Toxoplasmosis in the Era of Targeted Immunotherapy: A Systematic Review of Emerging Cases Linked to Biologics and Small Molecules in Autoimmune Diseases, Oncology and Transplantation
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results
3.1. Characteristics of Toxoplasmosis Cases
3.2. Underlying Autoimmune and Non-Autoimmune Conditions
3.3. Targeted Immunotherapies (Biologic Agents or Small Molecules)
3.4. Duration of Treatment with the Targeted Immunotherapies Prior to Toxoplasmosis Onset
3.5. Attribution of Toxoplasmosis to the Targeted Immunotherapy
3.6. Reactivation of Latent Infections vs. Acute Primary Toxoplasma Infections
3.7. Acute Toxoplasmosis Cases After Consumption of Undercooked Meat, Including Wild Game Meat
3.8. Clinical Syndromes
3.9. Clinical and Radiologic Manifestations
3.10. Diagnostic Confirmation
3.11. Modification of Targeted Immunotherapy at Presentation
3.12. Anti-Toxoplasma Therapy
3.13. Duration of Anti-Toxoplasma Therapy
3.14. Clinical Outcomes
3.15. Secondary Anti-Toxoplasma Prophylaxis
4. Discussion
4.1. Fatal Toxoplasmosis Cases
4.2. Reactivation of Chronic Latent Toxoplasma Infections vs. Acute Primary Infections
4.3. Prevention of Toxoplasmosis
4.4. High Index of Suspicion for Toxoplasmosis
4.5. Diagnostics for Active Toxoplasmosis
4.6. Modification of Biologics/Small Molecules Therapy During Active Toxoplasmosis
4.7. Anti-Toxoplasma Treatment
4.8. Secondary Prophylaxis
4.9. Special Consideration
4.9.1. For Pregnant Women on Biologics/Small Molecules Before Pregnancy
4.9.2. For Patients on CAR-T Cell Therapies
4.9.3. Coinfections with Other Notable Pathogens
4.10. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akins, G.K.H.; Furtado, J.M.; Smith, J.R. Diseases Caused by and Behaviors Associated with Toxoplasma gondii Infection. Pathogens 2024, 13, 968. [Google Scholar] [CrossRef]
- Layton, J.; Theiopoulou, D.C.; Rutenberg, D.; Elshereye, A.; Zhang, Y.; Sinnott, J.; Kim, K.; Montoya, J.G.; Contopoulos-Ioannidis, D.G. Clinical Spectrum, Radiological Findings, and Outcomes of Severe Toxoplasmosis in Immunocompetent Hosts: A Systematic Review. Pathogens 2023, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Rutenberg, D.; Zhang, Y.; Montoya, J.G.; Sinnott, J.; Contopoulos-Ioannidis, D.G. The Meat of the Matter. N. Engl. J. Med. 2024, 390, 1612–1618. [Google Scholar] [CrossRef]
- Robert-Gangneux, F.; Darde, M.L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [Google Scholar] [CrossRef]
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef]
- Gharamti, A.A.; Rao, A.; Pecen, P.E.; Henao-Martinez, A.F.; Franco-Paredes, C.; Montoya, J.G. Acute Toxoplasma Dissemination with Encephalitis in the Era of Biological Therapies. Open Forum Infect. Dis. 2018, 5, ofy2. [Google Scholar] [CrossRef]
- Graham, A.K.; Fong, C.; Naqvi, A.; Lu, J.Q. Toxoplasmosis of the central nervous system: Manifestations vary with immune responses. J. Neurol. Sci. 2021, 420, 117223. [Google Scholar] [CrossRef]
- de Almeida, G.B.; Cristovao, M.; Pontinha, C.; Januario, G. Cerebral Toxoplasmosis as an Uncommon Complication of Biologic Therapy for Rheumatoid Arthritis: Case Report and Review of Literature. Brain Sci. 2022, 12, 1050. [Google Scholar] [CrossRef] [PubMed]
