Reimagining Tuberculosis Control in the Era of Genomics: The Case for Global Investment in Mycobacterium tuberculosis Genomic Surveillance
Abstract
1. Introduction
2. Global Distribution of MTBC Lineages and Implications for Genomic Surveillance
2.1. DR-TB Sequencing Panel Design
2.2. Decentralized Genomic Capacity
2.3. Geo-Stratified Data Integration and Policy Development
3. Value of Genomics in TB Control
4. Integrating Machine Learning Across Clinical, Imaging, and Genomic Data in TB Control
5. Barriers to Widespread Adoption
6. Toward Equitable Genomic Capacity
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbrev. | Full Term | Definition/Notes |
ANN | Artificial Neural Network | Machine-learning model inspired by biological neurons; learns complex nonlinear mappings. |
AUC | Area Under the Curve | Usually area under the ROC curve; scalar measure of discrimination (higher is better). |
CARD | Comprehensive Antibiotic Resistance Database | Curated resource of known antimicrobial resistance genes/mutations. |
CNN | Convolutional Neural Network | Deep-learning architecture well-suited to spatial/structured data (e.g., images; can be adapted to genomics). |
EMB | Ethambutol | First-line anti-tuberculosis drug. |
FLQ | Fluoroquinolones | Class of broad-spectrum antibiotics; key second-line drugs in TB treatment. |
F1 | F1-score | Harmonic mean of precision and recall; balances false positives/negatives in classification. |
GBC | Gradient Boosting Classifier | Ensemble of shallow decision trees trained sequentially to correct prior errors. |
INH | Isoniazid | First-line anti-tuberculosis drug. |
RIF | Rifampicin | First-line anti-tuberculosis drug. |
PZA | Pyrazinamide | First-line anti-tuberculosis drug. |
MDR | Multidrug-Resistant | Resistance to at least isoniazid and rifampicin. |
ML | Machine Learning | Methods that learn patterns from data to make predictions/decisions. |
MOX | Moxifloxacin | Fluoroquinolone antibiotic. |
MTB | Mycobacterium tuberculosis | Bacterial species that causes most human TB. |
OC-AUC-ROC | Optimism-Corrected AUC-ROC | AUC adjusted for overfitting (e.g., via bootstrap/cross-validation). |
OFX | Ofloxacin | Fluoroquinolone antibiotic. |
rpoB_Ser450 | rpoB Ser450 mutation | Canonical rifampicin-resistance mutation (serine at codon 450) in rpoB. |
katG_Ser315 | katG Ser315 mutation | Canonical isoniazid-resistance mutation (serine at codon 315) in katG. |
Sens | Sensitivity | True-positive rate; ability to correctly identify resistant cases. |
Spec | Specificity | True-negative rate; ability to correctly identify susceptible cases. |
SHAP | SHapley Additive exPlanations | Game-theoretic method to explain feature contributions in ML models. |
SNP | Single Nucleotide Polymorphism | Single-base DNA variation among individuals. |
VCF | Variant Call Format | Standard text format for storing sequence variants. |
WGS | Whole Genome Sequencing | Determination of the complete DNA sequence of an organism’s genome. |
WHO | World Health Organization | United Nations specialized agency for international public health. |
References
- 3 Drug-Resistant TB. Available online: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023/tb-disease-burden/1-3-drug-resistant-tb (accessed on 29 July 2025).
