Serovars and Antimicrobial Resistance of Salmonella in Food Workers and Livestock Products: Insights into Foodborne Transmission Pathways in Eastern Japan
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Salmonella Isolates Recovered from Food Workers Employed at a Single Fast-Food Company
2.3. Salmonella Isolation from Livestock Products
2.4. Serotyping
2.5. Antimicrobial Susceptibility Testing
2.6. MLST
2.7. Statistical Analysis
3. Results
3.1. Salmonella Prevalence in Livestock Products
3.2. Serovars of Salmonella Isolates from Food Workers and Livestock Products
3.3. Antimicrobial Susceptibility of Salmonella Isolates and Sequence Types (STs) of the Monophasic S. typhimurium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MLST | Multilocus Sequence Typing |
BPW | Buffered Peptone Water |
CLSI | Clinical and Laboratory Standards Institute |
ST | Sequence Type |
References
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef]
- World Health Organization. Factsheet. Salmonella (non-typhoid). World Health Organization. Factsheet: Salmonella (non-typhoidal); Geneva, Switzerland. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 20 July 2025).
- Yoshikura, H. Declining Vibrio parahaemolyticus and Salmonella, increasing Campylobacter and persisting Norovirus food poisonings: Inference derived from food poisoning statistics of Japan. Jpn. J. Infect. Dis. 2020, 73, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Kakizawa, H.; Baba, Y.; Ito, T.; Haremaki, Y.; Yonemichi, M.; Ikeda, T.; Kuroda, M.; Ohya, K.; Hara-Kudo, Y.; et al. Antimicrobial Resistance in Salmonella isolated from food workers and chicken products in Japan. Antibiotics 2021, 10, 1541. [Google Scholar] [CrossRef]
- Momose, Y.; Sasaki, Y.; Yonemitsu, K.; Kuroda, M.; Ikeda, T.; Uema, M.; Furuya, Y.; Toyofuku, H.; Igimi, S.; Asai, T. Changes in the phenotypes of Salmonella spp. in Japanese broiler flocks. Food Saf. 2024, 12, 25–33. [Google Scholar] [CrossRef]
- Sasaki, Y.; Murakami, M.; Maruyama, N.; Tsujiyama, Y.; Kusukawa, M.; Asai, T.; Yamada, Y. Risk factors for Salmonella prevalence in laying-hen farms in Japan. Epidemiol. Infect. 2012, 140, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Yonemitsu, K.; Uema, M.; Asakura, H.; Asai, T. Prevalence and antimicrobial resistance of Campylobacter and Salmonella in layer flocks in Honshu, Japan. J. Vet. Med. Sci. 2022, 84, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Kishima, M.; Uchida, I.; Namimatsu, T.; Osumi, T.; Takahashi, S.; Tanaka, K.; Aoki, H.; Matsuura, K.; Yamamoto, K. Nationwide surveillance of Salmonella in the faeces of pigs in Japan. Zoonoses Public Health 2008, 55, 139–144. [Google Scholar] [CrossRef]
