Optimizing Textile Disinfection in Hospital-Associated Infections Using Gaseous Ozone
Abstract
1. Introduction
2. Materials and Methods
2.1. Rotating Dispenser
- Fully Hermetic Design: Ensures an airtight environment for effective decontamination cycles.
- Catalyst System: Equipped with a catalyst to accelerate ozone conversion back into oxygen, thus shortening treatment cycles and ensuring safe post-treatment conditions.
- Adjustable Shelving.
2.2. Bacterial Strains and Growth Conditions
2.3. Antimicrobial Activity Tests
2.4. Tests on Textile Materials
2.5. Statistical Analysis
3. Results
3.1. Work Scenario and Safety
3.2. Ozone Activity Against Bacteria and Fungi
3.3. Exposure of Hospital Garments to Ozone
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radaelli, D.; Di Maria, S.; Jakovski, Z.; Alempijevic, D.; Al-Habash, I.; Concato, M.; Bolcato, M.; D’Errico, S. Advancing Patient Safety: The Future of Artificial Intelligence in Mitigating Healthcare-Associated Infections: A Systematic Review. Healthcare 2024, 12, 1996. [Google Scholar] [CrossRef]
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [PubMed]
- Gozel, M.G.; Hekimoglu, C.H.; Gozel, E.Y.; Batir, E.; McLaws, M.-L.; Mese, E.A. National Infection Control Program in Turkey: The Healthcare Associated Infection Rate Experiences over 10 Years. Am. J. Infect. Control 2021, 49, 885–892. [Google Scholar] [CrossRef]
- Kärki, T.; Plachouras, D.; Cassini, A.; Suetens, C. Burden of Healthcare-Associated Infections in European Acute Care Hospitals. Wien. Med. Wochenschr. 2019, 169, 3–5. [Google Scholar] [CrossRef]
- Puro, V.; Coppola, N.; Frasca, A.; Gentile, I.; Luzzaro, F.; Peghetti, A.; Sganga, G. Pillars for Prevention and Control of Healthcare-Associated Infections: An Italian Expert Opinion Statement. Antimicrob. Resist. Infect. Control 2022, 11, 87. [Google Scholar] [CrossRef]
- Lakhani, K.; Minguell, J.; Guerra-Farfán, E.; Lara, Y.; Jambrina, U.; Pijoan, J.; Núñez, J.H. Nosocomial Infection with SARS-CoV-2 and Main Outcomes after Surgery within an Orthopaedic Surgery Department in a Tertiary Trauma Centre in Spain. Int. Orthop. (SICOT) 2020, 44, 2505–2513. [Google Scholar] [CrossRef]
- Iordanou, S.; Papathanassoglou, E.; Middleton, N.; Palazis, L.; Timiliotou-Matsentidou, C.; Raftopoulos, V. Device-associated Health Care-associated Infections: The Effectiveness of a 3-year Prevention and Control Program in the Republic of Cyprus. Nurs. Crit. Care 2022, 27, 602–611. [Google Scholar] [CrossRef]
- Raoofi, S.; Pashazadeh Kan, F.; Rafiei, S.; Hosseinipalangi, Z.; Noorani Mejareh, Z.; Khani, S.; Abdollahi, B.; Seyghalani Talab, F.; Sanaei, M.; Zarabi, F.; et al. Global Prevalence of Nosocomial Infection: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef]
- Badescu, B.; Buda, V.; Romanescu, M.; Lombrea, A.; Danciu, C.; Dalleur, O.; Dohou, A.M.; Dumitrascu, V.; Cretu, O.; Licker, M.; et al. Current State of Knowledge Regarding WHO Critical Priority Pathogens: Mechanisms of Resistance and Proposed Solutions through Candidates Such as Essential Oils. Plants 2022, 11, 1789. [Google Scholar] [CrossRef] [PubMed]
- Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P.; et al. The WHO Bacterial Priority Pathogens List 2024: A Prioritisation Study to Guide Research, Development, and Public Health Strategies against Antimicrobial Resistance. Lancet Infect. Dis. 2025, 25, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.C.; Hall, L.; Verspoor, K.M.; Worth, L.J. The Current Scope of Healthcare-Associated Infection Surveillance Activities in Hospitalized Immunocompromised Patients: A Systematic Review. Int. J. Epidemiol. 2019, 48, 1768–1782. [Google Scholar] [CrossRef]