- Schwenk, H.T.; Khan, A.; Kohlman, K.; Bertaina, A.; Cho, S.; Montoya, J.G.; Contopoulos-Ioannidis, D.G. Toxoplasmosis in Pediatric Hematopoietic Stem Cell Transplantation Patients. Transplant. Cell. Ther. 2021, 27, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Krull, E.; Taraschi, G.; El Amari, E.B.; Pellegrinelli, J.M.; Martinez de Tejada, B. Congenital toxoplasmosis after adalimumab treatment before pregnancy. J. Obstet. Gynaecol. Res. 2021, 47, 4055–4059. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, M.; Meije, Y.; Manuel, O.; Akan, H.; Carratala, J.; Aguado, J.M.; Delaloye, J. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Introduction). Clin. Microbiol. Infect. 2018, 24 (Suppl. S2), S2–S9. [Google Scholar] [CrossRef]
- Jung, S.M.; Kim, W.U. Targeted Immunotherapy for Autoimmune Disease. Immune Netw. 2022, 22, e9. [Google Scholar] [CrossRef]
- Wang, Z.D.; Liu, H.H.; Ma, Z.X.; Ma, H.Y.; Li, Z.Y.; Yang, Z.B.; Zhu, X.Q.; Xu, B.; Wei, F.; Liu, Q. Toxoplasma gondii Infection in Immunocompromised Patients: A Systematic Review and Meta-Analysis. Front. Microbiol. 2017, 8, 389. [Google Scholar] [CrossRef]
- Azevedo, V.F.; Pietrovski, C.F.; de Almeida Santos, M., Jr. Acute toxoplasmosis infection in a patient with ankylosing spondylitis treated with adalimumab: A case report. Reumatismo 2010, 62, 283–285. [Google Scholar] [CrossRef]
- Bach, M.; Schob, S.; Baerwald, C. Neurological symptoms in a patient on anti-TNF therapy, methotrexate and prednisolone for rheumatoid arthritis. Internist 2020, 61, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Castano-Amores, C.; Nieto-Gomez, P. Cerebral toxoplasmosis associated with treatment with rituximab, azathioprine and prednisone for dermatomyositis. Br. J. Clin. Pharmacol. 2021, 87, 1525–1528. [Google Scholar] [CrossRef]
- Hill, B.; Wyatt, N.; Ennis, D. Cerebral Toxoplasmosis in a Rheumatoid Arthritis Patient on Immunosuppressive Therapy. Cureus 2020, 12, e8547. [Google Scholar] [CrossRef] [PubMed]
- Kayabasi, M.; Mammadov, T.; Koksaldi, S.; Arikan, G.; Kaynak, S.; Saatci, A.O. Active toxoplasma chorioretinitis in immunocompromised patients: A case series. Arch. Clin. Cases 2024, 11, 5–12. [Google Scholar] [CrossRef]
- Lassoued, S.; Zabraniecki, L.; Marin, F.; Billey, T. Toxoplasmic chorioretinitis and antitumor necrosis factor treatment in rheumatoid arthritis. Semin. Arthritis Rheum. 2007, 36, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Mejia-Salgado, G.; Cardozo-Perez, C.; Cifuentes-Gonzalez, C.; Duran-Merino, C.; de-la-Torre, A. Coinfection Suspicion is Imperative in Immunosuppressed Patients with Suspected Infectious Uveitis and Inadequate Treatment Response: A Case Report. Ocul. Immunol. Inflamm. 2024, 32, 2548–2552. [Google Scholar] [CrossRef]
- Nardone, R.; Zuccoli, G.; Brigo, F.; Trinka, E.; Golaszewski, S. Cerebral toxoplasmosis following adalimumab treatment in rheumatoid arthritis. Rheumatology 2014, 53, 284. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, G.; Pyare, R.; Kaushik, V.V.; Dutta Majumder, P. Ocular toxoplasmosis following anti-tumour necrosis factor-alpha therapy combined with oral methotrexate therapy: A case report and review of literature. Eur. J. Ophthalmol. 2024, 34, NP113–NP117. [Google Scholar] [CrossRef]
- Pulivarthi, S.; Reshi, R.A.; McGary, C.T.; Gurram, M.K. Cerebral toxoplasmosis in a patient on methotrexate and infliximab for rheumatoid arthritis. Intern. Med. 2015, 54, 1433–1436. [Google Scholar] [CrossRef]
- Walkden, A.; Wig, S.; Bhatt, P.R.; Jones, N.P.; Steeples, L.R. Atypical Ocular Toxoplasmosis During Adalimumab Anti-Tumor Necrosis Factor Therapy for Rheumatoid Arthritis. J. Clin. Rheumatol. 2020, 26, e279–e280. [Google Scholar] [CrossRef]
- Young, J.D.; McGwire, B.S. Infliximab and reactivation of cerebral toxoplasmosis. N. Engl. J. Med. 2005, 353, 1530–1531. [Google Scholar] [CrossRef]
- Cren, J.B.; Bouvard, B.; Crochette, N. Cerebral toxoplasmosis and anti-TNFalpha: A case report. IDCases 2016, 5, 40–42. [Google Scholar] [CrossRef]
