik, S.; Krack, J.; et al. Association between Caseload Surge and Covid-19 Survival in 558 u.s. Hospitals, March to August 2020. Ann. Intern. Med. 2021, 174, 1240–1251. [Google Scholar] [CrossRef]
- Piroth, L.; Cottenet, J.; Mariet, A.S.; Bonniaud, P.; Blot, M.; Tubert-Bitter, P.; Quantin, C. Comparison of the Characteristics, Morbidity, and Mortality of COVID-19 and Seasonal Influenza: A Nationwide, Population-Based Retrospective Cohort Study. Lancet Respir. Med. 2021, 9, 251–259. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic Prescribing in Patients with COVID-19: Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Allel, K.; Peters, A.; Conejeros, J.; Martínez, J.R.W.; Spencer-Sandino, M.; Riquelme-Neira, R.; Rivas, L.; Rojas, P.; Orellana Chea, C.; García, P.; et al. Antibiotic Consumption During the Coronavirus Disease 2019 Pandemic and Emergence of Carbapenemase-Producing Klebsiella Pneumoniae Lineages Among Inpatients in a Chilean Hospital: A Time-Series Study and Phylogenomic Analysis. Clin. Infect. Dis. 2023, 77, S20–S28. [Google Scholar] [CrossRef]
- Khan, S.; Hasan, S.S.; Bond, S.E.; Conway, B.R.; Aldeyab, M.A. Antimicrobial Consumption in Patients with COVID-19: A Systematic Review and Meta-Analysis. Expert. Rev. Anti Infect. Ther. 2022, 20, 749–772. [Google Scholar] [CrossRef]
- Grau, S.; Echeverria-Esnal, D.; Gómez-Zorrilla, S.; Navarrete-Rouco, M.E.; Masclans, J.R.; Espona, M.; Gracia-Arnillas, M.P.; Duran, X.; Comas, M.; Horcajada, J.P.; et al. Evolution of Antimicrobial Consumption During the First Wave of COVID-19 Pandemic. Antibiotics 2021, 10, 132. [Google Scholar] [CrossRef]
- Pinte, L.; Ceasovschih, A.; Niculae, C.M.; Stoichitoiu, L.E.; Ionescu, R.A.; Balea, M.I.; Cernat, R.C.; Vlad, N.; Padureanu, V.; Purcarea, A.; et al. Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study. J. Pers. Med. 2022, 12, 877. [Google Scholar] [CrossRef]
- Ul Mustafa, Z.; Salman, M.; Aldeyab, M.; Kow, C.S.; Hasan, S.S. Antimicrobial Consumption Among Hospitalized Patients with COVID-19 in Pakistan. SN Compr. Clin. Med. 2021, 3, 1691–1695. [Google Scholar] [CrossRef]
- Golli, A.L.; Zlatian, O.M.; Cara, M.L.; Olteanu, M. Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals 2024, 17, 407. [Google Scholar] [CrossRef]
- Golli, A.L.; Popa, S.G.; Ghenea, A.E.; Turcu, F.L. The Impact of the COVID-19 Pandemic on the Antibiotic Resistance of Gram-Negative Pathogens Causing Bloodstream Infections in an Intensive Care Unit. Biomedicines 2025, 13, 379. [Google Scholar] [CrossRef]
- Nie, Z.; Sun, T.; Zhao, F. Safety and Efficacy of Antiviral Drugs for the Treatment of COVID-19: A Systematic Review. Infect. Drug Resist. 2022, 15, 4457. [Google Scholar] [CrossRef]