- Verbeek, J.H.; Rajamaki, B.; Ijaz, S.; Sauni, R.; Toomey, E.; Blackwood, B.; Tikka, C.; Ruotsalainen, J.H.; Kilinc Balci, F.S. Personal Protective Equipment for Preventing Highly Infectious Diseases Due to Exposure to Contaminated Body Fluids in Healthcare Staff. Cochrane Database Syst. Rev. 2020, 5, CD011621. [Google Scholar] [CrossRef]
- Kubde, D.; Badge, A.K.; Ugemuge, S.; Shahu, S. Importance of Hospital Infection Control. Cureus 2023, 5, e50931. [Google Scholar] [CrossRef]
- Moccia, G.; Motta, O.; Pironti, C.; Proto, A.; Capunzo, M.; De Caro, F. An Alternative Approach for the Decontamination of Hospital Settings. J. Infect. Public Health 2020, 13, 2038–2044. [Google Scholar] [CrossRef]
- Motta, O.; Zarrella, I.; Cucciniello, R.; Capunzo, M.; De Caro, F. A New Strategy to Control the Proliferation of Microorganisms in Solid Hospital Waste and the Diffusion of Nosocomial Infections. Infez. Med. 2018, 26, 210–215. [Google Scholar]
- Haque, M.; McKimm, J.; Sartelli, M.; Dhingra, S.; Labricciosa, F.M.; Islam, S.; Jahan, D.; Nusrat, T.; Chowdhury, T.S.; Coccolini, F.; et al. Strategies to Prevent Healthcare-Associated Infections: A Narrative Overview. RMHP 2020, 13, 1765–1780. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect. Dis. Clin. N. Am. 2016, 30, 609–637. [Google Scholar] [CrossRef]
- Bockmühl, D.P.; Schages, J.; Rehberg, L. Laundry and Textile Hygiene in Healthcare and Beyond. Microb. Cell 2019, 6, 299–306. [Google Scholar] [CrossRef]
- Commission for Hospital Hygiene and Infection Prevention (KRINKO). Hygiene Requirements for Cleaning and Disinfection of Surfaces: Recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS Hyg. Infect. Control 2024, 19, Doc13. [Google Scholar] [CrossRef]
- Honisch, M.; Stamminger, R.; Bockmühl, D.P. Impact of Wash Cycle Time, Temperature and Detergent Formulation on the Hygiene Effectiveness of Domestic Laundering. J. Appl. Microbiol. 2014, 117, 1787–1797. [Google Scholar] [CrossRef]
- Zinn, M.-K.; Flemming, H.-C.; Bockmühl, D. A Comprehensive View of Microbial Communities in the Laundering Cycle Suggests a Preventive Effect of Soil Bacteria on Malodour Formation. Microorganisms 2022, 10, 1465. [Google Scholar] [CrossRef]
- Boyce, J.M. Quaternary Ammonium Disinfectants and Antiseptics: Tolerance, Resistance and Potential Impact on Antibiotic Resistance. Antimicrob. Resist. Infect. Control 2023, 12, 32. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
- Marchesi, I.; Sala, A.; Frezza, G.; Paduano, S.; Turchi, S.; Bargellini, A.; Borella, P.; Cermelli, C. In Vitro Virucidal Efficacy of a Dry Steam Disinfection System against Human Coronavirus, Human Influenza Virus, and Echovirus. J. Occup. Environ. Hyg. 2021, 18, 541–546. [Google Scholar] [CrossRef]
- Pironti, C.; Motta, O.; Proto, A. Development of a New Vapour Phase Methodology for Textiles Disinfection. Clean. Eng. Technol. 2021, 4, 100170. [Google Scholar] [CrossRef]
- Stolle, L.; Nalamasu, R.; Rodenbeck, R.; Davidson, K.; Smarelli, C.; Rosko, S.; Wales, J.; LeQuang, J.A.K.; Pergolizzi, J. Ozone: A Novel Sterilizer for Personal Protective Equipment. Cureus 2021, 13, e18228. [Google Scholar] [CrossRef]
- Moccia, G.; De Caro, F.; Pironti, C.; Boccia, G.; Capunzo, M.; Borrelli, A.; Motta, O. Development and Improvement of an Effective Method for Air and Surfaces Disinfection with Ozone Gas as a Decontaminating Agent. Medicina 2020, 56, 578. [Google Scholar] [CrossRef]
- Islam, M.M.; Aidid, A.R.; Mohshin, J.N.; Mondal, H.; Ganguli, S.; Chakraborty, A.K. A Critical Review on Textile Dye-Containing Wastewater: Ecotoxicity, Health Risks, and Remediation Strategies for Environmental Safety. Clean. Chem. Eng. 2025, 11, 100165. [Google Scholar] [CrossRef]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef]