- Ramachandran, G.; Swaminathan, S. Safety and Tolerability Profile of Second-Line Anti-Tuberculosis Medications. Drug Saf. 2015, 38, 253–269. [Google Scholar] [CrossRef]
- Lin, P.L.; Flynn, J.L. Understanding Latent Tuberculosis: A Moving Target. J. Immunol. 2010, 185, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Addae, A.; Miller, C.; Ismail, N.; Zwerling, A. Cost-Effectiveness of Targeted next-Generation Sequencing (tNGS) for Detection of Tuberculosis Drug Resistance in India, South Africa and Georgia: A Modeling Analysis. eClinicalMedicine 2025, 79, 103003. [Google Scholar] [CrossRef]
- Mboowa, G.; Kakooza, F.; Egesa, M.; Tukwasibwe, S.; Kanyerezi, S.; Sserwadda, I.; R Kidenya, B.; Kabahita, J.M.; Namaganda, M.M.; Nsubuga, M.; et al. The Rise of Pathogen Genomics in Africa. F1000Res 2024, 13, 468. [Google Scholar] [CrossRef]
- Comas, I.; Hailu, E.; Kiros, T.; Bekele, S.; Mekonnen, W.; Gumi, B.; Tschopp, R.; Ameni, G.; Hewinson, R.G.; Robertson, B.D.; et al. Population Genomics of Mycobacterium Tuberculosis in Ethiopia Contradicts the Virgin Soil Hypothesis for Human Tuberculosis in Sub-Saharan Africa. Curr. Biol. 2015, 25, 3260–3266. [Google Scholar] [CrossRef]
- Bakuła, Z.; Wuyep, V.B.; Bartocha, Ł.; Vyazovaya, A.; Ikeh, E.I.; Bielecki, J.; Mokrousov, I.; Jagielski, T. Molecular Snapshot of Drug-Resistant Mycobacterium Tuberculosis Strains from the Plateau State, Nigeria. PLoS ONE 2022, 17, e0266837. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, X.; Song, W.; Li, Y.; Li, Y.-Y.; Fang, W.; Yang, J.; Yu, C.-B.; Li, H.; Liu, Y. Genomic Analysis of Lineage-Specific Transmission of Multidrug Resistance Tuberculosis in China. Emerg. Microbes Infect. 2024, 13, 2294858. [Google Scholar] [CrossRef] [PubMed]
- Dekhil, N.; Mardassi, H. Genomic Changes Underpinning the Emergence of a Successful Mycobacterium Tuberculosis Latin American and Mediterranean Clonal Complex. Front. Microbiol. 2023, 14, 1159994. [Google Scholar] [CrossRef]
- Werngren, J.; Hoffner, S.E. Drug-Susceptible Mycobacterium Tuberculosis Beijing Genotype Does Not Develop Mutation-Conferred Resistance to Rifampin at an Elevated Rate. J. Clin. Microbiol. 2003, 41, 1520–1524. [Google Scholar] [CrossRef]
- Gupta, A.; Sinha, P.; Nema, V.; Gupta, P.K.; Chakraborty, P.; Kulkarni, S.; Rastogi, N.; Anupurba, S. Detection of Beijing Strains of MDR M. Tuberculosis and Their Association with Drug Resistance Mutations in katG, rpoB, and embB Genes. BMC Infect. Dis. 2020, 20, 752. [Google Scholar] [CrossRef]
- Atavliyeva, S.; Auganova, D.; Tarlykov, P. Genetic Diversity, Evolution and Drug Resistance of Mycobacterium Tuberculosis Lineage 2. Front. Microbiol. 2024, 15. [Google Scholar] [CrossRef]
- Ferdosnejad, K.; Sholeh, M.; Abdolhamidi, R.; Soroush, E.; Siadat, S.D.; Tarashi, S. The Occurrence Rate of Haarlem and Beijing Genotypes among Middle Eastern Isolates of Multi Drug Resistant Mycobacterium Tuberculosis: A Systematic Review and Meta-Analysis. Respir. Investig. 2024, 62, 296–304. [Google Scholar] [CrossRef]
- Ramirez, L.M.N.; Ferro, B.E.; Diaz, G.; Anthony, R.M.; de Beer, J.; Soolingen, D. van Genetic Profiling of Mycobacterium Tuberculosis Revealed “Modern” Beijing Strains Linked to MDR-TB from Southwestern Colombia. PLoS ONE 2020, 15, e0224908. [Google Scholar] [CrossRef]
