Mycobacterium tuberculosis Complex Infections in Animals: A Comprehensive Review of Species Distribution and Laboratory Diagnostic Methods
Abstract
1. Introduction
2. Species Characteristics and Host Range
2.1. Mycobacterium bovis and Mycobacterium caprae
2.2. Mycobacterium tuberculosis
2.3. Mycobacterium africanum
2.4. Mycobacterium microti
2.5. Mycobacterium canettii
2.6. Mycobacterium pinnipedii
3. Epidemiological Significance and Public Health Impact
3.1. Geographical Distribution and Socio-Economic Costs
3.2. Transmission Dynamics
3.3. Zoonotic Potential
3.4. Evidence of Animal-to-Human and Human-to-Animal Transmission
3.5. Human Populations at Increased Risk and Other Factors
4. Laboratory Diagnostic Methods
4.1. Specimen Collection and Initial Processing
4.2. Culture Methods
4.2.1. Solid Media Culture
4.2.2. Liquid Culture Systems
4.3. Phenotypic Identification Methods
4.3.1. Biochemical Testing
4.3.2. Immunochromatographic Methods
4.3.3. Chromatographic Analysis
4.3.4. Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry
4.4. Molecular Genetic Methods
4.4.1. Polymerase Chain Reaction
4.4.2. Spoligotyping
4.4.3. Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats Analysis
4.4.4. Whole-Genome Sequencing
5. Diagnostic Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MTBC | Mycobacterium tuberculosis complex |
| EFSA | European Food Safety Authority |
| WHO | World Health Organization |
| bTB | bovine tuberculosis |
| HPLC | High-performance liquid chromatography |
| MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry |
| PCR | Polymerase Chain Reaction |
| MIRU-VNTR | Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats |
| WGS | Whole-Genome Sequencing |
References
- Gunasingam, N. Morphology and Pathological Characteristics of Mycobacteria. Mycobact. Dis. 2022, 12, 1. [Google Scholar]
- Rabinovitz, P.M.; Conti, L.A. Clinical approaches to zoonoses, toxicants, and other shared health risks. In Human-Animal Medicine; Saunders: Philadelphia, PA, USA, 2010; Volume 1, pp. 105–298. [Google Scholar]
- Caminiti, A.; Pelone, F.; LaTorre, G.; De Giusti, M.; Saulle, R.; Mannocci, A.; Sala, M.; Della Marta, U.; Scaramozzino, P. Control and eradication of tuberculosis in cattle: A systematic review of economic evidence. Vet. Rec. 2016, 179, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Duignan, A.; Good, M.; More, S.J. Quality control in the national bovine tuberculosis eradication programme in Ireland. Rev. Sci. Tech. Off. Int. Épizoot. 2012, 31, 845–860. [Google Scholar] [CrossRef]
- More, S.; Bøtner, A.; Butterworth, A.; Calistri, P.; Depner, K.; Edwards, S.; Garin-Bastuji, B.; Good, M.; Schmidt, C.G.; Michel, V.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Bovine tuberculosis. EFSA Panel on Animal Health and Welfare (AHAW). EFSA J. 2017, 15, 4959. [Google Scholar] [CrossRef]
- Humblet, M.F.; Boschiroli, M.L.; Saegerman, C. Classification of worldwide bovine tuberculosis risk factors in cattle: A stratified approach. Vet. Res. 2009, 40, 50. [Google Scholar] [CrossRef]
- Krajewska, M.; Orłowska, B.; Anusz, K. Diagnostyka laboratoryjna gruźlicy bydlęcej u zwierząt wolno żyjących z uwzględnieniem żubrów. Eur. Bison Conserv. Newsl. 2013, 6, 81–88. [Google Scholar]
- Bezos, J.; Alvarez, J.; Romero, B.; Aranaz, A.; de Juan, L. Tuberculosis in goats: Assessment of current in vivo cell-mediated and antibody-based diagnostic assays. Vet. J. 2012, 191, 161–165. [Google Scholar] [CrossRef]
- Alvarez, J.; Bezos, J.; de Juan, L.; Vordermeier, M.; Rodriguez, S.; Fernandez-De-Mera, I.G.; Mateos, A.; Dominguez, L. Diagnosis of Tuberculosis in Camelids: Old Problems, Current Solutions and Future Challenges. Transbound. Emerg. Dis. 2012, 59, 1–10. [Google Scholar] [CrossRef][Green Version]
