Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Method
2.2. Morphological and Molecular Identification of Molds
2.3. MTT Test for Assessing Fungal Cytotoxicity
2.4. High-Performance Liquid Chromatography (HPLC)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marcelloni, A.M.; Pigini, D.; Chiominto, A.; Gioffrè, A.; Paba, E. Exposure to airborne mycotoxins: The riskiest working environments and tasks. Ann. Work. Expo. Health 2023, 68, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.D.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2020, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- Chinaza, G.A.; Clifford, I.O.; Chika, C.O.; Victory, S.I. Evaluation of Patulin Levels and impacts on the Physical Characteristics of Grains. Int. J. Adv. Acad. Res. 2019, 5, 10–25. [Google Scholar]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.B.; Hubka, V.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef] [PubMed]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi. Westerdijk Laboratory Manual Series: 2, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Twarużek, M.; Zastempowska, E.; Soszczyńska, E.; Ałtyn, I. The use of in vitro assays for the assessment of cytotoxicity on the example of MTT test. Acta Univ. Lodz. Folia Biol. Oecol 2018, 14, 23–32. [Google Scholar] [CrossRef]
- Heussner, A.H.; Dietrich, D.R. Primary porcine proximal tubular cells as an alternative to human primary renal cells in vitro: An initial characterization. BMC Cell Biol. 2013, 14, 55. [Google Scholar] [CrossRef]
- Hanelt, M.; Gareis, M.; Kollarczik, B. Cytotoxicity of mycotoxins evaluated by the MTT cell culture assay. Mycopathologia 1994, 128, 164–174. [Google Scholar] [CrossRef]
- Pietrzak, K.; Twarużek, M.; Czyżowska, A.; Kosicki, R.; Gutarowska, B. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim. Pol. 2015, 62, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Pusz, W.; Plaskowska, E.; Weber, W.; Kita, W. Assessing the Abundance of Airborne Fungi in a Dairy Cattle Barn. Pol. J. Environ. Stud. 2015, 24, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Matković, K.; Vučemilo, M.; Vinković, B. Airborne fungi in dwellings for dairy dows and laying hens. Arch. Ind. Hyg. Toxicol. 2009, 60, 395–399. [Google Scholar]
- Almatawah, Q.A.; Al-Khalaifah, H.S.; Aldameer, A.S.; Ali, A.K.; Benhaji, A.H.; Varghese, J.S. Microbiological Indoor and Outdoor Air Quality in Chicken Fattening Houses. J. Environ. Public. Health 2023, 29, 3512328. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, J.; Lenart-Boroń, A. Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiologia 2020, 36, 233–248. [Google Scholar] [CrossRef]
- Matković, K.; Vučemilo, M.; Vinković, B.; Šeol, B.; Pavičić, Ž.; Matković, S. Qualitative structure of airborne bacteria and fungi in dairy barn and nearby environment. Czech J. Anim. Sci. 2007, 52, 249–253. [Google Scholar] [CrossRef]
- Radon, K.; Danser, B.; Iversen, M.; Monso, E.; Weber, C.; Hartung, J.; Donham, K.; Palmgren, U.; Nowak, D. Air contaminants in different European farming environments. Ann. Agric. Environ. Med. 2002, 9, 41–48. [Google Scholar] [PubMed]
- Skóra, J.; Sulyok, M.; Nowak, A.; Otlewska, A.; Gutarowska, B. Toxinogenicity and cytotoxicity of Alternaria, Aspergillus and Penicillium moulds isolated from working environments. Int. J. Environ. Sci. Technol. 2017, 14, 595–608. [Google Scholar] [CrossRef]
- Jakšić, D.; Kocsubé, S.; Bencsik, O.; Kecskeméti, A.; Szekeres, A.; Jelić, D.; Kopjar, N.; Vágvölgyi, C.; Varga, J.; Šegvić Klarić, M. Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicol. Vitr. 2018, 53, 160–171. [Google Scholar] [CrossRef]
- Salambanga, F.R.D.; Wingert, L.; Valois, I.; Lacombe, N.; Gouin, F.; Trépanier, J.; Debia, M.; Soszczyńska, E.; Twarużek, M.; Kosicki, R.; et al. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. Environ. Res. 2022, 212, 113597. [Google Scholar] [CrossRef]