- Silcocks, M.; Chang, X.; Thuong Thuong, N.T.; Qin, Y.; Minh Ha, D.T.; Khac Thai, P.V.; Vijay, S.; Anh Thu, D.D.; Ngoc Ha, V.T.; Ngoc Nhung, H.; et al. Evolution and Transmission of Antibiotic Resistance Is Driven by Beijing Lineage Mycobacterium Tuberculosis in Vietnam. Microbiol. Spectr. 2023, 11, e02562-23. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, G.; Ma, Z.; Guo, H.; Shang, Y.; Yao, C.; Li, S.; Pang, Y.; Pan, J. Impact of Sublineage Diversity on Intrinsic Susceptibility of Beijing Genotype Mycobacterium Tuberculosis. Ann. Clin. Microbiol. Antimicrob. 2025, 24, 37. [Google Scholar] [CrossRef]
- Woodman, M.; Haeusler, I.L.; Grandjean, L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes. 2019, 10, 53. [Google Scholar] [CrossRef]
- Coll, F.; McNerney, R.; Guerra-Assunção, J.A.; Glynn, J.R.; Perdigão, J.; Viveiros, M.; Portugal, I.; Pain, A.; Martin, N.; Clark, T.G. A Robust SNP Barcode for Typing Mycobacterium Tuberculosis Complex Strains. Nat. Commun. 2014, 5, 4812. [Google Scholar] [CrossRef]
- Global Tuberculosis Report 2024. Available online: https://www.who.int/publications/i/item/9789240101531 (accessed on 27 August 2025).
- Consortium, T.C. A Data Compendium Associating the Genomes of 12,289 Mycobacterium Tuberculosis Isolates with Quantitative Resistance Phenotypes to 13 Antibiotics. PLoS Biol. 2022, 20, e3001721. [Google Scholar] [CrossRef]
- Verboven, L.; Phelan, J.; Heupink, T.H.; Van Rie, A. TBProfiler for Automated Calling of the Association with Drug Resistance of Variants in Mycobacterium Tuberculosis. PLoS ONE 2022, 17, e0279644. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.; Bradley, P.; Lapierre, S.G.; Heys, S.; Thomsit, M.; Hall, M.B.; Malone, K.M.; Wintringer, P.; Walker, T.M.; Cirillo, D.M.; et al. Antibiotic Resistance Prediction for Mycobacterium Tuberculosis from Genome Sequence Data with Mykrobe. Wellcome Open Res. 2019, 4, 191. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Schleusener, V.; Beckert, P.; Kohl, T.A.; Miotto, P.; Cirillo, D.M.; Cabibbe, A.M.; Niemann, S.; Fellenberg, K. PhyResSE: A Web Tool Delineating Mycobacterium Tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 1908–1914. [Google Scholar] [CrossRef]
- Kohl, T.A.; Utpatel, C.; Schleusener, V.; De Filippo, M.R.; Beckert, P.; Cirillo, D.M.; Niemann, S. MTBseq: A Comprehensive Pipeline for Whole Genome Sequence Analysis of Mycobacterium Tuberculosis Complex Isolates. PeerJ 2018, 6, e5895. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, S.; Jajou, R.; de Neeling, A.; Bradley, P.; van der Hoek, W.; Maphalala, G.; Bonnet, M.; Sanchez-Padilla, E.; Diel, R.; Niemann, S.; et al. SNP-IT Tool for Identifying Subspecies and Associated Lineages of Mycobacterium Tuberculosis Complex. Emerg. Infect. Dis. 2019, 25, 482–488. [Google Scholar] [CrossRef]
- Anyansi, C.; Keo, A.; Walker, B.J.; Straub, T.J.; Manson, A.L.; Earl, A.M.; Abeel, T. QuantTB—A Method to Classify Mixed Mycobacterium Tuberculosis Infections within Whole Genome Sequencing Data. BMC Genom. 2020, 21, 80. [Google Scholar] [CrossRef] [PubMed]
- Starks, A.M.; Avilés, E.; Cirillo, D.M.; Denkinger, C.M.; Dolinger, D.L.; Emerson, C.; Gallarda, J.; Hanna, D.; Kim, P.S.; Liwski, R.; et al. Collaborative Effort for a Centralized Worldwide Tuberculosis Relational Sequencing Data Platform. Clin. Infect. Dis. 2015, 61 (Suppl. S3), S141–S146. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating Species Abundance in Metagenomics Data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Mycobacterium Tuberculosis-SRA-NCBI. Available online: https://www.ncbi.nlm.nih.gov/sra/?term=Mycobacterium+tuberculosis (accessed on 29 July 2025).