- Gortazar, C.; Vicente, J.; Boadella, M.; Ballesteros, C.; Galindo, R.C.; Garrido, J.; Aranaz, A.; de la Fuente, J. Progress in the control of bovine tuberculosis in Spanish wildlife. Vet. Microbiol. 2011, 151, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.L.; Bengis, R.G.; Keet, D.F.; Hofmeyr, M.; Klerk, L.M.; Cross, P.C.; Jolles, A.E.; Cooper, D.; Whyte, I.J.; Buss, P.; et al. Wildlife tuberculosis in South African conservation areas: Implications and challenges. Vet. Microbiol. 2006, 112, 91–100. [Google Scholar] [CrossRef]
- Munoz-Mendoza, M.; de Juan, L.; Menendez, S.; Ocampo, A.; Mourelo, J.; Saez, J.L.; Dominguez, L.; Gortazar, C.; Garcia Marin, J.F.; Balseiro, A. Tuberculosis due to Mycobacterium bovis and Mycobacterium caprae in sheep. Vet. J. 2012, 191, 267–269. [Google Scholar] [CrossRef]
- Munoz-Mendoza, M.; Marreros, N.; Boadella, M.; Gortazar, C.; Menendez, S.; de Juan, L.; Bezos, J.; Romero, B.; Copano, M.F.; Amado, J.; et al. Wild boar tuberculosis in Iberian Atlantic Spain: A different picture from Mediterranean habitats. BMC Vet. Res. 2013, 9, 176. [Google Scholar] [CrossRef]
- Palmer, M.V. Mycobacterium bovis: Characteristics of wildlife reservoir hosts. Transbound. Emerg. Dis. 2013, 60, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pesciaroli, M.; Alvarez, J.; Boniotti, M.B.; Cagiola, M.; Di Marco, V.; Marianelli, C.; Pacciarini, M.; Pasquali, P. Tuberculosis in domestic animal species. Res. Vet. Sci. 2014, 97, S78–S85. [Google Scholar] [CrossRef]
- Rodriguez-Campos, S.; Smith, N.H.; Boniotti, M.B.; Aranaz, A. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: Implication for diagnostics and legislation of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S5–S19. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lago, L.; Navarro, Y.; Garcia-de-Viedma, D. Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: A review. Res. Vet. Sci. 2014, 97, S94–S100. [Google Scholar] [CrossRef] [PubMed]
- Skuce, R.A.; Allen, A.R.; McDowell, S.W. Herd-level risk factors for bovine tuberculosis: A literature review. Vet. Med. Int. 2012, 2012, 621210. [Google Scholar] [CrossRef]
- Krajewska, M.; Orłowska, B.; Anusz, K.; Welz, M.; Bielecki, W.; Wojciechowska, M.; Lipiec, M.; Szulowski, K. Gruźlica bydlęca w hodowli żubrów w Smardzewicach. Życie Weterynaryjne. 2016, 91, 50–52. [Google Scholar]
- Lipiec, M. Gruźlica bydlęca, rozpoznawanie, zwalczanie, stan obecny, komentarze. PIWet PIB W Puławach. 2016, 1, 7–121. [Google Scholar]
- Krajewska, M. Gruźlica u ludzi i bydła na Lubelszczyźnie. Życie Wet. 2012, 87, 924–926. [Google Scholar]
- Gil, O.; Díez, M.; Barrera, C.; Bellido, J.L.; Juste, R.A.; García, A.; Pagán, A.J. First case of Mycobacterium tuberculosis infection in a pig. Vet. Microb. 2010, 146, 337–341. [Google Scholar]
- Ocepek, M.; Pate, M.; Zolnir-Dovc, M.; Poljak, M. Transmission of Mycobacterium tuberculosis from human to cattle. J. Clin. Microbiol. 2005, 43, 3555–3557. [Google Scholar] [CrossRef]
- Miller, M.A.; Calle, P.P.; Gai, J.; Sanchez, C.; Young, L. Seroconversion can precede culture confirmed diagnosis of Mycobacterium tuberculosis infection in Asian elephants (Elephas maximus) by decades. J. Zoo. Wild Med. 2024, 55, 1082–1087. [Google Scholar] [CrossRef]
- O’Halloran, C.; Barker, E.N.; Hope, J.C.; Gunn-Moore, D.A. Canine tuberculosis: A review of 18 new and 565 previously reported confirmed cases. Vet. J. 2024, 304, 106089. [Google Scholar] [CrossRef] [PubMed]
- Korzeniewska-Koseła, M.J.; Wesołowski, S. Tuberculosis in Poland in 2022. Przegl. Epidemiol. 2024, 78, 496–511. [Google Scholar] [CrossRef]
- de Jong, B.C.; Antonio, M.; Gagneux, S. Mycobacterium africanum—Review of an important cause of human tuberculosis in West Africa. PLoS ONE 2010, 4, e744. [Google Scholar] [CrossRef]
- Otchere, I.D.; Coscollá, M.; Yeboah-Manu, D. Comparative genomics of Mycobacterium africanum Lineage 5 and Lineage 6 from Ghana suggests distinct ecological niches. Sci. Rep. 2018, 8, 11269. [Google Scholar] [CrossRef] [PubMed]