- AlBahrani, S.; Almogbel, F.; Alanazi, W.; Almutairi, S.H.; Alanazi, M.; Maximos, S.; Azaiez, F.; Osman, A.; Almuthen, S.; Jebakumar, A.Z.; et al. Carbapenem Use Correlates with Percentage of Patients with COVID-19 in Intensive Care Units. Infection 2023, 51, 331–336. [Google Scholar] [CrossRef]
- Fukushige, M.; Ngo, N.H.; Lukmanto, D.; Fukuda, S.; Ohneda, O. Effect of the COVID-19 Pandemic on Antibiotic Consumption: A Systematic Review Comparing 2019 and 2020 Data. Front. Public Health 2022, 10, 946077. [Google Scholar] [CrossRef]
- Baccolini, V.; Migliara, G.; Isonne, C.; Dorelli, B.; Barone, L.C.; Giannini, D.; Marotta, D.; Marte, M.; Mazzalai, E.; Alessandri, F.; et al. The Impact of the COVID-19 Pandemic on Healthcare-Associated Infections in Intensive Care Unit Patients: A Retrospective Cohort Study. Antimicrob. Resist. Infect. Control 2021, 10, 87. [Google Scholar] [CrossRef]
- Vendrik, K.E.W.; Baktash, A.; Goeman, J.J.; Harmanus, C.; Notermans, D.W.; de Greeff, S.C.; Kuijper, E.J. Comparison of Trends in Clostridioides Difficile Infections in Hospitalised Patients During the First and Second Waves of the COVID-19 Pandemic: A Retrospective Sentinel Surveillance Study. Lancet Reg. Health Eur. 2022, 19, 100424. [Google Scholar] [CrossRef]
- Hilvers, E.; Matizanadzo, J.; McClure, V.; Butterick, P.; Morgan, M. Clostridioides Difficile Infection Following COVID-19: A Nationwide Analysis Using Routine Surveillance Data in Wales. J. Hosp. Infect. 2024. [Google Scholar] [CrossRef]
- Pantasri, T. Expanded Roles of Community Pharmacists in COVID-19: A Scoping Literature Review. J. Am. Pharm. Assoc. 2021, 62, 649. [Google Scholar] [CrossRef]
- Paudyal, V.; Cadogan, C.; Fialová, D.; Henman, M.C.; Hazen, A.; Okuyan, B.; Lutters, M.; Stewart, D. Provision of Clinical Pharmacy Services During the COVID-19 Pandemic: Experiences of Pharmacists from 16 European Countries. Res. Soc. Adm. Pharm. 2020, 17, 1507. [Google Scholar] [CrossRef]
- Parreiras Martins, M.A.; Fonseca de Medeiros, A.; Dias Carneiro de Almeida, C.; Moreira Reis, A.M. Preparedness of Pharmacists to Respond to the Emergency of the COVID-19 Pandemic in Brazil: A Comprehensive Overview. Drugs Ther. Perspect. 2020, 36, 455. [Google Scholar] [CrossRef]
- Liu, C.; Patel, K.; Cernero, B.; Baratt, Y.; Dandan, N.; Marshall, O.; Li, H.; Efird, L. Expansion of Pharmacy Services During COVID-19: Pharmacists and Pharmacy Extenders Filling the Gaps Through Telehealth Services. Hosp. Pharm. 2021, 57, 349. [Google Scholar] [CrossRef]
- Kapinos, K.A.; Peters, R.M.; Murphy, R.E.; Hohmann, S.F.; Podichetty, A.; Greenberg, R.S. Inpatient Costs of Treating Patients with COVID-19. JAMA Netw. Open 2024, 7, e2350145. [Google Scholar] [CrossRef]
- Kanerva, M.; Rautava, K.; Kurvinen, T.; Marttila, H.; Finnilä, T.; Rantakokko-Jalava, K.; Pietilä, M.; Mustonen, P.; Kortelainen, M. Economic Impact and Disease Burden of COVID-19 in a Tertiary Care Hospital: A Three-Year Analysis. PLoS ONE 2025, 20, e0323200. [Google Scholar] [CrossRef]
