Antimicrobial Activity of Ethanolic Propolis Extracts from Tame (Arauca) on Oral Biofilm Co-Cultures
Abstract
1. Introduction
2. Materials and Methods
- Ethanolic Extract of Propolis (EEP)
- Microbial strains and growth conditions
- Antimicrobial Activity of ethanolic extracts of propolis
- Minimum Inhibitory Concentration (MIC) and Minimum Bacteriostatic Concentration (MBC)
- Growth curves in the presence of extract
- Reduction in biofilm formation
- Cytotoxicity assay
- Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jivraj, A.; Barrow, J.; Listl, S. Value-Based Oral Health Care: Implementation Lessons from Four Case Studies. J. Evid.-Based Dent. Pract. 2022, 22, 101662. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The Oral Microbiota: Dynamic Communities and Host Interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Marsh, P.D.; Head, D.A.; Devine, D.A. Dental Plaque as a Biofilm and a Microbial Community—Implications for Treatment. J. Oral Biosci. 2015, 57, 185–191. [Google Scholar] [CrossRef]
- Rajasekaran, J.J.; Krishnamurthy, H.K.; Bosco, J.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024, 12, 1797. [Google Scholar] [CrossRef]
- Koo, H.; Falsetta, M.L.; Klein, M.I. The Exopolysaccharide Matrix: A Virulence Determinant of Cariogenic Biofilm. J. Dent. Res. 2013, 92, 1065–1073. [Google Scholar] [CrossRef]
- Senneby, A.; Davies, J.; Svensäter, G.; Neilands, J. Acid Tolerance Properties of Dental Biofilms in Vivo. BMC Microbiol. 2017, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Subramani, K.; Jung, R.E.; Molenberg, A.; Hammerle, C.H.F. Biofilm on Dental Implants: A Review of the Literature. Int. J. Oral Maxillofac. Implants 2009, 24, 616–626. [Google Scholar] [PubMed]
- Chen, X.; Daliri, E.B.-M.; Chelliah, R.; Oh, D.-H. Isolation and Identification of Potentially Pathogenic Microorganisms Associated with Dental Caries in Human Teeth Biofilms. Microorganisms 2020, 8, 1596. [Google Scholar] [CrossRef]
- Esteban-Fernández, A.; Zorraquín-Peña, I.; Ferrer, M.D.; Mira, A.; Bartolomé, B.; González De Llano, D.; Moreno-Arribas, M.V. Inhibition of Oral Pathogens Adhesion to Human Gingival Fibroblasts by Wine Polyphenols Alone and in Combination with an Oral Probiotic. J. Agric. Food Chem. 2018, 66, 2071–2082. [Google Scholar] [CrossRef]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal Diseases. Nat. Rev. Dis. Primer 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, R.; Asopa, S.; Joseph, M.D.; Singh, B.; Rajguru, J.; Saidath, K.; Sharma, U. Red Complex: Polymicrobial Conglomerate in Oral Flora: A Review. J. Fam. Med. Prim. Care 2019, 8, 3480. [Google Scholar] [CrossRef] [PubMed]
- Loesche, W.J.; Rowan, J.; Straffon, L.H.; Loos, P.J. Association of Streptococcus mutans with Human Dental Decay. Infect. Immun. 1975, 11, 1252–1260. [Google Scholar] [CrossRef]
- Forssten, S.D.; Björklund, M.; Ouwehand, A.C. Streptococcus mutans, Caries and Simulation Models. Nutrients 2010, 2, 290–298. [Google Scholar] [CrossRef]
- Koga-Ito, C.Y.; Martins, C.A.D.P.; Balducci, I.; Jorge, A.O.C. Correlation among Mutans Streptococci Counts, Dental Caries, and IgA to Streptococcus mutans in Saliva. Braz. Oral Res. 2004, 18, 350–355. [Google Scholar] [CrossRef]
- Bedoya-Correa, C.M.; Rincón Rodríguez, R.J.; Parada-Sanchez, M.T. Genomic and Phenotypic Diversity of Streptococcus mutans. J. Oral Biosci. 2019, 61, 22–31. [Google Scholar] [CrossRef]