- Thorel, M.F. Isolation of Mycobacterium africanum from monkeys. Tubercle 1980, 61, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.; Burgaya, J.; Michelet, L.; Arrieta-Villegas, C.; Cantero, G.; de Cruz, K.; Tambosco, J.; Di Bari, M.; Nonno, R.; Boschiroli, M.L.; et al. Experimental Mycobacterium microti Infection in Bank Voles (Myodes glareolus). Microorganisms 2022, 10, 135. [Google Scholar] [CrossRef]
- van de Weg, C.A.M.; de Steenwinkel, J.E.M.; Miedema, J.R.; Bakker, M.; van Ingen, J. The tough process of unmasking the slow-growing mycobacterium: Case report of Mycobacterium microti infection. Access Microbiol. 2020, 2, 44–46. [Google Scholar] [CrossRef]
- Deforges, L.; Boulouis, H.J.; Thibaud, J.L.; Boulouha, L.; Sougakoff, W.; Blot, S.; Hewinson, G.; Truffot-Pernot, C.; Haddad, N. First isolation of Mycobacterium microti (llama-type) from a dog. Vet. Microbiol. 2004, 103, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Frank, W.; Reisinger, E.C.; Brandt-Hamerla, W.; Schwede, I.; Handrick, W. Mycobacterium microti—Pulmonary tuberculosis in an immunocompetent patient. Wien. Klin. Wochenschr. 2009, 121, 282–286. [Google Scholar] [CrossRef]
- Fabre, M.; Hauck, Y.; Soler, C.; Koeck, J.L.; van Ingen, J.; van Soolingen, D.; Vergnaud, G.; Pourcel, C. Molecular characteristics of "Mycobacterium canettii" the smooth Mycobacterium tuberculosis bacilli. Infect. Genet. Evol. 2010, 10, 1165–1173. [Google Scholar] [CrossRef]
- Van Soolingen, D.; Hoogenboezem, T.; de Haas, P.E.; Hermans, P.W.; Koedam, M.A.; Teppema, K.S.; Brennan, P.J.; Besra, G.S.; Portaels, F.; Top, J.; et al. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: Characterization of an exceptional isolate from Africa. Int. J. Syst. Bacteriol. 1997, 47, 1236–1245. [Google Scholar] [CrossRef]
- Roe, W.D.; Lenting, B.; Kokosinska, A.; Hunter, S.; Duignan, P.J.; Gartrell, B.; Rogers, L.; Collins, D.M.; de Lisle, G.W.; Gedye, K.; et al. Pathology and molecular epidemiology of Mycobacterium pinnipedii tuberculosis in native New Zealand marine mammals. PLoS ONE 2019, 14, e0212363. [Google Scholar] [CrossRef]
- Al-Gburi, N.M. A review marin mammals tuberculosis caused by Mycobacterium pinnipedii. Plant Arch. 2020, 20, 3931–3934. [Google Scholar]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Pereira, A.C.; Reis, A.C.; Cunha, M.V. Estimates of the global and continental burden of animal tuberculosis in key livestock species worldwide: A meta-analysis study. One Health 2020, 10, 100169. [Google Scholar] [CrossRef]
- Torgerson, P.R.; Torgerson, D.J. Public health and bovine tuberculosis: What’s all the fuss about? Trends Microbiol. 2010, 18, 67–72. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Azami, H.Y.; Zinsstag, J. Economics of bovine tuberculosis: A One Health issue. In Bovine tuberculosis; Chambers, M., Gordon, S., Olea-Popelka, F., Barrow, P., Eds.; CAB International: Wallingford, UK, 2018; Chapter 3; pp. 31–42. [Google Scholar][Green Version]
- Malama, S.; Bjordal-Johansen, T.; Bwalya-Muma, J.; Munyeme, M.; Mbulo, G.; Muwonge, A.; Djønne, B.; Godfroid, J. Characterization of Mycobacterium bovis from humans and cattle in Namwala District, Zambia. Vet. Med. Int. 2014, 2014, 187842. [Google Scholar] [CrossRef]
- Hruska, K.; Kaevska, M. Mycobacteria in water, soil, plants and air: A review. Vet. Med 2012, 57, 623–679. [Google Scholar] [CrossRef]
- Olea-Popelka, F.; Muwonge, A.; Perera, A.; Dean, A.S.; Mumford, E.; Erlacher-Vindel, E.; Forcella, S.; Silk, B.J.; Ditiu, L.; El Idrissi, A.; et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—A call for action. Lancet Infect. Dis. 2017, 17, e21–e25. [Google Scholar] [CrossRef] [PubMed]
- The European Union One Health 2023 Zoonoses Report. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2024.9106 (accessed on 12 September 2025).