- Marins, T.A.; Marra, A.R.; Edmond, M.B.; Colombo, L.R.P.; Vieira, S.F.; De Oliveira Xavier, F.; Chauvin, A.G.; Pinho, J.R.R.; De Almeida, S.M.; Junior, M.S.D. Adverse Drug Reactions and Drug Interactions in the Treatment of Hospitalized Patients with Coronavirus Disease 2019 (COVID-19). Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e38. [Google Scholar] [CrossRef]
- Sun, J.; Deng, X.; Chen, X.; Huang, J.; Huang, S.; Li, Y.; Feng, J.; Liu, J.; He, G. Incidence of Adverse Drug Reactions in COVID-19 Patients in China: An Active Monitoring Study by Hospital Pharmacovigilance System. Clin. Pharmacol. Ther. 2020, 108, 791. [Google Scholar] [CrossRef]



| Before COVID-19 | During COVID-19 | p-Value | |
|---|---|---|---|
| N (%) | N (%) | ||
| Hospitalized patients | |||
| Total | 116,591 (43.4%) | 152,122 (56.6%) | |
| Monthly mean (±SD) | 4484 (±286) | 4474 (±874) | |
| Monthly Median [IQR] | 4525 [4266–4706] | 4.583 [3897–5273] | 0.586 |
| Hospitalized patients using antimicrobials | |||
| Total | 60,502 (42.8%) | 80,922 (57.2%) | |
| Monthly mean (±SD) | 2327 (±149.1) | 2380 (±464.4) | |
| Monthly Median [IQR] | 2334 [2257–2459] | 2411 [2121–2620] | 0.399 |
| Patient/days | |||
| Total | 415,252 (43.3%) | 543,500 (56.7%) | |
| Monthly mean (±SD) | 15,971 (±1915.9) | 15,985 (±2325.2) | |
| Monthly Median [IQR] | 15,971 [14,426–18,087] | 15,860 [14,619–17,516] | 0.706 |
| Hospitalized patients with COVID-19 using antimicrobials | - | 6936 | - |
| Deaths | |||
| Total | 861 (36.6%) | 1494 (63.4%) | |
| Monthly mean (±SD) | 33.12 (±7.7) | 43.94 (±13.0) | |
| Monthly Median [IQR] | 31.5 [28.0–37.8] | 42.5 [35.5–49.5] | <0.001 |
| Deaths in COVID-19 patients | - | 449 (30.1%) | - |
| Antimicrobial | Before COVID-19 | During COVID-19 | p-Value |
|---|---|---|---|
| 1st and 2nd generation cephalosporin (cefazolin, cephalothin, cefuroxime) | |||
| Mean ± SD | 57.2 ± 5.2 | 52.1 ± 10.4 | |
| Median [IQR] | 57.8 [55.3–59.9] | 54.8 [48.3–59.3] | 0.061 |
| 3rd, 4th, and 5th cephalosporin (ceftriaxone, cefotaxime, ceftazidime, cefepime, ceftaroline) | |||
| Mean ± SD | 39.7 ± 2.7 | 44.2 ± 7.6 | |
| Median [IQR] | 39.7 [37.4–41.5] | 42.1 [38.1–48.60] | 0.028 |
| Cephalosporin + β-lactamase inhibitors | |||
| Mean ± SD | 2.4 ± 2.8 | 13.2 ± 4.6 | |
| Median [IQR] | 1.1 [0–4.2] | 13.3 [11.1–15.8] | <0.001 |
| Macrolides | |||
| Mean ± SD | 20.1 ± 3.3 | 28.1 ± 15.8 | |
| Median [IQR] | 19.3 [18.0–22.7] | 24.3 [16.5–32.5] | 0.128 |
| Carbapenems | |||
| Mean ± SD | 26.8 ± 4.0 | 31.4 ± 4.4 | |
| Median [IQR] | 26.9 [23.6–29.7] | 30.8 [28.4–34.0] | <0.001 |
| Glycopeptides | |||
| Mean ± SD | 39.2 ± 4.8 | 52.5 ± 11.4 | |