- Kijima, M.; Shirakawa, T.; Uchiyama, M.; Kawanishi, M.; Ozawa, M.; Koike, R. Trends in the serovar and antimicrobial resistance in clinical isolates of Salmonella enterica from cattle and pigs between 2002 and 2016 in Japan. J. Appl. Microbiol. 2019, 127, 1869–1875. [Google Scholar] [CrossRef]
- Shimojima, Y.; Nishino, Y.; Fukui, R.; Kuroda, S.; Suzuki, J.; Sadamasu, K. Salmonella serovars isolated from retail meats in Tokyo, Japan and their antimicrobial susceptibility. Shokuhin Eiseigaku Zasshi 2020, 61, 211–217. (In Japanese) [Google Scholar] [CrossRef]
- Kawakami, Y.; Hara, A.; Kawase, J.; Kurosaki, M.; Tsunomori, Y.; Hayashi, F.; Murakami, Y. Two outbreaks of Salmonella enterica serovar 4,[5], 12: I. Jpn Food Microbiol. 2016, 33, 160–165. [Google Scholar] [CrossRef]
- Murakami, K.; Horikawa, K.; Ito, T.; Otsuki, K. Environmental survey of Salmonella and comparison of genotypic character with human isolates in western Japan. Epidemiol. Infect. 2001, 126, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.D.; Weil, F. Antigenic Formulas of the Salmonella Serovars, 9th ed.; Institute Pasteur, WHO Collaborating Centre for Reference and Research on Salmonella: Paris, France, 2007. [Google Scholar]
- Hong, Y.; Ji, R.; Wang, Z.; Gu, J.; Jiao, X.; Li, Q. Development and application of a multiplex PCR method to differentiate Salmonella enterica serovar Typhimurium from its monophasic variants in pig farms. Food Microbiol. 2023, 109, 104135. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; VET08; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Wayne, PA, USA, 2018; Volume M100. [Google Scholar]
- National Veterinary Assay Laboratory of Japan. Report on the Japanese Veterinary Antimicrobial Resistance Monitoring System 2016–2017; National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2020. [Google Scholar]
- Konishi, N.; Obata, H.; Yokoyama, K.; Sadamasu, K.; Kai, A. Comparison of the serovars and characteristics of Salmonella isolated from human feces and foods in the 1990s and 2010s in Tokyo. Jpn. J. Infect. Dis. 2023, 76, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Thiel, S.; Ullrich, U.; Stolle, A. Salmonella in raw meat and by-products from pork and beef. J. Food Prot. 2010, 73, 1780–1784. [Google Scholar] [CrossRef]
- Liu, S.; Kilonzo-Nthenge, A.; Nahashon, S.N.; Pokharel, B.; Mafiz, A.; Nzomo, M. Prevalence of multidrug-resistant foodborne pathogens and indicator bacteria from edible offal and muscle meats in Nashville, Tennessee. Foods 2020, 9, 1190. [Google Scholar] [CrossRef]
- Lunara Santos Pavelquesi, S.; Carolina Almeida de Oliveira Ferreira, A.; Fernandes Silva Rodrigues, L.; Maria de Souza Silva, C.; Cristina Rodrigues da Silva, I.; Castilho Orsi, D. Prevalence and antimicrobial resistance of Salmonella spp. isolated from chilled chicken meat commercialized at retail in the Federal District, Brazil. J. Food Prot. 2023, 86, 100130. [Google Scholar] [CrossRef]