- Bedoya-Correa, C.M.; Rincón-Rodríguez, R.J.; Parada-Sanchez, M.T. Acidogenic and Aciduric Properties of Streptococcus mutans Serotype c According to Its Genomic Variability. Eur. J. Oral Sci. 2021, 129, e12824. [Google Scholar] [CrossRef]
- Nakano, K.; Ooshima, T. Serotype Classification of Streptococcus Mutans and Its Detection Outside the Oral Cavity. Future Microbiol. 2009, 4, 891–902. [Google Scholar] [CrossRef]
- Carletto-Körber, F.P.; González-Ittig, R.E.; Jimenez, M.G.; Cornejo, L.S. Serotype Diversity of Streptococcus mutans and Caries Activity in Children in Argentina. Eur. J. Paediatr. Dent. 2015, 16, 177–180. [Google Scholar]
- Lapirattanakul, J.; Nakano, K.; Nomura, R.; Nemoto, H.; Kojima, A.; Senawongse, P.; Srisatjaluk, R.; Ooshima, T. Detection of Serotype k Streptococcus mutans in Thai Subjects. Oral Microbiol. Immunol. 2009, 24, 431–433. [Google Scholar] [CrossRef]
- Nakano, K.; Nomura, R.; Nakagawa, I.; Hamada, S.; Ooshima, T. Demonstration of Streptococcus mutans with a Cell Wall Polysaccharide Specific to a New Serotype, k, in the Human Oral Cavity. J. Clin. Microbiol. 2004, 42, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Ozaki, K.; Seki, M.; Kawato, T.; Tanaka, H.; Nakano, Y.; Yamashita, Y. Analysis of Loci Required for Determination of Serotype Antigenicity in Streptococcus mutans and Its Clinical Utilization. J. Clin. Microbiol. 2003, 41, 4107–4112. [Google Scholar] [CrossRef]
- Barbieri, D.D.S.V.; Vicente, V.A.; Fraiz, F.C.; Lavoranti, O.J.; Svidzinski, T.I.E.; Pinheiro, R.L. Analysis of the in Vitro Adherence of Streptococcus mutans and Candida albicans. Braz. J. Microbiol. 2007, 38, 624–631. [Google Scholar] [CrossRef]
- Metwalli, K.H.; Khan, S.A.; Krom, B.P.; Jabra-Rizk, M.A. Streptococcus mutans, Candida albicans, and the Human Mouth: A Sticky Situation. PLoS Pathog. 2013, 9, e1003616. [Google Scholar] [CrossRef]
- Fumes, A.C.; Da Silva Telles, P.D.; Corona, S.A.M.; Borsatto, M.C. Effect of aPDT on Streptococcus mutans and Candida albicans Present in the Dental Biofilm: Systematic Review. Photodiagn. Photodyn. Ther. 2018, 21, 363–366. [Google Scholar] [CrossRef]
- Kreth, J.; Merritt, J.; Shi, W.; Qi, F. Competition and Coexistence between Streptococcus mutans and Streptococcus Sanguinis in the Dental Biofilm. J. Bacteriol. 2005, 187, 7193–7203. [Google Scholar] [CrossRef]
- Heller, D.; Helmerhorst, E.J.; Gower, A.C.; Siqueira, W.L.; Paster, B.J.; Oppenheim, F.G. Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl. Environ. Microbiol. 2016, 82, 1881–1888. [Google Scholar] [CrossRef]
- Maske, T.T.; Van De Sande, F.H.; Arthur, R.A.; Huysmans, M.C.D.N.J.M.; Cenci, M.S. In Vitro Biofilm Models to Study Dental Caries: A Systematic Review. Biofouling 2017, 33, 661–675. [Google Scholar] [CrossRef]
- Mason, K.M.; Bigley, N.J.; Fink, P.S. Development of a Novel in Vitro Co-Culture System for Studying Host Response to Native Bacterial Antigens. J. Immunol. Methods 1998, 211, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.A.; Cury, A.A.D.B.; Graner, R.O.M.; Rosalen, P.L.; Vale, G.C.; Leme, A.F.P.; Cury, J.A.; Tabchoury, C.P.M. Genotypic and Phenotypic Analysis of S. Mutans Isolated from Dental Biofilms Formed in Vivo under High Cariogenic Conditions. Braz. Dent. J. 2011, 22, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Kuramitsu, H.K. Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation. Appl. Environ. Microbiol. 2002, 68, 6283–6291. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, H.; Chang, L.; Xu, J.; Zhou, X.; Zhang, C.; Peng, Q. Efficient Removal of Dental Plaque Biofilm from Training Typodont Teeth via Water Flosser. Bioengineering 2023, 10, 1061. [Google Scholar] [CrossRef]