| Median [IQR] | 39.2 [35.2–43.0] | 49.1 [45.5–56.0] | <0.001 |
| Polymyxin B | |||
| Mean ± SD | 5.1 ± 2.9 | 19.1 ± 14.7 | |
| Median [IQR] | 4.6 [3.6–6.3] | 14.4 [8.5–24.6] | <0.001 |
| Echinocandins | |||
| Mean ± SD | 17.0 ± 5.1 | 28.4 ± 9.6 | |
| Median [IQR] | 17.6 [14.3–20.7] | 26.5 [22.5–31.3] | <0.001 |
| Triazole Antifungals | |||
| Mean ± SD | 15.5± 3.3 | 17.0 ± 4.6 | 0.166 * |
| Median [IQR] | 15.7 [13.2–18.0] | 16.2 [14.0–19.8] | |
| Antivirals | |||
| Mean ± SD | 8.8 ± 10.9 | 4.8 ± 6.1 | |
| Median [IQR] | 4.1 [3.3–5.9] | 3.0 [1.6–6.2] | 0.020 |
| Total Before COVID-19 | Before COVID-19 | Total During COVID-19 | During COVID-19 | p-Value | |
|---|---|---|---|---|---|
| N (%) | N (%) | ||||
| Healthcare-associated infections | 40 (22.5%) | 138 (77.5%) | |||
| Healthcare-associated infections incidence rate per 10,000 patient-days | - | 1.12 | - | 2.30 | <0.001 |
| Central line-associated bloodstream infections | 27 (24.5%) | 83 (75.5%) | |||
| Bloodstream infection incidence rate per 1000 catheter-days | |||||
| Mean ± SD | 0.28 ± 0.29 | 0.40 ± 0.32 | |||
| Median [IQR] | 0.25 [0.00–0.49] | 0.34 [0.16–0.61] | 0.216 | ||
| Catheter-associated urinary tract infections | 9 (31.0%) | 20 (69.0%) | |||
| Urinary tract infection incidence rate per 1000 catheter-days | |||||
| Mean ± SD | 0.35 ± 0.61 | 0.40 ± 0.49 | |||
| Median [IQR] | 0.00 [0.00–0.83] | 0.00 [0.00–0.73] | 0.453 | ||
| Ventilator-associated pneumonia | 4 (10.3%) | 35 (89.7) | |||
| Ventilator-associated pneumonia incidence rate per 1000 ventilator-days | |||||
| Mean ± SD | 0.72 ± 2.16 | 1.08 ± 1.30 | |||
| Median [IQR] | 0.0 [0.00–0.00] | 0.35 [0.00–1.97] | 0.016 | ||
| Group ESKAPE infections | 21 (26.6%) | 58 (73.4%) | |||
| Group ESKAPE infections incidence rate per 10,000 patient-days | - | 0.59 | - | 0.97 | 0.076 |
| Before COVID-19 | During COVID-19 | Change (%) | p-Value | |
|---|---|---|---|---|
| Total Costs (millions of US$) | 844.52 | 1682.93 | - | |
| Median monthly [IQR] | 32.42 [31.22–34.47] | 53.20 [43.82–56.96] | 39.0% | <0.001 |
| Range | 25.82–38.16 | 20.49–61.71 | ||
| Monthly antimicrobial costs (millions of US$) | ||||
| Median [IQR] | 4.03 [3.76–4.34] | 7.44 [6.11–8.22] | 45.7% | <0.001 |
| Range | 3.04–5.60 | 3.37–9.46 | ||
| Cost per patient (US$) | ||||
| Median [IQR] | 7194 [6898–7502] | 10,840 [10,317–11,365] | 33.6% | <0.001 |
| Range | 6037–8635 | 8311–16,750 | ||
| Total costs of COVID-19 patients (millions of US$) | ||||
| Median [IQR] | - | 8.66 [5.56–12.03] | - | |
| Range | - | 0.21–22.77 | - | |
| Cost per patient with COVID-19 (US$) | ||||
| Median [IQR] | - | 49,660 [33,336–76,132] | - | |
| Range | - | 5302–135,866 | - |
| Before COVID-19 | During COVID-19 | p-Value | |
|---|---|---|---|
| Monthly pharmaceutical activities | |||