- Dubey, P.; Singh, A.; Yousuf, O. Ozonation: An Evolving Disinfectant Technology for the Food Industry. Food Bioprocess Technol. 2022, 15, 2102–2113. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Vichare, P.; Rolland, L.; Yaseen, M. Ozone Decontamination of Medical and Nonmedical Devices: An Assessment of Design and Implementation Considerations. Ind. Eng. Chem. Res. 2023, 62, 4191–4209. [Google Scholar] [CrossRef]
- Eraña, H.; Pérez-Castro, M.Á.; García-Martínez, S.; Charco, J.M.; López-Moreno, R.; Díaz-Dominguez, C.M.; Barrio, T.; González-Miranda, E.; Castilla, J. A Novel, Reliable and Highly Versatile Method to Evaluate Different Prion Decontamination Procedures. Front. Bioeng. Biotechnol. 2020, 8, 589182. [Google Scholar] [CrossRef]
- Cristiano, L. Could Ozone Be an Effective Disinfection Measure against the Novel Coronavirus (SARS-CoV-2)? J. Prev. Med. Hyg. 2020, 61, E301–E303. [Google Scholar] [CrossRef]
- Santos, M.; Leandro, F.; Barroso, H.; Delgado, A.H.S.; Proença, L.; Polido, M.; Vasconcelos e Cruz, J. Antibacterial Effect of Ozone on Cariogenic Bacteria and Its Potential Prejudicial Effect on Dentin Bond Strength—An In Vitro Study. Pharmaceutics 2024, 16, 614. [Google Scholar] [CrossRef]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef]
- Pironti, C.; Moccia, G.; Motta, O.; Boccia, G.; Franci, G.; Santoro, E.; Capunzo, M.; De Caro, F. The Influence of Microclimate Conditions on Ozone Disinfection Efficacy in Working Places. Environ. Sci. Pollut. Res. 2021, 28, 64687–64692. [Google Scholar] [CrossRef]
- Giménez, B.; Zaritzky, N.; Graiver, N. Ozone Treatment of Meat and Meat Products: A Review. Front. Food. Sci. Technol. 2024, 4, 1351801. [Google Scholar] [CrossRef]
- Tizaoui, C.; Stanton, R.; Statkute, E.; Rubina, A.; Lester-Card, E.; Lewis, A.; Holliman, P.; Worsley, D. Ozone for SARS-CoV-2 Inactivation on Surfaces and in Liquid Cell Culture Media. J. Hazard. Mater. 2022, 428, 128251. [Google Scholar] [CrossRef]
- Pušić, T.; Šantak, V.; Dekanić, T.; Čurlin, M. Ozone-Mediated Washing Process of Reference Stain Textile Monitors. Polymers 2025, 17, 1906. [Google Scholar] [CrossRef]
- Smith, N.L.; Wilson, A.L.; Gandhi, J.; Vatsia, S.; Khan, S.A. Ozone Therapy: An Overview of Pharmacodynamics, Current Research, and Clinical Utility. Med. Gas Res. 2017, 7, 212–219. [Google Scholar] [CrossRef]
- More, P.R.; Zannella, C.; Folliero, V.; Foglia, F.; Troisi, R.; Vergara, A.; Franci, G.; De Filippis, A.; Galdiero, M. Antimicrobial Applications of Green Synthesized Bimetallic Nanoparticles from Ocimum basilicum. Pharmaceutics 2022, 14, 2457. [Google Scholar] [CrossRef]
- Folliero, V.; Dell’Annunziata, F.; Roscetto, E.; Amato, A.; Gasparro, R.; Zannella, C.; Casolaro, V.; De Filippis, A.; Catania, M.R.; Franci, G.; et al. Rhein: A Novel Antibacterial Compound against Streptococcus Mutans Infection. Microbiol. Res. 2022, 261, 127062. [Google Scholar] [CrossRef]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef]
- Mitchell, A.; Spencer, M.; Edmiston, C. Role of Healthcare Apparel and Other Healthcare Textiles in the Transmission of Pathogens: A Review of the Literature. J. Hosp. Infect. 2015, 90, 285–292. [Google Scholar] [CrossRef]
- Mohapatra, S. Sterilization and Disinfection. In Essentials of Neuroanesthesia; Elsevier: Amsterdam, The Netherlands, 2017; pp. 929–944. ISBN 978-0-12-805299-0. [Google Scholar]
- CEN. EN 14065:2016; Textiles–Laundry Processed Textiles–Biocontamination Control System. European Committee for Standardization: Brussels, Belgium, 2016.