- Teles, R.P.; Teles, F.R.F. Antimicrobial Agents Used in the Control of Periodontal Biofilms: Effective Adjuncts to Mechanical Plaque Control? Braz. Oral Res. 2009, 23, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Monaco, A.; Pietropaoli, D.; Ortu, E.; Giannoni, M.; Marci, M.C. Antibiotics in Dentistry: A Narrative Review of Literature and Guidelines Considering Antibiotic Resistance. Open Dent. J. 2019, 13, 383–398. [Google Scholar] [CrossRef]
- Pallasch, T.J. Antibiotic Resistance. Dent. Clin. N. Am. 2003, 47, 623–639. [Google Scholar] [CrossRef]
- Sun, D.; Jeannot, K.; Xiao, Y.; Knapp, C.W. Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Front. Microbiol. 2019, 10, 1933. [Google Scholar] [CrossRef]
- Wróblewska, M.; Strużycka, I.; Mierzwińska-Nastalska, E. Significance of Biofilms in Dentistry. Przegl. Epidemiol. 2015, 69, 739–744, 879–883. [Google Scholar]
- Sweeney, L.C. Antibiotic Resistance in General Dental Practice--a Cause for Concern? J. Antimicrob. Chemother. 2004, 53, 567–576. [Google Scholar] [CrossRef]
- Campus, G.; Cagetti, M.G.; Cocco, F.; Sale, S.; Sacco, G.; Strohmenger, L.; Lingström, P. Effect of a Sugar-Free Chewing Gum Containing Magnolia Bark Extract on Different Variables Related to Caries and Gingivitis: A Randomized Controlled Intervention Trial. Caries Res. 2011, 45, 393–399. [Google Scholar] [CrossRef]
- Pedrazzi, V.; Leite, M.F.; Tavares, R.C.; Sato, S.; Nascimento, G.C.D.; Issa, J.P.M. Herbal Mouthwash Containing Extracts of Baccharis dracunculifolia as Agent for the Control of Biofilm: Clinical Evaluation in Humans. Sci. World J. 2015, 2015, 712683. [Google Scholar] [CrossRef]
- Shahakbari, R.; Eshghpour, M.; Rajaei, A.; Rezaei, N.M.; Golfakhrabadi, P.; Nejat, A. Effectiveness of Green Tea Mouthwash in Comparison to Chlorhexidine Mouthwash in Patients with Acute Pericoronitis: A Randomized Clinical Trial. Int. J. Oral Maxillofac. Surg. 2014, 43, 1394–1398. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tezuka, Y.; Adnyana, I.K.; Midorikawa, K.; Matsushige, K.; Message, D.; Huertas, A.A.G.; Kadota, S. Cytotoxic, Hepatoprotective and Free Radical Scavenging Effects of Propolis from Brazil, Peru, the Netherlands and China. J. Ethnopharmacol. 2000, 72, 239–246. [Google Scholar] [CrossRef]
- Duque-Uribe, C.; López-Vargas, V.; Moreno-Florez, A.I.; Pelaez-Vargas, A.; Ossa, A.; Cárdenas-Ramírez, C.; Restrepo-Vélez, S.; Vásquez, A.F.; Garcia, C. Production of Ceramic Alumina Scaffolds via Ceramic Stereolithography with Potential Application in Bone Tissue Regeneration. Mater. Today Commun. 2024, 40, 109535. [Google Scholar] [CrossRef]
- Oda, H.; Nakagawa, T.; Maruyama, K.; Dono, Y.; Katsuragi, H.; Sato, S. Effect of Brazilian Green Propolis on Oral Pathogens and Human Periodontal Fibroblasts. J. Oral Biosci. 2016, 58, 50–54. [Google Scholar] [CrossRef]
- Wassel, M.O.; Khattab, M.A. Antibacterial Activity against Streptococcus mutans and Inhibition of Bacterial Induced Enamel Demineralization of Propolis, Miswak, and Chitosan Nanoparticles Based Dental Varnishes. J. Adv. Res. 2017, 8, 387–392. [Google Scholar] [CrossRef]
- Akca, A.E.; Akca, G.; Topçu, F.T.; Macit, E.; Pikdöken, L.; Özgen, I.Ş. The Comparative Evaluation of the Antimicrobial Effect of Propolis with Chlorhexidine against Oral Pathogens: An In Vitro Study. Bio. Med. Res. Int. 2016, 2016, 3627463. [Google Scholar] [CrossRef]