- Akurut, E.; Gavamukulya, Y.; Mulindwa, J.; Isiagi, M.; Galiwango, R.; Bbuye, M.; Lujumba, I.; Kiberu, D.; Nabisubi, P.; Kebirungi, G.; et al. Design of a Multi-Epitope Vaccine against Drug-Resistant Mycobacterium Tuberculosis and Mycobacterium Bovis Using Reverse Vaccinology. Sci. Rep. 2025, 15, 27298. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Euro Surveill. 2017, 22, 30494. [Google Scholar] [CrossRef]
- Malone, K.M.; Gordon, S.V. Mycobacterium Tuberculosis Complex Members Adapted to Wild and Domestic Animals. Adv. Exp. Med. Biol. 2017, 1019, 135–154. [Google Scholar] [CrossRef]
- Ngabonziza, J.C.S.; Loiseau, C.; Marceau, M.; Jouet, A.; Menardo, F.; Tzfadia, O.; Antoine, R.; Niyigena, E.B.; Mulders, W.; Fissette, K.; et al. A Sister Lineage of the Mycobacterium Tuberculosis Complex Discovered in the African Great Lakes Region. Nat. Commun. 2020, 11, 2917. [Google Scholar] [CrossRef] [PubMed]
- Bayraktar, B.; Bulut, E.; Barış, A.B.; Toksoy, B.; Dalgıc, N.; Celikkan, C.; Sevgi, D. Species Distribution of the Mycobacterium Tuberculosis Complex in Clinical Isolates from 2007 to 2010 in Turkey: A Prospective Study. J. Clin. Microbiol. 2011, 49, 3837–3841. [Google Scholar] [CrossRef]
- Tarashi, S.; Fateh, A.; Mirsaeidi, M.; Siadat, S.D.; Vaziri, F. Mixed Infections in Tuberculosis: The Missing Part in a Puzzle. Tuberculosis (Edinb) 2017, 107, 168–174. [Google Scholar] [CrossRef]
- McIvor, A.; Koornhof, H.; Kana, B.D. Relapse, Re-Infection and Mixed Infections in Tuberculosis Disease. Pathog. Dis. 2017, 75, ftx020. [Google Scholar] [CrossRef]
- Babirye, S.R.; Nsubuga, M.; Mboowa, G.; Batte, C.; Galiwango, R.; Kateete, D.P. Machine Learning-Based Prediction of Antibiotic Resistance in Mycobacterium Tuberculosis Clinical Isolates from Uganda. BMC Infect. Dis. 2024, 24, 1391. [Google Scholar] [CrossRef] [PubMed]
- Fossati, A.; Wambi, P.; Jaganath, D.; Calderon, R.; Castro, R.; Mohapatra, A.; McKetney, J.; Luiz, J.; Nerurkar, R.; Nkereuwem, E.; et al. Plasma Proteomics for Biomarker Discovery in Childhood Tuberculosis. Nat. Commun. 2025, 16, 6657. [Google Scholar] [CrossRef] [PubMed]
- Target Product Profiles for Tuberculosis Screening Tests. Available online: https://www.who.int/publications/i/item/9789240113572 (accessed on 28 August 2025).