- Desmond, R.; Lynch, K.; Gleeson, M.; Farrell, M.; Murphy, P. Progressive multifocal leukencephalopathy and cerebral toxoplasmosis in a patient with CLL. Am. J. Hematol. 2010, 85, 607. [Google Scholar] [CrossRef]
- Goldberg, R.A.; Reichel, E.; Oshry, L.J. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N. Engl. J. Med. 2013, 369, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Savsek, L.; Opaskar, T.R. Cerebral toxoplasmosis in a diffuse large B cell lymphoma patient. Radiol. Oncol. 2016, 50, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Das, T.; Biswas, G. Bilateral toxoplasma retinochoroiditis in a patient with chronic myeloid leukemia treated with imatinib mesylate. Ocul. Immunol. Inflamm. 2010, 18, 64–65. [Google Scholar] [CrossRef]
- Lim, Z.; Baker, B.; Zuckerman, M.; Wade, J.J.; Ceesay, M.; Ho, A.Y.; Devereux, S.; Mufti, G.J.; Pagliuca, A. Toxoplasmosis following alemtuzumab based allogeneic haematopoietic stem cell transplantation. J. Infect. 2007, 54, e83–e86. [Google Scholar] [CrossRef]
- Martina, M.N.; Cervera, C.; Esforzado, N.; Linares, L.; Torregrosa, V.; Sanclemente, G.; Hoyo, I.; Cofan, F.; Oppenheimer, F.; Miro, J.M.; et al. Toxoplasma gondii primary infection in renal transplant recipients. Two case reports and literature review. Transpl. Int. 2011, 24, e6–e12. [Google Scholar] [CrossRef] [PubMed]
- Kator, S.; Zurko, J.; Webb, B.J.; Balatico, M.A.; Clayton, F.; Palmer, C.A.; Konopa, K.; Motyckova, G.; Ford, C.D.; Ostronoff, F. Disseminated toxoplasmosis and haemophagocytic lymphohistiocytosis following chimeric antigen receptor T-cell therapy. Br. J. Haematol. 2020, 189, e4–e6. [Google Scholar] [CrossRef]
- Kersten, M.J.; van Ettekoven, C.N.; Heijink, D.M. Unexpected neurologic complications following a novel lymphoma treatment ‘expected’ to give rise to neurologic toxicity. BMJ Case Rep. 2019, 12, e229946. [Google Scholar] [CrossRef]
- Marzolini, M.A.V.; Jaunmuktane, Z.; Roddie, C.; O’Reilly, M.; Chiodini, P.; Peggs, K.S. Toxoplasmosis initially presenting as neurological sequelae of chimeric antigen receptor T-cell therapy. Lancet Infect. Dis. 2019, 19, 788. [Google Scholar] [CrossRef]
- Martin, S.I.; Marty, F.M.; Fiumara, K.; Treon, S.P.; Gribben, J.G.; Baden, L.R. Infectious complications associated with alemtuzumab use for lymphoproliferative disorders. Clin. Infect. Dis. 2006, 43, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.; Schneider, E.; Proia, A.D.; Fekrat, S. Development of bilateral acquired toxoplasmic retinochoroiditis during erlotinib therapy. JAMA Ophthalmol. 2014, 132, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Vicent, M.; Molina, B.; Fabregat, M.; Segura, M.; Diaz, M.A. Toxoplasmosis and secondary Guillain-Barre associated with ruxolitinib as graft-versus-host disease treatment. Pediatr. Blood Cancer 2019, 66, e27446. [Google Scholar] [CrossRef]
- Hoellinger, B.; Ursenbach, A.; Villard, O.; Guffroy, B.; Simand, C.; Lioure, B. Unusual presentation of toxoplasmosis with gastro-intestinal involvement in HLA non-identical stem cell transplantation. Transpl. Infect. Dis. 2021, 23, e13616. [Google Scholar] [CrossRef]
- Lanfranco, L.; Olle Delahaye, P.; Dorr, G.; Del Bello, A.; Kamar, N. Late isolated ocular toxoplasmosis in a belatacept-treated kidney transplant patient. Transpl. Int. 2016, 29, 1352–1353. [Google Scholar] [CrossRef]
- Vigilante, R.; Izhar, R.; Paola, R.D.; De, A.; Pollastro, R.M.; Capolongo, G.; Viceconte, G.; Simeoni, M. Toxoplasma Gondii Replication During Belatacept Treatment in Kidney Transplantation: A Case Report and a Review of the Literature. Genes 2025, 16, 391. [Google Scholar] [CrossRef]