- Dogan, M.; Silici, S.; Saraymen, R.; Ilhan, I.O. Element Content of Propolis from Different Regions of Turkey. Acta Aliment. 2006, 35, 127–130. [Google Scholar] [CrossRef]
- Siheri, W.; Zhang, T.; Ebiloma, G.U.; Biddau, M.; Woods, N.; Hussain, M.Y.; Clements, C.J.; Fearnley, J.; Ebel, R.E.; Paget, T.; et al. Chemical and Antimicrobial Profiling of Propolis from Different Regions within Libya. PLoS ONE 2016, 11, e0155355. [Google Scholar] [CrossRef]
- De Souza Silva, T.; Silva, J.M.B.; Braun, G.H.; Mejia, J.A.A.; Ccapatinta, G.V.C.; Santos, M.F.C.; Tanimoto, M.H.; Bastos, J.K.; Parreira, R.L.T.; Orenha, R.P.; et al. Green and Red Brazilian Propolis: Antimicrobial Potential and Anti-Virulence against ATCC and Clinically Isolated Multidrug-Resistant Bacteria. Chem. Biodivers. 2021, 18, e2100307. [Google Scholar] [CrossRef] [PubMed]
- Nandre, V.S.; Bagade, A.V.; Kasote, D.M.; Lee, J.H.J.; Kodam, K.M.; Kulkarni, M.V.; Ahmad, A. Antibacterial Activity of Indian Propolis and Its Lead Compounds against Multi-Drug Resistant Clinical Isolates. J. Herb. Med. 2021, 29, 100479. [Google Scholar] [CrossRef]
- Kasote, D.M.; Sharbidre, A.A.; Kalyani, D.C.; Nandre, V.S.; Lee, J.H.J.; Ahmad, A.; Telke, A.A. Propolis: A Natural Antibiotic to Combat Multidrug-Resistant Bacteria. In Non-Traditional Approaches to Combat Antimicrobial Drug Resistance; Wani, M.Y., Ahmad, A., Eds.; Springer: Singapore, 2023; pp. 281–296. [Google Scholar]
- Bezerra, C.R.F.; Assunção Borges, K.R.; Alves, R.D.N.S.; Teles, A.M.; Pimentel Rodrigues, I.V.; Da Silva, M.A.C.N.; Nascimento, M.D.D.S.B.; Bezerra, G.F.D.B. Highly Efficient Antibiofilm and Antifungal Activity of Green Propolis against Candida Species in Dentistry Materials. PLoS ONE 2020, 15, e0228828. [Google Scholar] [CrossRef]
- Mojgani, N.; Bagheri, M.; Moharrami, M.; Vaseji, N.; Sanjabi, M.-R.; Hosseini, O.; Khoramjouy, M.; Kiani, R.; Ayatollahi, S.A. Antioxidant and Antibacterial Potentials of Fourindigenous Propolis Extracts against Oral Toothdecay Pathogens, Streptococcus mutans and Candida albicans. J. Stomatol. 2025, 78, 6–14. [Google Scholar] [CrossRef]
- Navarro-Pérez, M.L.; Vadillo-Rodríguez, V.; Fernández-Babiano, I.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Antimicrobial Activity of a Novel Spanish Propolis against Planktonic and Sessile Oral Streptococcus spp. Sci. Rep. 2021, 11, 23860. [Google Scholar] [CrossRef]
- Shamma, B.M.; Kurdi, S.A.; Rajab, A.; Arrag, E.A. Evaluation of Antibacterial Effects of Different Intracanal Medicaments on Enterococcus faecalis in Primary Teeth: An in Vitro Study. Clin. Exp. Dent. Res. 2023, 9, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Tambur, Z.; Miljković-Selimović, B.; Opačić, D.; Vuković, B.; Malešević, A.; Ivančajić, L.; Aleksić, E. Inhibitory Effects of Propolis and Essential Oils on Oral Bacteria. J. Infect. Dev. Ctries. 2021, 15, 1027–1031. [Google Scholar] [CrossRef]
- Veloz, J.J.; Alvear, M.; Salazar, L.A. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. BioMed Res. Int. 2019, 2019, 7602343. [Google Scholar] [CrossRef]