- Arai, N.; Sekizuka, T.; Tamamura, Y.; Tanaka, K.; Barco, L.; Izumiya, H.; Kusumoto, M.; Hinenoya, A.; Yamasaki, S.; Iwata, T.; et al. Phylogenetic characterization of Salmonella enterica serovar Typhimurium and its monophasic variant isolated from food animals in Japan revealed replacement of major epidemic clones in the last 4 decades. J. Clin. Microbiol. 2018, 56, e01758-17. [Google Scholar] [CrossRef]
- Sasaki, Y.; Suzuki, S.; Kusaba, N.; Rahman, N.; Aikawa, C.; Okamura, M. Antimicrobial resistance of Salmonella isolates from cattle and horses with salmonellosis in Hokkaido, Japan. J. Vet. Med. Sci. 2024, 86, 1227–1232. [Google Scholar] [CrossRef]
- Watahiki, M.; Isobe, J.; Kimata, K.; Shima, T.; Kanatani, J.; Shimizu, M.; Nagata, A.; Kawakami, K.; Yamada, M.; Izumiya, H.; et al. Characterization of enterohemorrhagic Escherichia coli O111 and O157 strains isolated from outbreak patients in Japan. J. Clin. Microbiol. 2014, 52, 2757–2763. [Google Scholar] [CrossRef]
- Matsubayashi, K.; Kang, J.H.; Sakata, H.; Takahashi, K.; Shindo, M.; Kato, M.; Sato, S.; Kato, T.; Nishimori, H.; Tsuji, K.; et al. A case of transfusion-transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food-borne route. Transfusion 2008, 48, 1368–1375. [Google Scholar] [CrossRef]
- Miyashita, K.; Kang, J.H.; Saga, A.; Takahashi, K.; Shimamura, T.; Yasumoto, A.; Fukushima, H.; Sogabe, S.; Konishi, K.; Uchida, T.; et al. Three cases of acute or fulminant hepatitis E caused by ingestion of pork meat and entrails in Hokkaido, Japan: Zoonotic food-borne transmission of hepatitis E virus and public health concerns. Hepatol. Res. 2012, 42, 870–878. [Google Scholar] [CrossRef] [PubMed]
Animal | Sample | Sampling Period | No. of Samples | No. of Positive Samples (%) |
---|---|---|---|---|
Quail | Egg content (domestic) | March 2022 to March 2023 | 60 | 0 (0.0) |
Egg shell (domestic) | March 2022 to March 2023 | 60 | 1 (1.7) | |
Pig | Minced pork (domestic) | December 2022 to December 2023 | 40 | 1 (2.5) * |
Liver (domestic) | June 2023 to June 2025 | 30 | 13 (43.3) * | |
Cattle | Minced beef (domestic) | April 2024 to December 2024 | 40 | 0 (0.0) |
Liver (domestic) | April 2024 to December 2024 | 62 | 0 (0.0) | |
Chicken | Thigh meat (imported) | April 2022 to June 2025 | 87 | 18 (20.7) |
Brazil | 68 | 9 (13.2) ** | ||
Thailand | 15 | 9 (60.0) ** | ||
USA | 2 | 0 (0.0) | ||
Lithuania | 2 | 0 (0.0) |
Serovar | Food Worker | Pork Liver | Minced Pork | Imported Chicken Thigh Meat (Country) | Quail Egg Shell |
---|---|---|---|---|---|
S. Schwarzengrund | 27 | 0 | 0 | 1 (Brazil) | 0 |
S. Manhattan | 20 | 0 | 0 | 0 | 0 |