- Van Den Noortgate, R.; Kiselinova, M.; Sys, C.; Accou, G.; Laureys, G.; Van Vlierberghe, H.; Berrevoet, F.; Kreps, E.O. Concurrent Ocular and Cerebral Toxoplasmosis in a Liver Transplant Patient Treated with Anti-CD40 Monoclonal Antibody. Case Rep. Infect. Dis. 2023, 2023, 5565575. [Google Scholar] [CrossRef]
- Lee, E.B.; Ayoubi, N.; Albayram, M.; Kariyawasam, V.; Motaparthi, K. Cerebral toxoplasmosis after rituximab for pemphigus vulgaris. JAAD Case Rep. 2020, 6, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Lobo, Y.; Holland, T.; Spelman, L. Toxoplasmosis in a patient receiving ixekizumab for psoriasis. JAAD Case Rep. 2020, 6, 204–206. [Google Scholar] [CrossRef]
- Muslimani, M.A.; Di Palma-Grisi, J. Severe acute toxoplasmosis infection following ustekinumab treatment in a patient with psoriasis vulgaris. BMJ Case Rep. 2019, 12, e230415. [Google Scholar] [CrossRef]
- Safa, G.; Darrieux, L. Cerebral toxoplasmosis after rituximab therapy. JAMA Intern. Med. 2013, 173, 924–926. [Google Scholar] [CrossRef]
- Javadzadeh, S.; Gkini, M.A.; Panos, G.D.; Adewoyin, T.; Bewley, A. Ocular toxoplasmosis in a patient treated with ustekinumab for psoriasis. Clin. Exp. Dermatol. 2020, 45, 802–804. [Google Scholar] [CrossRef]
- Biancardi, A.L.; Costa, J.B.; de Azevedo, L.G.B.; de Moraes, H.V.; Barroso, P.F.; Zaltman, C. Severe Necrotising Toxoplasmic Retinochoroiditis in a Patient with Crohn’s Disease in Use of Adalimumab and Azathioprine. Inflamm. Bowel Dis. 2020, 26, e69–e70. [Google Scholar] [CrossRef] [PubMed]
- Radwan, A.; Baheti, U.; Arcinue, C.A.; Hinkle, D.M. Acute unilateral toxoplasma retinochoroiditis associated with adalimumab, a tumor necrosis factor-alpha antagonist. Retin. Cases Brief Rep. 2013, 7, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Steeples, L.R.; Guiver, M.; Jones, N.P. Real-time PCR using the 529 bp repeat element for the diagnosis of atypical ocular toxoplasmosis. Br. J. Ophthalmol. 2016, 100, 200–203. [Google Scholar] [CrossRef]
- Enriquez-Marulanda, A.; Valderrama-Chaparro, J.; Parrado, L.; Diego Velez, J.; Maria Granados, A.; Luis Orozco, J.; Quinones, J. Cerebral toxoplasmosis in an MS patient receiving Fingolimod. Mult. Scler. Relat. Disord. 2017, 18, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Zecca, C.; Nessi, F.; Bernasconi, E.; Gobbi, C. Ocular toxoplasmosis during natalizumab treatment. Neurology 2009, 73, 1418–1419. [Google Scholar] [CrossRef]
- Raquel, C.C.; Lucia, T.C.; Carmen, V.M.; Ana, R.V.; Antonio, T.G.; Juan, P.L.; Carmen, A.G. Cerebral toxoplasmosis in patient with relapsing-remitting multiple sclerosis under treatment with alemtuzumab. Mult. Scler. Relat. Disord. 2020, 39, 101885. [Google Scholar] [CrossRef] [PubMed]
- Misra, D.P.; Chengappa, K.G.; Mahadevan, A.; Jain, V.K.; Negi, V.S. Sarcoidosis, neurotoxoplasmosis and golimumab therapy. QJM 2016, 109, 817–818. [Google Scholar] [CrossRef]
- Lickefett, B.; Chu, L.; Ortiz-Maldonado, V.; Warmuth, L.; Barba, P.; Doglio, M.; Henderson, D.; Hudecek, M.; Kremer, A.; Markman, J.; et al. Lymphodepletion—An essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front. Immunol. 2023, 14, 1303935. [Google Scholar] [CrossRef]
- Tur, C.; Eckstein, M.; Velden, J.; Rauber, S.; Bergmann, C.; Auth, J.; Bucci, L.; Corte, G.; Hagen, M.; Wirsching, A.; et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 2025, 84, 106–114. [Google Scholar] [CrossRef]
- CDC. Preventing Toxoplasmosis. Available online: https://www.cdc.gov/toxoplasmosis/prevention/index.html (accessed on 18 September 2025).