- Gniadek, A.; Krzyściak, P.; Twarużek, M.; Macura, A.B. Occurrence of fungi and cytotoxicity of the species: Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus isolated from the air of hospital wards. Int. J. Occup. Med. Environ. Health 2020, 30, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Ngolong Ngea, G.L.; Yang, Q.; Castoria, R.; Zhang, X.; Routledge, M.N.; Zhang, H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2447–2472. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, F.; Gherbawy, Y.; Najjar, A. Detection of the patulin-producing potential of some Paecilomyces variotii strains isolated from the air samples of Jeddah City, Saudi Arabia, using the RAPD-PCR technique. Aerobiologia 2009, 25, 49–54. [Google Scholar] [CrossRef]
- Bacha, S.A.S.; Li, Y.; Nie, J.; Xu, G.; Han, L.; Farooq, S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. Front. Plant Sci. 2023, 14, 1139757. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Martín, J.F. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl. Microbiol. Biotechnol. 2016, 100, 8303–8313. [Google Scholar] [CrossRef] [PubMed]
- Altomare, C.; Logrieco, A.F.; Gallo, A. Mycotoxins and Mycotoxigenic Fungi: Risk and Management. A Challenge for Future Global Food Safety and Security. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Bryła, M.; Pierzgalski, A.; Zapaśnik, A.; Uwineza, P.A.; Ksieniewicz-Woźniak, E.; Modrzewska, M.; Waśkiewicz, A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2020, 11, 3465. [Google Scholar] [CrossRef] [PubMed]
- Hallas-Møller, M.; Nielsen, K.N.; Frisvad, J.C.H. Production of the Fusarium Mycotoxin Moniliformin by Penicillium melanoconidium. J. Agric. Food Chem. 2016, 64, 4505–4510. [Google Scholar] [CrossRef] [PubMed]
- Paguigan, N.D.; Al-Huniti, M.H.; Raja, H.A.; Czarnecki, A.; Burdette, J.E.; González-Medina, M.; Medina-Franco, J.L.; Polyak, S.J.; Pearce, C.J.; Croatt, M.P.; et al. Chemoselective fluorination and chemoinformatic analysis of griseofulvin: Natural vs fluorinated fungal metabolites. Bioorganic Med. Chem. 2017, 25, 5238–5246. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, F.; Sharifirad, A.; Yakhchali, B.; Ansari, S.; Fatemi, S.S. Production of Mycophenolic Acid by a Newly Isolated Indigenous Penicillium glabrum. Curr. Microbiol. 2021, 78, 2420–2428. [Google Scholar] [CrossRef]
- Muhammad, M.; Ahmad, J.; Basit, A.; Mohamed, H.I.; Khan, A.; Kamel, E.A.R. Antimicrobial activity of Penicillium species metabolites. In Fungal Secondary Metabolites Synthesis and Applications in Agroecosystem, 1st ed.; Abd-Elsalam, K.A., Mohamed, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 369–383. [Google Scholar]
- Guadalupe Frías-De-León, M.; García-Salazar, E.; Acosta-Altamirano, G. Virulence Attributes in Aspergillus fumigatus; IntechOpen: London, UK, 2023. [Google Scholar]
- Kubosaki, A.; Kobayashi, N.; Watanabe, M.; Yoshinari, T.; Takatori, K.; Kikuchi, Y.; Hara-Kudo, Y.; Terajima, J.; Sugita-Konishi, Y. A new protocol for the detection of sterigmatocystin-producing Aspergillus section Versicolores using a high discrimination polymerase. Biocontrol Sci. 2020, 25, 113–118. [Google Scholar] [CrossRef]
- Zingales, V.; Fernández-Franzón, M.; Ruiz, M.J. Sterigmatocystin: Occurrence, toxicity and molecular mechanisms of action—A review. Food Chem. Toxicol. 2020, 146, 111802. [Google Scholar] [CrossRef] [PubMed]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef]
- Zentai, A.; Szeitzné-Szabó, M.; Mihucz, G.; Szeli, N.; Szabó, A.; Kovács, M. Occurrence and Risk Assessment of Fumonisin B1 and B2 Mycotoxins in Maize-Based Food Products in Hungary. Toxins 2019, 5, 709. [Google Scholar] [CrossRef] [PubMed]
- Onami, J.I.; Watanabe, M.; Yoshinari, T.; Hashimoto, R.; Kitayama, M.; Kobayashi, N.; Sugita-Konishi, Y.; Kamata, Y.; Takahashi, H.; Kawakami, H.; et al. Fumonisin-production by Aspergillus section Nigri isolates from Japanese Foods and Environments. Food Saf. 2018, 29, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Lanier, C.; Richard, E.; Heutte, N.; Picquet, R.; Bouchart, V.; Garon, D. Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment. Atmos. Environ. 2010, 44, 1980–1986. [Google Scholar] [CrossRef]