- Rather, M.A.; Gupta, K.; Mandal, M. Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies. Braz. J. Microbiol. 2021, 52, 1701–1718. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Sharriatpanahi, M.; Hamedi, M.; Amanzadeh, Y.; Sadat Ebrahimi, S.E.; Ostad, S.N. Antioxidant Power of Iranian Propolis Extract. Food Chem. 2007, 103, 729–733. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and Analysis of Phenolics in Food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K.; Hardy, D.; Zimmer, B.; et al. CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. J. Clin. Microbiol. 2018, 56, e01934-17. [Google Scholar] [CrossRef] [PubMed]
- Biemer, J. Antimicrobial Susceptibility Testing by the Kirby-Bauer Disc Diffusion Method. Ann. Clin. Lab. Sci. 1973, 3, 135–140. [Google Scholar] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Terwee, C.B.; Peipert, J.D.; Chapman, R.; Lai, J.-S.; Terluin, B.; Cella, D.; Griffiths, P.; Mokkink, L.B. Minimal Important Change (MIC): A Conceptual Clarification and Systematic Review of MIC Estimates of PROMIS Measures. Qual. Life Res. 2021, 30, 2729–2754. [Google Scholar] [CrossRef]
- Al-Waili, N.; Al-Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Salom, K. Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus aureus, Escherichia coli and Candida albicans Isolates in Single and Polymicrobial Cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef]
- Cardoso, J.G.; Iorio, N.L.P.; Rodrigues, L.F.; Couri, M.L.B.; Farah, A.; Maia, L.C.; Antonio, A.G. Influence of a Brazilian Wild Green Propolis on the Enamel Mineral Loss and Streptococcus mutans’ Count in Dental Biofilm. Arch. Oral Biol. 2016, 65, 77–81. [Google Scholar] [CrossRef]
- Martins, M.L.; Leite, K.L.D.F.; Pacheco-Filho, E.F.; Pereira, A.F.D.M.; Romanos, M.T.V.; Maia, L.C.; Fonseca-Gonçalves, A.; Padilha, W.W.N.; Cavalcanti, Y.W. Efficacy of Red Propolis Hydro-Alcoholic Extract in Controlling Streptococcus mutans Biofilm Build-up and Dental Enamel Demineralization. Arch. Oral Biol. 2018, 93, 56–65. [Google Scholar] [CrossRef]
- Moreno Florez, A.I.; Malagon, S.; Ocampo, S.; Leal-Marin, S.; Gil González, J.H.; Diaz-Cano, A.; Lopera, A.; Paucar, C.; Ossa, A.; Glasmacher, B.; et al. Antibacterial and Osteoinductive Properties of Wollastonite Scaffolds Impregnated with Propolis Produced by Additive Manufacturing. Heliyon 2024, 10, e23955. [Google Scholar] [CrossRef] [PubMed]
- Moreno Florez, A.I.; Malagon, S.; Ocampo, S.; Leal-Marin, S.; Ossa, E.A.; Glasmacher, B.; Garcia, C.; Pelaez-Vargas, A. In Vitro Evaluation of the Osteogenic and Antimicrobial Potential of Porous Wollastonite Scaffolds Impregnated with Ethanolic Extracts of Propolis. Front. Bioeng. Biotechnol. 2024, 12, 1321466. [Google Scholar] [CrossRef] [PubMed]
- Peycheva, S.; Apostolova, E.; Gardjeva, P.; Peychev, Z.; Kokova, V.; Angelov, A.; Slavov, A.; Murdjeva, M. Effect of Bulgarian Propolis on the Oral Microflora in Adolescents with Plaque-Induced Gingivitis. Rev. Bras. Farmacogn. 2019, 29, 271–277. [Google Scholar] [CrossRef]
- Bankova, V.; Christov, R.; Kujumgiev, A.; Marcucci, M.C.; Popov, S. Chemical Composition and Antibacterial Activity of Brazilian Propolis. Z. Naturforschung C 1995, 50, 167–172. [Google Scholar] [CrossRef]
- Popova, M.; Silici, S.; Kaftanoglu, O.; Bankova, V. Antibacterial Activity of Turkish Propolis and Its Qualitative and Quantitative Chemical Composition. Phytomedicine 2005, 12, 221–228. [Google Scholar] [CrossRef]