- Boyer, K.M.; Holfels, E.; Roizen, N.; Swisher, C.; Mack, D.; Remington, J.; Withers, S.; Meier, P.; McLeod, R.; Toxoplasmosis Study, G. Risk factors for Toxoplasma gondii infection in mothers of infants with congenital toxoplasmosis: Implications for prenatal management and screening. Am. J. Obstet. Gynecol. 2005, 192, 564–571. [Google Scholar] [CrossRef] [PubMed]
- FDA. Humira (Adalimumab). 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125057s0276lbl.pdf (accessed on 18 September 2025).
Total | Number of Cases (n = 46) | % (n = 46) | References |
---|---|---|---|
Sex | |||
Female | 24 | 52% | |
Male | 21 | 46% | |
Not Reported | 1 | 2% | |
Indication for Targeted Immunotherapy-Condition | |||
Rheumatologic | 16 | 35% | [10,14,15,16,17,18,19,20,21,22,23,24,25,26] |
Oncologic | 12 | 26% | [27,28,29,30,31,32,33,34,35,36,37] |
Transplant | 5 | 11% | [38,39,40,41,42] |
Dermatological autoimmune | 5 | 11% | [43,44,45,46,47] |
Gastrointestinal autoimmune | 3 | 7% | [48,49,50] |
Neurological autoimmune | 3 | 7% | [51,52,53] |
Pulmonary autoimmune | 1 | 2% | [54] |
Both Oncologic and Rheumatologic | 1 | 2% | [6] |
Biologics | |||
Anti TNF-α (e.g., adalimumab, etanercept, golimumab, infliximab) | 18 | 39% | |
Anti-CD20 (e.g., rituximab) | 5 | 11% | |
Anti-CD-52 (e.g., alemtuzumab) | 4 | 9% | |
T-cell co-stimulation inhibitor (e.g., abatacept, belatacept) | 3 | 7% | |
Anti-IL-12/IL-23 (e.g., ustekinumab) | 2 | 4% | |
Anti-IL-17 (e.g., ixekizumab) | 1 | 3% | |
Anti-cell adhesion molecule/integrin receptor inhibitor (e.g., natalizumab) | 1 | 2% | |
Anti-CD40 (e.g., iscalimab) | 1 | 2% | |
CAR T-cells | 3 | 7% | |
Small Molecules | |||
JAK inhibitors (e.g., ruxolitinib) | 4 | 9% | |
Tyrosine Kinase Inhibitor (e.g., erlotinib, imatinib) | 2 | 4% | |
MEK inhibitors (e.g., trametinib) | 1 | 2% | |
Sphingosine 1-phosphate receptor modulator (e.g., fingolimod) | 1 | 2% | |
Duration of Targeted Immunotherapy Prior to the Onset of Toxoplasmosis (per Type of Toxoplasma Infections) | |||
In Acute Toxoplasma infections | |||
3 weeks to >4 years | 13 | 28% | |
Not reported | 5 | 11% | |
In Reactivations | |||
1–2 months | 6 | 13% | |
>2 months | 6 | 13% | |
Not reported | 7 | 15% | |
Single dose only | 1 | 2% | |
In Unclear Types of Infections | |||
1 month to 4 years | 6 | 13% | |
Single dose only | 2 | 4% | |
Attribution of Toxoplasmosis to Targeted Immunotherapy | |||
Clearly Attributed | 25 | 54% | |
Targeted immunotherapy was given as monotherapy (n = 20) | [10,14,19,21,24,28,30,32,37,41,42,43,44,45,47,49,51,52,53,54] | ||
Recent addition of a targeted immunotherapy to a preexisting regimen of immunosuppressants (n = 4) | [8,19,38,46] | ||
Recent increase in the dose of targeted immunotherapy (n = 1) | [25] | ||
Likely at least co-attributed Targeted immunotherapy was given along with other immunosuppressant(s) (n = 21) | 21 | 46% | |
Type of Toxoplasma Infections | |||
Reactivation of chronic latent infection | 20 | 44% | [8,15,17,18,19,20,23,25,26,29,31,35,36,39,41,42,46,50,52] |