- Worodria, W.; Castro, R.; Kik, S.V.; Dalay, V.; Derendinger, B.; Festo, C.; Nguyen, T.Q.; Raberahona, M.; Sudarsan, S.; Andama, A.; et al. An Independent, Multi-Cou9ntry Head-to-Head Accuracy Comparison of Automated Chest x-Ray Algorithms for the Triage of Pulmonary Tuberculosis. medRxiv 2024, 2024.06.19.24309061. [Google Scholar] [CrossRef]
- Abuzerr, S.; Zinszer, K. Computer-Aided Diagnostic Accuracy of Pulmonary Tuberculosis on Chest Radiography among Lower Respiratory Tract Symptoms Patients. Front. Public. Health 2023, 11. [Google Scholar] [CrossRef]
- Harris, M.; Qi, A.; Jeagal, L.; Torabi, N.; Menzies, D.; Korobitsyn, A.; Pai, M.; Nathavitharana, R.R.; Khan, F.A. A Systematic Review of the Diagnostic Accuracy of Artificial Intelligence-Based Computer Programs to Analyze Chest x-Rays for Pulmonary Tuberculosis. PLoS ONE 2019, 14, e0221339. [Google Scholar] [CrossRef]
- Sathitratanacheewin, S.; Sunanta, P.; Pongpirul, K. Deep Learning for Automated Classification of Tuberculosis-Related Chest X-Ray: Dataset Specificity Limits Diagnostic Performance Generalizability. Heliyon 2020, 6, e04614. [Google Scholar] [CrossRef]
- Xu, Y.; Mao, Y.; Hua, X.; Jiang, Y.; Zou, Y.; Wang, Z.; Liu, Z.; Zhang, H.; Lu, L.; Yu, Y. Machine Learning-Based Prediction of Antimicrobial Resistance and Identification of AMR-Related SNPs in Mycobacterium Tuberculosis. BMC Genom. Data 2025, 26, 48. [Google Scholar] [CrossRef] [PubMed]
- Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz, M.A.S.; Oliveira, E.L.S.; et al. Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data Cogn. Comput. 2023, 7, 15. [Google Scholar] [CrossRef]
- Kuang, X.; Wang, F.; Hernandez, K.M.; Zhang, Z.; Grossman, R.L. Accurate and Rapid Prediction of Tuberculosis Drug Resistance from Genome Sequence Data Using Traditional Machine Learning Algorithms and CNN. Sci. Rep. 2022, 12, 2427. [Google Scholar] [CrossRef]
- Deelder, W.; Christakoudi, S.; Phelan, J.; Benavente, E.D.; Campino, S.; McNerney, R.; Palla, L.; Clark, T.G. Machine Learning Predicts Accurately Mycobacterium Tuberculosis Drug Resistance From Whole Genome Sequencing Data. Front. Genet. 2019, 10. [Google Scholar] [CrossRef]
- Chen, M.L.; Doddi, A.; Royer, J.; Freschi, L.; Schito, M.; Ezewudo, M.; Kohane, I.S.; Beam, A.; Farhat, M. Beyond Multidrug Resistance: Leveraging Rare Variants with Machine and Statistical Learning Models in Mycobacterium Tuberculosis Resistance Prediction. eBioMedicine 2019, 43, 356–369. [Google Scholar] [CrossRef]
- Yang, Y.; Niehaus, K.E.; Walker, T.M.; Iqbal, Z.; Walker, A.S.; Wilson, D.J.; Peto, T.E.A.; Crook, D.W.; Smith, E.G.; Zhu, T.; et al. Machine Learning for Classifying Tuberculosis Drug-Resistance from DNA Sequencing Data. Bioinformatics 2017, 34, 1666–1671. [Google Scholar] [CrossRef]
- Schwab, T.C.; Perrig, L.; Göller, P.C.; la Hoz, F.F.G.D.; Lahousse, A.P.; Minder, B.; Günther, G.; Efthimiou, O.; Omar, S.V.; Egger, M.; et al. Targeted Next-Generation Sequencing to Diagnose Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2024, 24, 1162–1176. [Google Scholar] [CrossRef]