- Kruszewska, D. Contemporary zoonoses—A Curse of XXI century. Życie Wet. 2020, 95, 405–413. [Google Scholar]
- Osek, J.; Wieczorek, K. Choroby odzwierzęce u ludzi oraz obecność bakteryjnych czynników etiologicznych u zwierząt i w żywności w krajach Unii Europejskiej w 2016 r. Życie Wet. 2018, 93, 152–156. [Google Scholar]
- Zoonotic Disease: Emerging Public Health Threats in the Region. Available online: https://www.emro.who.int/about-who/rc61/zoonotic-diseases.html (accessed on 15 September 2025).
- Crawford, D.A. Deadly Companions: How Microbes Shaped our History; Oxford University Press: London, UK, 2007; p. 272. [Google Scholar]
- Larska, M.; Kalicki, M.; Krzysiak, M. Significance of nondomestic animals in 21st century epidemics. Życie Wet. 2022, 97, 518–524. [Google Scholar]
- Fusegawa, H.; Wang, H.B.; Sakurai, K.; Nagasawa, K.; Okauchi, M.; Nagakura, K. Outbreak of tuberculosis in a 2000-year-old Chinese population. Kansenshogaku Zasshi 2003, 77, 146–149. [Google Scholar] [CrossRef][Green Version]
- Donoghue, H.D. Microbiology Spectrum. In Paleomicrobiology of Human Tuberculosis; Wiley: Hoboken, NJ, USA, 2016; pp. 113–130. [Google Scholar][Green Version]
- Dutor, O. Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules. Microbiol. Spectr. 2016, 4, 10-1128. [Google Scholar] [CrossRef]
- Kozińska, M.; Zientek, J.; Augustynowicz-Kopeć, E.; Zwolska, Z.; Kozielski, J. Transmission of tuberculosis among people living in the border areas of Poland, the Czech Republic, and Slovakia. Pol. Arch. Med. Wewn. 2016, 126, 32–40. [Google Scholar] [CrossRef][Green Version]
- Kozińska, M.; Krajewska-Wędzina, M.; Augustynowicz-Kopeć, E. Mycobacterium caprae—The first case of the human infection in Poland. Ann. Agric. Env. Med. 2020, 27, 151–153. [Google Scholar] [CrossRef]
- Krajewska-Wędzina, M.; Radulski, Ł.; Waters, W.R.; Didkowska, A.; Zabost, A.; Augustynowicz-Kopeć, E.; Brzezińska, S.; Weiner, M. Mycobacterium bovis Transmission between Cattle and a Farmer in Central Poland. Pathogens 2022, 11, 1170. [Google Scholar] [CrossRef]
- Ní Bhuachalla, D.; Corner, L.A.; More, S.J.; Gormley, E. The role of badgers in the epidemiology of Mycobacterium bovis infection (tuberculosis) in cattle in the United Kingdom and the Republic of Ireland: Current perspectives on control strategies. Vet. Med. 2014, 6, 27–38. [Google Scholar] [CrossRef]
- Shrikrishana, D.; de la Rua-Domenech, R.; Smith, N.H.; Colloff, A.; Coutts, I. Human and canine pulmonary Mycobacterium bovis infections in the same household: Re-emergence of an old zoonotic threat? Thorax 2009, 64, 89–91. [Google Scholar] [CrossRef]
- Swift, B.M.C.; Barron, E.S.; Christley, R.; Corbetta, D.; Grau-Roma, L.; Jewell, C.; O’Cathail, C.; Mitchell, A.; Phoenix, J.; Prosser, A.; et al. Tuberculosis in badgers where the bovine tuberculosis epidemic is expanding in cattle in England. Sci. Rep. 2021, 11, 20995. [Google Scholar] [CrossRef]
- Powell, S.M.; Dessi, N.; Bennett, M.; Wang, B.; Robertson, A.; Waller, E.; Smith, G.C.; Delahay, R.J. Tuberculosis in found dead badgers at the edge of the expanding bovine tuberculosis epidemic. Sci. Rep. 2025, 15, 10547. [Google Scholar] [CrossRef]
- Jiménez-Martín, D.; García-Bocanegra, I.; Risalde, M.A.; Napp, S.; Domínguez, M.; Romero, B.; Moreno, I.; Martínez, R.; Cano-Terriza, D. Mycobacterium tuberculosis complex in domestic goats in Southern Spain. Prev. Vet. Med. 2024, 227, 106204. [Google Scholar] [CrossRef]