Acute primary infection ¥ | 18 | 39% | [6,10,14,19,22,24,28,32,37,38,40,43,44,45,47,48,49,51] |
Unclear/Not reported | 8 | 17% | [16,17,21,27,30,34,53,54] |
Toxoplasmosis Clinical Syndromes * | |||
Cerebral toxoplasmosis | 23 | 50% | [8,15,16,17,21,23,25,26,27,29,31,34,35,36,38,39,41,43,46,51,53,54] |
Ocular toxoplasmosis | 15 | 33% | [18,19,20,22,24,28,30,37,40,47,48,49,50,52] |
Lymphadenopathy | 3 | 7% | [14,44,45] |
Disseminated toxoplasmosis | 2 | 4% | [6,33] |
Cerebral and Ocular | 1 | 2% | [42] |
Pneumonic toxoplasmosis & | 1 | 2% | [32] |
Congenital toxoplasmosis (abnormal fetal scan/elective termination of pregnancy) | 1 | 2% | [10] |
Biologics | ||
---|---|---|
Anti-CD20 inhibitors | Rituximab (n = 5) | Cerebral toxoplasmosis with space occupying lesions (n = 5) [16,27,29,43,46] |
Anti-CD40 inhibitors | Iscalimab (n = 1) | Disseminated toxoplasmosis (n = 1) [42] |
Anti-CD52 Inhibitors | Alemtuzumab (n = 4) | Cerebral toxoplasmosis (n = 3) [31,36,53] |
Anti-IL12/IL23 inhibitors | Ustekinumab (n = 2) | Ocular toxoplasmosis-with vision loss (n = 1) [47] Lymphadenopathy (n = 1) [45] |
Anti-IL-7A inhibitors | Ixekizumab (n = 1) | Lymphadenopathy [44] |
Integrase inhibitors | Natalizumab (n = 1) | Ocular toxoplasmosis [52] |
TNF-a inhibitors | Adalimumab (n = 11) | Lymphadenopathy/Malaise (n = 1) [14] Cerebral toxoplasmosis (n = 3) [8,21,26] Ocular toxoplasmosis (n = 6) [18,22,24,48,49,50] Congenital toxoplasmosis (n = 1) [10] |
Golimumab (n = 1) | Cerebral toxoplasmosis [54] | |
Infliximab (n = 4) | Cerebral toxoplasmosis with space occupying lesions (n = 3) [17,23,25] Ocular toxoplasmosis with vision loss (n = 1) [19] | |
TNF-a inhibitor (specific name not reported) (n = 1) | Cerebral toxoplasmosis with space occupying lesion (n = 1) [15] | |
TNF-a and b inhibitors | Etanercept (n = 1) | Ocular toxoplasmosis [19] |
T-cell co-stimulation inhibitors | Belatacept (n = 2) | Cerebral toxoplasmosis (n = 1) [41] Ocular toxoplasmosis-with vision loss (n = 1) [40] |
Abatacept (n = 1) | Ocular toxoplasmosis [20] | |
CAR T-cells (n = 3) | Cerebral toxoplasmosis (n = 2) [34,35] Disseminated (n = 1) [33] | |
Small Molecules | ||
JAK inhibitors | Ruxolitinib (n = 3) | Cerebral toxoplasmosis-with space occupying lesions (n = 2) [38,39] Ocular toxoplasmosis-bilateral (n = 1) [28] |
JAK 3 inhibitor | Specific name not reported (n = 1) | Pneumonic toxoplasmosis [32] |
MEK inhibitors | Trametinib (n = 1) | Disseminated toxoplasmosis (cerebral, ocular, myocarditis, myositis) [6] |
Tyrosine Kinase Inhibitor | Erlotinib (n = 1) | Ocular toxoplasmosis [37] |
Imatinib (n = 1) | Ocular toxoplasmosis [30] | |
Sphingosine 1-phosphate receptor modulator | Fingolimod (n = 1) | Cerebral toxoplasmosis [51] |
Number of Cases (n = 46) | % (n = 46) | References | ||
---|---|---|---|---|
T. gondii Diagnostics & | ||||
Serology | 33 | 72% | ||
Serology only | 10 | |||
Multimodal diagnostics with serology | 23 | |||
PCR | 21 | 46% | ||