- Bhanushali, A.; Atre, S.; Nair, P.; Thandaseery, G.A.; Shah, S.; Kuruwa, S.; Zade, A.; Nikam, C.; Gomare, M.; Chatterjee, A. Whole-Genome Sequencing of Clinical Isolates from Tuberculosis Patients in India: Real-World Data Indicates a High Proportion of Pre-XDR Cases. Microbiol. Spectr. 2024, 12, e0277023. [Google Scholar] [CrossRef] [PubMed]
- Van Rie, A.; De Vos, E.; Costa, E.; Verboven, L.; Ndebele, F.; Heupink, T.H.; Abrams, S.; Maraba, N.; Makkan, H.; Beattie, T.; et al. Sequencing Mycobacteria and Algorithm-Determined Resistant Tuberculosis Treatment (SMARTT): A Study Protocol for a Phase IV Pragmatic Randomized Controlled Patient Management Strategy Trial. Trials 2022, 23, 864. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, M.T.; Lessells, R.; Iketleng, T.; de Oliveira, T. Whole Genome Sequencing for Drug-Resistant Tuberculosis Management in South Africa: What Gaps Would This Address and What Are the Challenges to Implementation? J. Clin. Tuberc. Other Mycobact. Dis. 2019, 16, 100115. [Google Scholar] [CrossRef]
- Kabahita, J.M.; Kabugo, J.; Kakooza, F.; Adam, I.; Guido, O.; Byabajungu, H.; Namutebi, J.; Namaganda, M.M.; Lutaaya, P.; Otim, J.; et al. First Report of Whole-Genome Analysis of an Extensively Drug-Resistant Mycobacterium Tuberculosis Clinical Isolate with Bedaquiline, Linezolid and Clofazimine Resistance from Uganda. Antimicrob. Resist. Infect. Control 2022, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Holden, N.J. Data Sharing Considerations to Maximize the Use of Pathogen Biological and Genomics Resources Data for Public Health. J. Appl. Microbiol. 2024, 135, lxae204. [Google Scholar] [CrossRef]
- Pratt, B.; Bull, S. Equitable Data Sharing in Epidemics and Pandemics. BMC Med. Ethics 2021, 22, 136. [Google Scholar] [CrossRef]
- Pisani, E.; Aaby, P.; Breugelmans, J.G.; Carr, D.; Groves, T.; Helinski, M.; Kamuya, D.; Kern, S.; Littler, K.; Marsh, V.; et al. Beyond Open Data: Realising the Health Benefits of Sharing Data. BMJ 2016, 355, i5295. [Google Scholar] [CrossRef]
- Munung, N.S. Science and Society: Pathways to Equitable Access and Delivery of Genomics Medicine in Africa. Curr. Genet. Med. Rep. 2025, 13, 1. [Google Scholar] [CrossRef]
- Ng, J.H.J.; Castro, L.; Gorzalski, A.; Allred, A.; Siao, D.; Wong, E.; Lin, A.; Shokralla, S.; Pandori, M.; Masinde, G.; et al. The Next Frontier in Tuberculosis Investigation: Automated Whole Genome Sequencing for Mycobacterium Tuberculosis Analysis. Int. J. Mol. Sci. 2024, 25, 7909. [Google Scholar] [CrossRef]
Tool (Reference) | Function | Offline Capable | Open-Source | Actively Maintained | Limitations/Scope |
---|---|---|---|---|---|
TBProfiler [21] | Resistance prediction, lineage | Yes | Yes | Yes | Requires regular database updates to remain accurate; limited to curated mutations. |
Mykrobe [22] | Resistance + lineage | Yes | Yes | Yes | May underperform with rare/novel mutations; needs local validation in LMICs. |
PhyResSE [23] | Resistance + lineage | No | Yes | Yes | Requires internet access; may not be suitable for offline/low-connectivity sites. |
MTBseq [24] | Resistance + phylogenetics | Yes | Yes | Yes | Command-line expertise required; analysis can be computationally intensive. |
SNP-IT [25] | Species identification | Yes | Yes | No | Not actively updated; limited scope (species ID, not resistance). |