- Chawla, H.; Anand, P.; Garg, K.; Bhagat, N.; Varmani, S.G.; Bansal, T.; McBain, A.J.; Marwah, R.G. A Comprehensive Review of Microbial Contamination in the Indoor Environment: Sources, Sampling, Health Risks, and Mitigation Strategies. Front. Public Health 2023, 11, 1285393. [Google Scholar] [CrossRef]
- He, Q.C.; Krone, K.; Scherl, D.; Kotler, M.; Tavakkol, A. The Use of Ozone as an Oxidizing Agent to Evaluate Antioxidant Activities of Natural Substrates. Skin Pharmacol. Physiol. 2004, 17, 183–189. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Okolie, J.A.; Mackay, W.; Rateb, M.; Yaseen, M. Ozone Application in Different Industries: A Review of Recent Developments. Chem. Eng. J. 2023, 454, 140188. [Google Scholar] [CrossRef]
- Rosenblum, J.; Ge, C.; Bohrerova, Z.; Yousef, A.; Lee, J. Ozonation as a Clean Technology for Fresh Produce Industry and Environment: Sanitizer Efficiency and Wastewater Quality. J. Appl. Microbiol. 2012, 113, 837–845. [Google Scholar] [CrossRef]
- Eren, S.; Yiğit, İ.; Kutlay, K.; Kaya, Z.; Basrık, C.; Eren, H.A. A New Sight of Ozone Usage in Textile: Improving Flame Retardant Properties. Polymers 2024, 16, 735. [Google Scholar] [CrossRef]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Thissera, B.; Mackay, W.; Rateb, M.E.; Yaseen, M. Bacterial and Fungal Disinfection via Ozonation in Air. J. Microbiol. Methods 2022, 194, 106431. [Google Scholar] [CrossRef]
Tissues | Area (cm2) | Materials |
---|---|---|
Female trousers | 25 | 100% cotton |
Male T-shirt | 25 | 100% polyester |
Male trousers | 25 | 60% polyester and 40% cotton |
Reduction in Microbial Load After Ozone Exposure (Log Reduction) | ||
---|---|---|
Microorganism | Program 1 | Program 3 |
Staphylococcus aureus | 0.38 | 1.74 |
Escherichia coli | 0.38 | 1.6141 |
Candida albicans | 0.34 | 0.6545 |
Reduction in Microbial Load After Ozone Exposure (Log Reduction) Program 1 | |||
---|---|---|---|
100% Cotton | 100% Polyester | 40% Cotton–60% Polyester | |
S. aureus | >4.43 | >4.30 | >4.11 |
E. coli | >4.15 | >4.15 | >4.11 |
C. albicans | >4.30 | >4.41 | >4.47 |
Reduction in Microbial Load After Ozone Exposure (Log Reduction) Program 2 | |||
---|---|---|---|
100% Cotton | 100% Polyester | 40% Cotton–60% Polyester | |
S. aureus | >4.25 | >4.28 | >4.11 |
E. coli | >4.30 | >4.15 | >4.11 |
C. albicans | >4.30 | >4.40 | >4.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Caro, F.; Dell’Annunziata, F.; Motta, O.; Capuano, N.; Faggiano, A.; Aulisio, L.; Tomeo, M.; Santoro, E.; Boccia, G.; Capunzo, M.; et al. Optimizing Textile Disinfection in Hospital-Associated Infections Using Gaseous Ozone. Pathogens 2025, 14, 977. https://doi.org/10.3390/pathogens14100977
De Caro F, Dell’Annunziata F, Motta O, Capuano N, Faggiano A, Aulisio L, Tomeo M, Santoro E, Boccia G, Capunzo M, et al. Optimizing Textile Disinfection in Hospital-Associated Infections Using Gaseous Ozone. Pathogens. 2025; 14(10):977. https://doi.org/10.3390/pathogens14100977
Chicago/Turabian StyleDe Caro, Francesco, Federica Dell’Annunziata, Oriana Motta, Nicoletta Capuano, Antonio Faggiano, Leonardo Aulisio, Matteo Tomeo, Emanuela Santoro, Giovanni Boccia, Mario Capunzo, and et al. 2025. "Optimizing Textile Disinfection in Hospital-Associated Infections Using Gaseous Ozone" Pathogens 14, no. 10: 977. https://doi.org/10.3390/pathogens14100977
APA StyleDe Caro, F., Dell’Annunziata, F., Motta, O., Capuano, N., Faggiano, A., Aulisio, L., Tomeo, M., Santoro, E., Boccia, G., Capunzo, M., Moccia, G., Folliero, V., & Franci, G. (2025). Optimizing Textile Disinfection in Hospital-Associated Infections Using Gaseous Ozone. Pathogens, 14(10), 977. https://doi.org/10.3390/pathogens14100977