- Santos, F.A.; Bastos, E.M.A.F.; Maia, A.B.R.A.; Uzeda, M.; Carvalho, M.A.R.; Farias, L.M.; Moreira, E.S.A. Brazilian Propolis: Physicochemical Properties, Plant Origin and Antibacterial Activity on Periodontopathogens. Phytother. Res. 2003, 17, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Koo, H.; Bowen, W.H.; Hayacibara, M.F.; Cury, J.A.; Ikegaki, M.; Rosalen, P.L. Effect of a Novel Type of Propolis and Its Chemical Fractions on Glucosyltransferases and on Growth and Adherence of Mutans Streptococci. Biol. Pharm. Bull. 2003, 26, 527–531. [Google Scholar] [CrossRef]
- Lavinas, F.C.; Macedo, E.H.B.C.; Sá, G.B.L.; Amaral, A.C.F.; Silva, J.R.A.; Azevedo, M.M.B.; Vieira, B.A.; Domingos, T.F.S.; Vermelho, A.B.; Carneiro, C.S.; et al. Brazilian Stingless Bee Propolis and Geopropolis: Promising Sources of Biologically Active Compounds. Rev. Bras. Farmacogn. 2019, 29, 389–399. [Google Scholar] [CrossRef]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial Action of Propolis and Some of Its Components: The Effects on Growth, Membrane Potential and Motility of Bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Takaisi-Kikuni, N.; Schilcher, H. Electron Microscopic and Microcalorimetric Investigations of the Possible Mechanism of the Antibacterial Action of a Defined Propolis Provenance. Planta Med. 1994, 60, 222–227. [Google Scholar] [CrossRef]
- Garedew, A.; Schmolz, E.; Lamprecht, I. Microbiological and Calorimetric Investigations on the Antimicrobial Actions of Different Propolis Extracts: An in Vitro Approach. Thermochim. Acta 2004, 422, 115–124. [Google Scholar] [CrossRef]
- Scazzocchio, F.; D’Auria, F.D.; Alessandrini, D.; Pantanella, F. Multifactorial Aspects of Antimicrobial Activity of Propolis. Microbiol. Res. 2006, 161, 327–333. [Google Scholar] [CrossRef]
- Oršolić, N.; Jazvinšćak Jembrek, M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024, 16, 3741. [Google Scholar] [CrossRef] [PubMed]
- Pippi, B.; Lana, A.J.D.; Moraes, R.C.; Güez, C.M.; Machado, M.; De Oliveira, L.F.S.; Lino Von Poser, G.; Fuentefria, A.M. In Vitro Evaluation of the Acquisition of Resistance, Antifungal Activity and Synergism of Brazilian Red Propolis with Antifungal Drugs on Candida spp. J. Appl. Microbiol. 2015, 118, 839–850. [Google Scholar] [CrossRef] [PubMed]
IZ (mm) | ||||
---|---|---|---|---|
Samples | S. mutans | S. mutans clinical isolated | C. albicans | S. sanguinis |
EEP | 31.75 ± 2 A a | 32.40 ± 0.1 A a | 31.02 ± 4 A a | 9.76 ± 0.3 A b |
CX | 17.64 ± 1 B | 20.45 ± 0.06 B | 29.63 ± 5 A | 14.60 ± 3 B |
EtOH | 7.21 ± 2 C | 8.11 ± 0.01 C | 10.06 ± 1 B | 6.57 ± 1 C |
C- | 0 ± 0 D | 0 ± 0 D | 0 ± 0 C | 0 ± 0 D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Florez, A.I.; Bedoya-Correa, C.M.; Garcia, C.; Pelaez-Vargas, A. Antimicrobial Activity of Ethanolic Propolis Extracts from Tame (Arauca) on Oral Biofilm Co-Cultures. Pathogens 2025, 14, 982. https://doi.org/10.3390/pathogens14100982
Moreno-Florez AI, Bedoya-Correa CM, Garcia C, Pelaez-Vargas A. Antimicrobial Activity of Ethanolic Propolis Extracts from Tame (Arauca) on Oral Biofilm Co-Cultures. Pathogens. 2025; 14(10):982. https://doi.org/10.3390/pathogens14100982
Chicago/Turabian StyleMoreno-Florez, Ana Isabel, Claudia Maria Bedoya-Correa, Claudia Garcia, and Alejandro Pelaez-Vargas. 2025. "Antimicrobial Activity of Ethanolic Propolis Extracts from Tame (Arauca) on Oral Biofilm Co-Cultures" Pathogens 14, no. 10: 982. https://doi.org/10.3390/pathogens14100982
APA StyleMoreno-Florez, A. I., Bedoya-Correa, C. M., Garcia, C., & Pelaez-Vargas, A. (2025). Antimicrobial Activity of Ethanolic Propolis Extracts from Tame (Arauca) on Oral Biofilm Co-Cultures. Pathogens, 14(10), 982. https://doi.org/10.3390/pathogens14100982