PCR only (CSF, blood, aqueous or vitreous fluid, amniotic fluid) | 4 | |||
Multimodal diagnostics with PCR | 17 | |||
Brain Biopsy | 15 | 33% | ||
Brain biopsy histopathology only | 2 | |||
Multimodal diagnostics with brain biopsy | 13 | |||
Radiological characteristics typical (negative serology) | 2 | 4% | ||
Not reported | 1 | 2% | ||
Multimodal T. gondii Diagnostics | 27 | 59% | ||
Serology and PCR of body fluid (CSF, blood, aqueous, or vitreous fluid) | 12 | |||
Serology and Next Generation Sequencing (plasma) [43] | 1 | |||
Serology and Brain biopsy histopathology/immunohistochemistry | 9 | |||
Brain biopsy histopathology/immunohistochemistry and PCR | 4 | |||
Serology, PCR (amniotic fluid), fetal autopsy | 1 | |||
Modification of Targeted Immunotherapy at the time of Presentation of Toxoplasmosis | ||||
Discontinued (temporarily/deferred or permanently) * | 25 | 54% | [8,14,15,17,18,19,20,21,22,24,26,28,29,39,41,42,43,45,47,48,49,50,51,52,53] | |
Continued | 2 | 4% | [30,44] | |
Decreased | 1 | 2% | [38] | |
Not applicable: Patient had completed targeted immunotherapy prior to infection; or had received CAR T-cells single infusion or patient had died or had discontinued targeted immunotherapy prior to conception | 10 | 22% | [10,16,31,32,33,34,35,46,54] | |
Not reported | 8 | 17% | ||
Modification of Targeted Immunotherapy after completion of the anti-Toxoplasma treatment (applicable only for the cases who had discontinued the targeted immunotherapy at the time of diagnosis) (n = 25) | ||||
Permanent discontinuation of biologic/small molecule | 6 | [8,15,24,29,43,48] | ||
Permanent discontinuation of all immunosuppressants (including targeted immunotherapies) | 3 | [45,50,53] | ||
Temporary discontinuation | 2 | [14,47] | ||
Switch to another biologic/small molecule | 2 | [22,51] | ||
Not reported | 12 | [17,18,19,20,21,26,28,39,41,42,49,52] | ||
Initial Anti-Toxoplasma Therapy | ||||
Pyrimethamine + Sulfadiazine + Folinic acid | 18 | 39% | [8,15,16,19,21,29,31,32,34,35,40,43,46,49,52,53] | |
TMP-SMX | 17 | 37% | [6,14,17,18,20,22,24,26,28,30,33,39,41,42,48,50,54] | |
Pyrimethamine + Other agents (e.g., clindamycin, azithromycin, dapsone) | 6 | 13% | [23,25,38,44,47,51] | |
Atovaquone | 1 | 2% | [37] | |
No treatment (only discontinuation of the Biologic agent) | 1 | 2% | [45] | |
No treatment (Case of elective pregnancy termination due to severe Congenital Toxoplasmosis) | 1 | 2% | [10] | |
Not reported | 2 | 4% | [27,36] | |
Duration of Anti-Toxoplasma Therapy | ||||
2–3 weeks | 1 | 2% | [44] | |
4–5 weeks | 5 | 11% | [24,47,49,52,53] | |
6–8 weeks | 13 | 28% | [8,17,19,20,21,22,29,30,32,35,40,41,42] | |
10–16 weeks | 4 | 9% | [6,15,39,43] | |
No treatment—only discontinuation of biologic agent | 1 | 2% | [45] | |
No treatment—elective pregnancy termination due to severe congenital toxoplasmosis, from a retrospectively identified acute maternal Toxoplasma infection 6–7 months before conception) | 1 | 2% | [10] | |
Not applicable—patient expired | 3 | 7% | [31,33,54] | |