Monophasic S. Typhimurium | 19 | 11 | 1 | 2 (Brazil and Thailand) | 1 |
S. Thompson | 19 | 0 | 0 | 0 | 0 |
S. Infantis | 18 | 0 | 0 | 0 | 0 |
S. Braenderup | 14 | 0 | 0 | 0 | 0 |
S. Senftenberg | 12 | 0 | 0 | 0 | 0 |
S. Typhimurium | 9 | 0 | 0 | 0 | 0 |
S. Agona | 9 | 0 | 0 | 3 (Thailand) | 0 |
S. Rissen | 6 | 0 | 0 | 0 | 0 |
S. Mbandaka | 6 | 0 | 0 | 0 | 0 |
S. Derby | 5 | 2 | 0 | 0 | 0 |
S. Stanley | 5 | 0 | 0 | 0 | 0 |
S. Weltevreden | 4 | 0 | 0 | 0 | 0 |
S. Newport | 3 | 0 | 0 | 1 (Brazil) | 0 |
S. Montevideo | 3 | 0 | 0 | 0 | 0 |
S. Bareilly | 3 | 0 | 0 | 0 | 0 |
S. Corvallis | 3 | 0 | 0 | 0 | 0 |
S. Enteritidis | 3 | 0 | 0 | 1 (Thailand) | 0 |
S. Anatum | 3 | 0 | 0 | 0 | 0 |
S. Saintpaul | 2 | 0 | 0 | 1 (Thailand) | 0 |
S. Chester | 2 | 0 | 0 | 0 | 0 |
S. Singapore | 2 | 0 | 0 | 0 | 0 |
S. Tennessee | 2 | 0 | 0 | 0 | 0 |
S. Cubana | 2 | 0 | 0 | 0 | 0 |
S. Muenster | 2 | 0 | 0 | 0 | 0 |
S. Kentucky | 2 | 0 | 0 | 1 (Thailand) | 0 |
S. Albany | 1 | 0 | 0 | 1 (Thailand) | 0 |
S. Minnesota | 0 | 0 | 0 | 5 (Brazil) | 0 |
S. Heidelberg | 0 | 0 | 0 | 1 (Brazil) | 0 |
S. Olso | 0 | 0 | 0 | 1 (Thailand) | 0 |
Others (19 serovars and 7 untypeable) | 26 | 0 | 0 | 0 | 0 |
Total | 232 | 13 | 1 | 18 | 1 |
Origin | No. | ABPC | CEZ | CTX | SM | GM | KM | TC | NA | CPFX | CL | CP | TMP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | No. (%) | ||
Food worker | 232 | 27 (11.6) | 3 (1.3) | 2 (0.9) | 113 (48.7) | 3 (1.3) | 28 (12.1) | 69 (29.7) | 15 (6.5) | 3 (1.3) | 2 (0.9) | 11 (4.7) | 30 (12.9) |
Pork liver | 13 | 8 (61.5) | 5 (38.5) | 0 (0.0) | 12 (92.3) | 0 (0.0) | 0 (0.0) | 10 (76.9) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 6 (46.2) | 8 (61.5) |
Minced pork | 1 | 1 (100.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (100.0) | 1 (100.0) |
Imported chicken | 18 | 12 (66.7) | 6 (33.3) | 6 (33.3) | 9 (50.0) | 2 (11.1) | 3 (16.7) | 11 (61.1) | 10 (55.6) | 1 (5.6) | 1 (5.6) | 0 (0.0) | 4 (22.2) |
Quail egg shell | 1 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Serotype | Antimicrobial Resistance Profile | Food Worker (ST) | Pork Liver (ST) | Minced Pork Meat (ST) | Imported Chicken Thigh Meat (Country, ST) | Quail Egg Shell (ST) |
---|---|---|---|---|---|---|
S. Schwarzengrund | SM + KM + TC + NA + CPFX | 1 | 0 | 0 | 0 | 0 |
SM + KM + TC + NA + TMP | 2 | 0 | 0 | 0 | 0 | |
SM + KM + TC + TMP | 9 | 0 | 0 | 0 | 0 | |
KM + NA + TMP | 1 | 0 | 0 | 0 | 0 | |
SM + TMP | 1 | 0 | 0 | 0 | 0 | |
SM + TC | 1 | 0 | 0 | 0 | 0 | |
SM | 2 | 0 | 0 | 0 | 0 | |
KM | 4 | 0 | 0 | 0 | 0 | |
TMP | 1 | 0 | 0 | 0 | 0 | |
Susceptible | 5 | 0 | 0 | 1 (Brazil) | 0 | |
S. Manhattan | SM + TC + CL | 1 | 0 | 0 | 0 | 0 |
SM + TC + NA | 1 | 0 | 0 | 0 | 0 | |
SM + TC | 15 | 0 | 0 | 0 | 0 | |
CL | 1 | 0 | 0 | 0 | 0 | |
Susceptible | 2 | 0 | 0 | 0 | 0 | |