- Lipiec, M.; Radulski, Ł.; Szulowski, K. A case of bovine tuberculosis in pigs in Poland—A country free from the disease. Ann. Agric. Environ. Med. 2019, 26, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, D.; Boniotti, M.B.; Fiasconaro, M.; Fontana, S.; Boifava, M.; Pruiti Ciarello, F.; Amato, B.; Pacciarini, M.; Di Marco Lo Presti, V. Development and evaluation of a multi-antigen serological assay for the intra-vitam diagnosis of Tuberculosis caused by Mycobacterium bovis in pigs. J. Immunol. Methods 2022, 503, 113234. [Google Scholar] [CrossRef]
- Jiménez-Martín, D.; Cano-Terriza, D.; Risalde, M.A.; Napp, S.; Álvarez, J.; Fernández-Morente, M.; Fernández-Molera, V.; Moreno, I.; Infantes-Lorenzo, J.A.; García-Bocanegra, I. Seroepidemiology of tuberculosis in sheep in southern Spain. Prev. Vet. Med. 2023, 215, 105920. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, C.; Gunn-Moore, D. Tuberculosis in UK cats associated with a commercial raw food diet. J. Feline Med. Surg. 2019, 21, 665–666. [Google Scholar] [CrossRef]
- Eroksuz, Y.; Baydar, E.; Otlu, B.; Dabak, M.; Eroksuz, H.; Karabulut, B.; Incili, C.A.; Timurkan, M.O. Case report: Systemic tuberculosis caused by Mycobacterium bovis in a cat. BMC Vet. Res. 2019, 15, 1759–1767. [Google Scholar] [CrossRef]
- Rocha, V.C.; Figueiredo, S.C.; Rosales, C.A.; Porto, C.D.; Sequeira, J.L.; Neto, J.S.; Paes, A.C.; Salgado, V.R. Infection by Mycobacterium bovis in a dog from Brazil. Braz. J. Microbiol. 2017, 48, 109–112. [Google Scholar] [CrossRef]
- Szacawa, E.; Kozieł, N.; Brzezińska, S.; Augustynowicz-Kopeć, E.; Weiner, M.; Szulowski, K.; Krajewska-Wędzina, M. Laboratory Diagnosis of Animal Tuberculosis in Tracing Interspecies Transmission of Mycobacterium bovis. Pathogens 2025, 14, 459. [Google Scholar] [CrossRef]
- Krajewska, M.; Kozińska, M.; Zwolska, Z.; Lipiec, M.; Augustynowicz-Kopeć, E.; Szulowski, K. Human as a source of tuberculosis for cattle. First Evid. Transm. Poland. Vet. Microbiol. 2012, 159, 269–271. [Google Scholar] [CrossRef]
- Verdugo Escárcega, D.A.; Perea Razo, C.A.; González Ruíz, S.; Sosa Gallegos, S.L.; Suazo, F.M.; Cantó Alarcón, G.J. Analysis of bovine tuberculosis transmission in Jalisco, Mexico through whole-genome sequencing. J. Vet. Res. 2020, 64, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Romha, G.; Gebru, G.; Asefa, A.; Mamo, G. Epidemiology of Mycobacterium bovis and Mycobacterium tuberculosis in animals: Transmission dynamics and control challenges of zoonotic TB in Ethiopia. Prev. Vet. Med. 2018, 158, 1–17. [Google Scholar] [CrossRef]
- Zuñiga-Quiñonez, S.; Martinez-Ayala, P.; Alvarez-Zavala, M.; Torres-Rojas, A.; Garcia-Govea, I.D.V.; Gonzalez-Hernandez, L.A.; Andrade-Villanueva, J.F.; Amador-Lara, F. Mycobacterium bovis Infection Frequently Requires Surgical Intervention in Individuals with HIV. Infect. Dis. Rep. 2025, 17, 82. [Google Scholar] [CrossRef]
- Gibson, A.L.; Hewinson, G.; Goodchild, T.; Watt, B.; Story, A.; Inwald, J.; Drobniewski, F.A. Molecular epidemiology of disease due to Mycobacterium bovis in humans in the United Kingdom. J. Clin. Microbiol. 2004, 42, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, T.; Mohammed, T.; Zewude, A.; Chanyalew, M.; Khalifa, H.O.; Mamo, G.; Ameni, G. Zoonotic transmission of the Mycobacterium tuberculosis complex between cattle and humans in Central Ethiopia. Front. Vet. Sci. 2025, 12, 1527279. [Google Scholar] [CrossRef] [PubMed]
- LoBue, P.A.; Betacourt, W.; Peter, C.; Moser, K.S. Epidemiology of Mycobacterium bovis disease in San Diego County, 1994-2000. Int. J. Tuberc. Lung Dis. 2003, 7, 180–185. [Google Scholar]