Not reported | 18 | 39% | ||
Clinical Outcomes | ||||
Favorable Outcomes | 27 | 59% | ||
Complete Recovery | Complete clinical recovery (n = 7) | 9 | 20% | [8,14,30,39,44,45,53] |
Complete radiographic recovery (n = 2) | [36,43] | |||
Clinical Improvement (by the time of last follow up) | 17 | 37% | [6,15,19,21,22,23,25,28,29,31,34,35,41,42,48,49,52] | |
Radiographic improvement | 1 | 2% | [51] | |
Unfavorable Outcomes | 17 | 37% | ||
Residual deficits or no recovery | Cerebral (n = 1) | 8 | 17% | [46] |
Ocular (n = 7) | [18,19,20,24,40,47,50] | |||
Complications | Guillain Barre Syndrome (GBS) # [38]; Brain hemorrhage after brain biopsy Δ [17]; Psychiatric complications [16] | 3 | 7% | [16,17,38] |
Deceased due to toxoplasmosis | 4 | 9% | [27,31,33,54] | |
Deceased not due to toxoplasmosis (likely from metastatic lung adenocarcinoma after clinical improvement of ocular toxoplasmosis) | 1 | 2% | [37] | |
Terminated pregnancy (due to severe congenital toxoplasmosis in the fetus) | 1 | 2% | [10] | |
Not reported | 2 | 4% | [26,36] | |
Secondary Prophylaxis | ||||
TMP/SMX: | Cerebral toxoplasmosis | 7 | 15% | [8,39,43] |
Ocular toxoplasmosis | [18,20] | |||
Pneumonic toxoplasmosis | [32] | |||
Cerebral and ocular toxoplasmosis | [42] | |||
Pyrimethamine/Sulfadiazine/Folinic acid: | Cerebral toxoplasmosis | 3 | 7% | [29,35,53] |
Atovaquone: | Cerebral toxoplasmosis | 1 | 2% | [15] |
No prophylaxis: | Ocular | 1 | 3% | [22] |
Not applicable: | Congenital toxoplasmosis | 5 | 11% | [10] |
Expired from cerebral toxoplasmosis | [27,31,54] | |||
Expired from disseminated toxoplasmosis | [33] | |||
Not reported | 29 | 63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.M.; Montoya, J.G.; Contopoulos-Ioannidis, D.G. Toxoplasmosis in the Era of Targeted Immunotherapy: A Systematic Review of Emerging Cases Linked to Biologics and Small Molecules in Autoimmune Diseases, Oncology and Transplantation. Pathogens 2025, 14, 1001. https://doi.org/10.3390/pathogens14101001
Cho SM, Montoya JG, Contopoulos-Ioannidis DG. Toxoplasmosis in the Era of Targeted Immunotherapy: A Systematic Review of Emerging Cases Linked to Biologics and Small Molecules in Autoimmune Diseases, Oncology and Transplantation. Pathogens. 2025; 14(10):1001. https://doi.org/10.3390/pathogens14101001
Chicago/Turabian StyleCho, Stephanie M., Jose G. Montoya, and Despina G. Contopoulos-Ioannidis. 2025. "Toxoplasmosis in the Era of Targeted Immunotherapy: A Systematic Review of Emerging Cases Linked to Biologics and Small Molecules in Autoimmune Diseases, Oncology and Transplantation" Pathogens 14, no. 10: 1001. https://doi.org/10.3390/pathogens14101001
APA StyleCho, S. M., Montoya, J. G., & Contopoulos-Ioannidis, D. G. (2025). Toxoplasmosis in the Era of Targeted Immunotherapy: A Systematic Review of Emerging Cases Linked to Biologics and Small Molecules in Autoimmune Diseases, Oncology and Transplantation. Pathogens, 14(10), 1001. https://doi.org/10.3390/pathogens14101001