Monophasic S. Typhimurium | SM + TC + NA + CPFX + CP + TMP | 1 (ST34) | 0 | 0 | 0 | 0 |
ABPC + CEZ + SM + TC + CP + TMP | 0 | 4 (ST34) | 0 | 0 | 0 | |
ABPC + SM + TC + CP + TMP | 3 (ST34) | 2 (ST34) | 1 (ST34) | 0 | 0 | |
ABPC + CEZ + SM + TC + TMP | 0 | 1 (ST34) | 0 | 0 | 0 | |
ABPC + SM + KM + TC | 1 (ST34) | 0 | 0 | 0 | 0 | |
ABPC + CEZ + SM + KM | 1 (ST19) | 0 | 0 | 0 | 0 | |
ABPC + SM + TMP | 1 (ST34) | 1 (ST34) | 0 | 0 | 0 | |
ABPC + SM + TC | 4 (ST34) | 0 | 0 | 1 (Thailand, ST34) | 0 | |
SM + TC | 0 | 3 (ST34) | 0 | 0 | 0 | |
ABPC + SM | 2 (ST34) | 0 | 0 | 1 (Brazil, ST34) | 0 | |
TC | 2 (ST19) | 0 | 0 | 0 | 0 | |
SM | 1 (ST19) | 0 | 0 | 0 | 0 | |
CP | 1 (ST19) | 0 | 0 | 0 | 0 | |
Susceptible | 2 (ST19) | 0 | 0 | 0 | 1 (ST19) | |
S. Thompson | SM + TC | 1 | 0 | 0 | 0 | 0 |
SM | 8 | 0 | 0 | 0 | 0 | |
TMP | 1 | 0 | 0 | 0 | 0 | |
Susceptible | 9 | 0 | 0 | 0 | 0 | |
S. Infantis | SM + KM + TC + TMP | 3 | 0 | 0 | 0 | 0 |
SM + KM + TC | 1 | 0 | 0 | 0 | 0 | |
SM + TC | 1 | 0 | 0 | 0 | 0 | |
ABPC + SM | 1 | 0 | 0 | 0 | 0 | |
SM + TMP | 1 | 0 | 0 | 0 | 0 | |
SM | 1 | 0 | 0 | 0 | 0 | |
Susceptible | 10 | 0 | 0 | 0 | 0 | |
S. Braenderup | SM | 3 | 0 | 0 | 0 | 0 |
Susceptible | 11 | 0 | 0 | 0 | 0 | |
S. Minnesota | ABPC + CEZ + CTX + KM + TC + NA + TMP | 0 | 0 | 0 | 1 (Brazil) | 0 |
ABPC + CEZ + CTX + SM + TC + NA | 0 | 0 | 0 | 1 (Brazil) | 0 | |
ABPC + CEZ + CTX + TC + NA | 0 | 0 | 0 | 2 (Brazil) | 0 | |
KM + TC + NA | 0 | 0 | 0 | 1 (Brazil) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, Y.; Ohya, K.; Momose, Y.; Uema, M.; Ikeda, T.; Sasaki, M.; Asai, T. Serovars and Antimicrobial Resistance of Salmonella in Food Workers and Livestock Products: Insights into Foodborne Transmission Pathways in Eastern Japan. Pathogens 2025, 14, 958. https://doi.org/10.3390/pathogens14100958
Sasaki Y, Ohya K, Momose Y, Uema M, Ikeda T, Sasaki M, Asai T. Serovars and Antimicrobial Resistance of Salmonella in Food Workers and Livestock Products: Insights into Foodborne Transmission Pathways in Eastern Japan. Pathogens. 2025; 14(10):958. https://doi.org/10.3390/pathogens14100958
Chicago/Turabian StyleSasaki, Yoshimasa, Kenji Ohya, Yoshika Momose, Masashi Uema, Tetsuya Ikeda, Mizuki Sasaki, and Tetsuo Asai. 2025. "Serovars and Antimicrobial Resistance of Salmonella in Food Workers and Livestock Products: Insights into Foodborne Transmission Pathways in Eastern Japan" Pathogens 14, no. 10: 958. https://doi.org/10.3390/pathogens14100958
APA StyleSasaki, Y., Ohya, K., Momose, Y., Uema, M., Ikeda, T., Sasaki, M., & Asai, T. (2025). Serovars and Antimicrobial Resistance of Salmonella in Food Workers and Livestock Products: Insights into Foodborne Transmission Pathways in Eastern Japan. Pathogens, 14(10), 958. https://doi.org/10.3390/pathogens14100958