- Corcoran, J.P.; Hallifax, R.J.; Bettinson, H.V.; Psallidas, I.; Rahman, N.M. Tuberculous pleuritis secondary to Mycobacterium bovis in a veterinarian. Clin. Respir. J. 2016, 10, 500–503. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Handbook on Tuberculosis Laboratory Diagnostic Methods in the European Union—Updated 2018; ECDC: Stockholm, Sweden, 2018.
- WOAH Terrestrial Manual 2022, Chapter 3.1.13.—Mammalian tuberculosis (Infection with Mycobacterium tuberculosis Complex). Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/202406_Chapter_3.01.13_MAMMALIAN%20TB.pdf (accessed on 22 April 2025).
- Abe, C.; Hirano, K.; Tomiyama, T. Simple and rapid identification of the Mycobacterium tuberculosis complex by immunochromatographic assay using anti-MPB64 monoclonal antibodies. J. Clin. Microbiol. 1999, 37, 3693–3697. [Google Scholar] [CrossRef]
- Stewart, L.D.; Tort, N.; Meakin, P.; Castillo-Alcántara, W.; Crispell, J.; Passetti, R.; Bates, A.; O’Brien, A.; Skuce, R.; Breadon, E.L. Development of a novel immunochromatographic lateral flow assay specific for Mycobacterium bovis cells and its application in combination with immunomagnetic separation to test badger faeces. BMC Vet. Res. 2017, 13, 131. [Google Scholar] [CrossRef]
- Harboe, M.; Nagai, S.; Patarroyo, M.E.; Torres, M.L.; Ramirez, C.; Cruz, N. Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG. Infect. Immun. 1986, 52, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Bahar, E.; Putra, E. Identification of Mycobacterium tuberculosis Bacteria with TB Antigen MPT64 Rapid Test Against Patients with Suspect Pulmonary Tuberculosis in Lubuk Alung Pulmonary Hospital, Padang Pariaman. IOP Conf. Ser. Earth Env. Sci. 2019, 217, 012061. [Google Scholar] [CrossRef]
- Floyd, M.M.; Silcox, V.A.; Jones, W.D.; Butler, W.R.; Kilburn, J.O. Separation of Mycobacterium bovis BCG from Mycobacterium tuberculosis and Mycobacterium bovis by using high-performance liquid chromatography of mycolic acids. J. Clin. Microbiol. 1999, 30, 1327–1330. [Google Scholar] [CrossRef]
- Pendzich, J.; Maksymowicz-Mazur, W.; Kozielski, J. Progress in contemporary tuberculosis laboratory diagnostics. J. Lab. Diagn. 2011, 47, 439–446. [Google Scholar]
- Saleeb, P.G.; Drake, S.K.; Murray, P.R.; Zelazny, A.M. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 1790–1794. [Google Scholar] [CrossRef]
- Fernández-Esgueva, M.; Fernández-Simon, R.; Monforte-Cirac, M.L.; López-Calleja, A.I.; Fortuño, B.; Viñuelas-Bayon, J. Use of MALDI-TOF MS (Bruker Daltonics) for identification of Mycobacterium species isolated directly from liquid medium. Enferm. Infecc. Microbiol. Clin. 2021, 39, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Temporal, D.; Perez-Risco, D.; Struzka, E.A.; Mas, M.; Alcaide, F. Evaluation of two protein extraction protocols based on freezing and mechanical disruption for identifying nontuberculous mycobacteria by matrix-assisted laser desorption ionization– time of flight mass spectrometry from liquid and solid cultures. J. Clin. Microbiol. 2018, 56, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Mather, C.A.; Rivera, S.F.; Butler-Wu, S.M. Comparison of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of mycobacteria using simplified protein extraction pro-tocols. J. Clin. Microbiol. 2014, 52, 130–138. [Google Scholar] [CrossRef]
- Lorente-Leal, V.; Gomez-Buendia, A.; Gutiérrez-Tobaruela, A.; de Juan, L.; Bezos, J.; Romero, B. Shaken, not stirred: Magnetic bead DNA extraction as a rapid and effective method for the scaling up of bovine tuberculosis diagnosis. BMC Vet. Res. 2024, 20, 568. [Google Scholar] [CrossRef]
- Chaudhari, K.V.; Ch Toi, P.; Joseph, N.M. Evaluation of real time polymerase chain reaction targeting mpb64 gene for diagnosis of extrapulmonary tuberculosis. Indian. J. Tuberc. 2021, 68, 242–248. [Google Scholar] [CrossRef]