| Median [IQR] | 9488 [8703.25–10,102.5] | 11,589.5 [8061.75–12,504.25] | 0.042 |
| Range | 7072–11,324 | 6596–14,519 | |
| Monthly pharmaceutical activities per pharmacist | |||
| Median [IQR] | 214.66 [197.86–230.95] | 250.92 [164.07–262.25] | 0.131 |
| Range | 164.5–248.6 | 140.3–312.4 | |
| N of pharmaceutics/day | |||
| Median [IQR] | 44 [43–44] | 47.5 [45–49] | <0.001 |
| Range | 42–47 | 43–51 | |
| Hospitalized patients/month | |||
| Median [IQR] | 4524.5 [4265.5–4706.25] | 4582.5 [3897.25–5272.5] | 0.586 |
| Range | 4002–4948 | 1979–5565 |
| System | Total ADRs | Before COVID-19 | During COVID-19 |
|---|---|---|---|
| Skin tissue | 38 | 15 (30.61%) | 23 (28.40%) |
| Renal and urinary | 26 | 11 (22.45%) | 15 (18.52%) |
| Lymphatic and blood * | 12 | 8 (16.33%) | 4 (4.94%) |
| Vascular * | 14 | 4 (8.16%) | 10 (12.35%) |
| Immune | 7 | 3 (6.12%) | 4 (4.94%) |
| Hepatobiliary | 7 | 1 (2.04%) | 6 (7.41%) |
| Gastrointestinal | 5 | 3 (6.12%) | 2 (2.47%) |
| Respiratory | 7 | 2 (4.08%) | 5 (6.17%) |
| Nervous | 4 | 1 (2.04%) | 3 (3.70%) |
| Connective tissue and musculoskeletal | 4 | 1 (2.04%) | 3 (3.70%) |
| Psychiatric | 2 | 0 (0%) | 2 (2.47%) |
| Others | 4 | 0 (0%) | 4 (4.94%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauvin, A.G.; Pardo, I.; Cotia, A.L.F.; Rosmino, I.L.; Marins, T.A.; dos Santos, L.M.; Barduchi, B.; Toniolo, A.R.; dos Santos, R.G.; Malheiro, D.T.; et al. Beyond the Virus: The Collateral Impact of COVID-19 on Antimicrobial Consumption, Microbial Resistance, and Pharmacoeconomics. Pathogens 2025, 14, 1126. https://doi.org/10.3390/pathogens14111126
Chauvin AG, Pardo I, Cotia ALF, Rosmino IL, Marins TA, dos Santos LM, Barduchi B, Toniolo AR, dos Santos RG, Malheiro DT, et al. Beyond the Virus: The Collateral Impact of COVID-19 on Antimicrobial Consumption, Microbial Resistance, and Pharmacoeconomics. Pathogens. 2025; 14(11):1126. https://doi.org/10.3390/pathogens14111126
Chicago/Turabian StyleChauvin, Alessandra Gomes, Isabele Pardo, André Luís F. Cotia, Isabella L. Rosmino, Tatiana A. Marins, Leandro Martins dos Santos, Barbara Barduchi, Alexandra R. Toniolo, Roberta G. dos Santos, Daniel T. Malheiro, and et al. 2025. "Beyond the Virus: The Collateral Impact of COVID-19 on Antimicrobial Consumption, Microbial Resistance, and Pharmacoeconomics" Pathogens 14, no. 11: 1126. https://doi.org/10.3390/pathogens14111126
APA StyleChauvin, A. G., Pardo, I., Cotia, A. L. F., Rosmino, I. L., Marins, T. A., dos Santos, L. M., Barduchi, B., Toniolo, A. R., dos Santos, R. G., Malheiro, D. T., Scorsato, A. P., Victor, E. d. S., Edmond, M. B., de Almeida, S. M., & Marra, A. R. (2025). Beyond the Virus: The Collateral Impact of COVID-19 on Antimicrobial Consumption, Microbial Resistance, and Pharmacoeconomics. Pathogens, 14(11), 1126. https://doi.org/10.3390/pathogens14111126