QuantTB [26] | TB mixed infections | Yes | Yes | No | Limited validation; no recent updates; may miss low-frequency minor strains. |
ReSeqTB [27] | Reference database | Partial | Yes | Yes | Relies on global curation; coverage may lag behind newly emerging mutations. |
IQ-TREE [28] | Phylogenetics | Yes | Yes | Yes | Requires high computational resources for large datasets; steep learning curve. |
Bracken [29] and Kraken2 [30] | Contamination screening | Yes | Yes | Yes | Focuses on contamination detection; not TB-specific; large RAM needed for the reference database. |
Model and Reference | Input Features | Drugs Predicted | Performance | Key Predictors |
---|---|---|---|---|
Neural Network [48] | Demographic, clinical data, district-level FLQ resistance prevalence | Fluoroquinolones | OC-AUC-ROC = 0.87 | Patient characteristics, district-level resistance prevalence |
XGBoost [49] | Binary mutation features from VCF (original dataset) | Ethambutol, Isoniazid, Rifampicin | F1: EMB = 0.93, INH = 0.94, RIF = 0.92 | Significant mutations from XGBC |
Gradient Boosting Classifier (GBC) [46] | SNPs across 18 binary genotype matrices | Rifampicin, Isoniazid, Pyrazinamide, Ethambutol | Acc: RIF = 97.3%, INH = 96.1%, PZA = 94.2%, EMB = 92.8% | rpoB_Ser450, katG_Ser315 |
XGBoost [46] | WGS data (known and novel mutations) | 13 anti-TB drugs | Sens: 90–95% (1st-line), 77–89% (2nd-line); Spec >95% | Known and novel resistance mutations (SHAP analysis) |
Gradient Boosted Trees [50] | WGS SNPs; co-occurrence markers | 14 anti-TB drugs (incl. MDR) | AUC >96% (1st-line, MDR); AUC <85% (3rd-line) | Resistance SNPs, co-occurrence markers |
1D CNN [48] | Pan-genome variants (seq and non-seq features) | 8 drugs incl. EMB, RIF, INH, PZA, OFX | F1: EMB = 93.8%, RIF = 96.2%, INH = 97.2%, PZA = 94.8%, OFX = 98.2% | CARD variants, 78.8% overlap with WHO catalog |
Wide and Deep Neural Network [50] | Rare + known resistance variants | 10 anti-TB drugs | AUC: 0.979 (1st-line), 0.936 (2nd-line) | Rare + frequent resistance-associated SNPs |
ML ensemble (unspecified) [51] | WGS data from UK MTB isolates | 8 drugs + MDR | Sens: up to 97% (INH, RIF, EMB), 96% (MDR), 95–96% (MOX, OFX) | SNPs outperforming rules-based predictions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mboowa, G. Reimagining Tuberculosis Control in the Era of Genomics: The Case for Global Investment in Mycobacterium tuberculosis Genomic Surveillance. Pathogens 2025, 14, 975. https://doi.org/10.3390/pathogens14100975
Mboowa G. Reimagining Tuberculosis Control in the Era of Genomics: The Case for Global Investment in Mycobacterium tuberculosis Genomic Surveillance. Pathogens. 2025; 14(10):975. https://doi.org/10.3390/pathogens14100975
Chicago/Turabian StyleMboowa, Gerald. 2025. "Reimagining Tuberculosis Control in the Era of Genomics: The Case for Global Investment in Mycobacterium tuberculosis Genomic Surveillance" Pathogens 14, no. 10: 975. https://doi.org/10.3390/pathogens14100975
APA StyleMboowa, G. (2025). Reimagining Tuberculosis Control in the Era of Genomics: The Case for Global Investment in Mycobacterium tuberculosis Genomic Surveillance. Pathogens, 14(10), 975. https://doi.org/10.3390/pathogens14100975