- Lorente-Leal, V.; Liandris, E.; Castellanos, E.; Bezos, J.; Domínguez, L.; de Juan, L.; Romero, B. Validation of a Real-Time PCR for the Detection of Mycobacterium tuberculosis Complex Members in Bovine Tissue Samples. Front. Vet. Sci. 2019, 6, 61. [Google Scholar] [CrossRef]
- Augustynowicz-Kopeć, E.; Jagielski, T.; Kozińska, M.; Zabost, A.; Zwolska, Z. The significance of spoligotyping method in epidemiological investigations of tuberculosis. Pneumonol. Alergol. Pol. 2007, 75, 22–31. [Google Scholar] [CrossRef]
- Couvin, D.; David, A.; Zozio, T.; Rastogi, N. Macro-geographical specificities of the prevailing tuberculosis epidemic as seen through SITVIT2, an updated version of the Mycobacterium tuberculosis genotyping database. Infect. Genet. Evol. 2019, 72, 31–43. [Google Scholar] [CrossRef]
- Bertasio, C.; Carta, V.; Parisio, G.; Zanoni, M.; Tamba, M.; Mazzera, L.; Scaltriti, E.; Pacciarini, M.L.; Alborali, G.L.; Polzer, D.; et al. M. caprae in northern Italy: A comprehensive analysis through whole-genome sequencing on the genetic variability in bovine herds. Vet. Res. 2025, 56, 163. [Google Scholar] [CrossRef]
- Kamerbeek, J.; Schouls, L.; Kolk, A.; van Agterveld, M.; van Soolingen, D.; Kuijper, S.; Bunschoten, A.; Molhuizen, H.; Shaw, R.; Goyal, M.; et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 1997, 35, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Mycobacterium Bovis Spoligotype Database. Available online: https://www.mbovis.org/ (accessed on 17 September 2025).
- Frothingham, R.; Meeker-O’Connell, W.A. Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 1998, 144, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Boniotti, M.B.; Goria, M.; Loda, D.; Garrone, A.; Benedetto, A.; Mondo, A.; Tisato, E.; Zanoni, M.; Zoppi, S.; Dondo, A.; et al. Molecular Typing of Mycobacterium bovis Strains Isolated in Italy from 2000 to 2006 and Evaluation of Variable-Number Tandem Repeats for Geographically Optimized Genotyping. J. Clin. Microbiol. 2009, 47, 636–644. [Google Scholar] [CrossRef]
- Supply, P.; Allix, C.; Lesjean, S.; Cardoso-Oelemann, M.; Rüsch-Gerdes, S.; Willery, E.; Savine, E.; de Haas, P.; van Deutekom, H.; Roring, S.; et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 4498–4510. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Leal, V.; Farrell, D.; Romero, B.; Álvarez, J.; Juan, L.D.; Gordon, S.V. Performance and agreement between WGS variant calling pipelines used for bovine tuberculosis control: Toward international standardization. Front. Vet. Sci. 2021, 8, 780018. [Google Scholar] [CrossRef] [PubMed]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next—Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
| Primary Hosts | Main Geographical Distribution | Pathogenicity | Key Clinical Features |
|---|---|---|---|
| Mycobacterium bovis | |||
| Cattle; Wildlife animals (e.g., deer, boar, badgers); Domestic animals (e.g., dogs, cats); | Global | Mostly pathogenic to cattle; Zoonotic potential | Causes bTB; Respiratory transmission; Forms granulomas; Zoonotic transmission possible; Dry rough colonies |
| Mycobacterium caprae | |||
| Goats; Cattle; Wild boar; Red deer; Other wildlife; | Mainly Europe | Pathogenic to animals | Causes bTB (less commonly than M. bovis); Forms granulomas; |
| Mycobacterium tuberculosis | |||
| Humans (primary); Animals (e.g., dogs, elephants, cattle); | Global | High pathogenicity to humans; Rare pathogenicity to animals; | Causes human TB; Respiratory Transmission; Zoonosis; |
| Mycobacterium africanum | |||
| Humans (primary); Non-human primates; Cattle; | West Africa (endemic), sporadic elsewhere | Moderate pathogenicity; | Restricted to certain regions; Zoonosis; |
| Mycobacterium microti | |||
| Rodents (primary); Cats; Dogs; Swine; | Reported in Europe | Low virulence; | Granulomatous lesions in the liver, spleen, lungs, lymph nodes, muscles, and salivary gland under experimental conditions; |
| Mycobacterium canettii | |||
| Humans (only known host); | East Africa (mainly) | Pathogenic | Known as “smooth TB”; |
| Mycobacterium pinnipedii | |||
| Marine mammals (e.g., seals, sea lions) | Coastal regions (especially the Southern Hemisphere) | Pathogenic | Zoonosis |
| Method | Time of Analysis | Characteristics |
|---|---|---|
| Culture methods | ||
| Solid media culture | 3–6 weeks | High specificity; Acts as the gold standard; Characteristic morphology visible; Slow growth; Long incubation required. |
| Liquid culture system | Less than solid media | More rapid growth detection than solid media; No morphological features; Requires specialised equipment; PCR confirmation needed. |
| Phenotypic identification | ||
| Biochemical tests | Days/weeks | Cost-effective; Species differentiation possible; Limited discrimination; Time-consuming; Long incubation. |
| Immunochromatographic assays | Minutes/hours | Rapid detection; Quick screening; Field testing; Act as an auxiliary tool only. |
| HPLC analysis | Minutes | Very quick; Species and subspecies identification; Expensive equipment; Requires interpretation by a specialist. |
| MALDI-TOF MS | Minutes | Suitable for solid and liquid media; Proper for non-tuberculous mycobacteria; Limited species-level differentiation within MTBC. |
| Molecular methods | ||
| PCR | Hours | Rapid diagnosis; Sensitive; Analysis direct from tissue; Contamination detection; Requires specialised equipment; Requires specialised result analysis. |
| Spoligotyping | 1–2 days | Suitable for strain characterisation; International database comparison; Epidemiological tracking; Limited discriminatory power when used alone. |
| MIRU-VNTR Analysis | 1–2 days | Good strain differentiation when combined with other methods; Limited discriminatory power when used alone. |
| Whole-Genome Sequencing | Days | Highest resolution; Precise epidemiological investigation; Precise strain tracking; Expensive; Complicated; Requires specialised equipment and staff. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szacawa, E.; Radulski, Ł.; Weiner, M.; Szulowski, K.; Krajewska-Wędzina, M. Mycobacterium tuberculosis Complex Infections in Animals: A Comprehensive Review of Species Distribution and Laboratory Diagnostic Methods. Pathogens 2025, 14, 1004. https://doi.org/10.3390/pathogens14101004
Szacawa E, Radulski Ł, Weiner M, Szulowski K, Krajewska-Wędzina M. Mycobacterium tuberculosis Complex Infections in Animals: A Comprehensive Review of Species Distribution and Laboratory Diagnostic Methods. Pathogens. 2025; 14(10):1004. https://doi.org/10.3390/pathogens14101004
Chicago/Turabian StyleSzacawa, Ewelina, Łukasz Radulski, Marcin Weiner, Krzysztof Szulowski, and Monika Krajewska-Wędzina. 2025. "Mycobacterium tuberculosis Complex Infections in Animals: A Comprehensive Review of Species Distribution and Laboratory Diagnostic Methods" Pathogens 14, no. 10: 1004. https://doi.org/10.3390/pathogens14101004
APA StyleSzacawa, E., Radulski, Ł., Weiner, M., Szulowski, K., & Krajewska-Wędzina, M. (2025). Mycobacterium tuberculosis Complex Infections in Animals: A Comprehensive Review of Species Distribution and Laboratory Diagnostic Methods. Pathogens, 14(10), 1004. https://doi.org/10.3390/pathogens14101004