- Skóra, J.; Matusiak, K.; Wojewódzki, P.; Nowak, A.; Sulyok, M.; Ligocka, A.; Okrasa, M.; Hermann, J.; Gutarowska, B. Evaluation of microbiological and chemical contaminants in poultry farms. Int. J. Environ. Res. Public Health 2016, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.T.; Oliveira, C.A.F. Assessment of occupational and dietary exposures of feed handling workers to mycotoxins in rural areas from São Paulo, Brazil. Sci. Total Environ. 2022, 837, 155763. [Google Scholar] [CrossRef] [PubMed]
- Ndaw, S.; Remy, A.; Jargot, D.; Antoine, G.; Denis, F.; Robert, A. Mycotoxins exposure of french grain elevator workers: Biomonitoring and airborne measurements. Toxins 2021, 13, 382. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, O.; Robert, S.; Noyon, N. Airborne mycotoxins in waste recycling and recovery facilities: Occupational exposure and health risk assessment. Waste Manag. 2020, 105, 395–404. [Google Scholar] [CrossRef]
- Szulc, J.; Okrasa, M.; Majchrzycka, K.; Sulyok, M.; Nowak, A.; Ruman, T.; Nizioł, J.; Szponar, B.; Gutarowska, B. Microbiological and toxicological hazards in sewage treatment plant bioaerosol and dust. Toxins 2021, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Szulc, J.; Okrasa, M.; Majchrzycka, K.; Sulyok, M.; Nowak, A.; Szponar, B.; Górczyńska, A.; Ryngajłło, M.; Gutarowska, B. Microbiological and toxicological hazard assessment in a waste sorting plant and proper respiratory protection. J. Environ. Manag. 2021, 303, 114257. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Veiga, L.; Malta-Vacas, J.; Sabino, R.; Figueredo, P.; Almeida, A.; Viegas, C.; Carolino, E. Occupational exposure to aflatoxin (AFB1) in poultry production. J. Toxicol. Environ. Health 2012, 75, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Veiga, L.; Figueredo, P.; Almeida, A.; Carolino, E.; Sabino, R.; Veríssimo, C.; Viegas, C. Occupational exposure to aflatoxin B1: The case of poultry and swine production. World Mycotoxin J. 2013, 6, 309–315. [Google Scholar] [CrossRef]
- Skrzydlewski, P.; Twarużek, M.; Grajewski, J. Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins 2022, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Wösten, H.A.B. Filamentous fungi for the production of enzymes, chemicals and materials. Curr. Opin. Biotechnol. 2019, 59, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Connolly, L.; Frizzell, C.; Elliott, C.H.T. Cytotoxic assessment of the regulated, co-existing mycotoxins aflatoxin B1, fumonisin B1 and ochratoxin, in single, binary and tertiary mixtures. Toxicon 2014, 90, 70–81. [Google Scholar] [CrossRef]
- Gao, Y.N.; Wang, J.Q.; Li, S.L.; Zhang, Y.D.; Zheng, N. Aflatoxin M1 cytotoxicity against human intestinal Caco-2 cells is enhanced in the presence of other mycotoxins. Food Chem. Toxicol. 2016, 96, 79–89. [Google Scholar] [CrossRef]
Precursor Ion [m/z] | Product Ions [m/z] a | Declustering Potential [V] | Collision Energy [V] | Cell exit Potential [V] | ||
---|---|---|---|---|---|---|
15-Acetyldeoxynivalenol | [M+H]+ | 339.1 | 321.2/137.2 | 91 | 13/17 | 18/8 |
3-Acetyldeoxynivalenol | [M+Ac]− | 397.3 | 59.2/307.1 | −70 | −38/−20 | −8/−7 |
Aflatoxin B1 | [M+H]+ | 313.1 | 285.2/128.1 | 106 | 33/91 | 16/10 |
Aflatoxin B2 | [M+H]+ | 315.1 | 287.2/259.2 | 96 | 37/43 | 18/18 |
Aflatoxin G1 | [M+H]+ | 329.1 | 243.1/200.0 | 86 | 39/59 | 14/12 |
Aflatoxin G2 | [M+H]+ | 331.1 | 313.2/245.2 | 111 | 35/43 | 18/14 |
Aflatoxin M1 | [M+H]+ | 329.1 | 273.2/229.1 | 91 | 35/59 | 16/12 |
a-Zearalanol | [M-H]− | 321.2 | 277.2/303.2 | −115 | −32/−30 | −13/−15 |
a-Zearalenol | [M-H]− | 319.2 | 160.1/130.1 | −115 | −44/−50 | −13/−20 |
b-Zearalanol | [M-H]− | 321.2 | 277.2/303.2 | −115 | −32/−30 | −13/−15 |
b-Zearalenol | [M-H]− | 319.2 | 160.0/130.0 | −115 | −44/−50 | −13/−20 |
Deepoxydeoxynivalenol | [M+Ac]− | 339.1 | 59.1/249.0 | −70 | −20/−18 | −9/−17 |
Deoxynivalenol | [M+Ac]− | 355.1 | 265.2/59.2 | −70 | −22/−40 | −13/−8 |
Diacetoxyscirpenol | [M+NH4]+ | 384.2 | 307.2/105.1 | 81 | 17/61 | 9/7 |
Deoxynivalenol 3-Glucoside | [M+Ac]− | 517.3 | 427.1/59.1 | −80 | −30/−85 | −11/−7 |
Fumonisin B1 | [M+H]+ | 722.5 | 334.4/352.3 | 121 | 57/55 | 4/12 |
Fumonisin B2 | [M+H]+ | 706.5 | 336.4/318.4 | 126 | 59/51 | 8/2 |
Fumonisin B3 | [M+H]+ | 706.5 | 336.3/318.5 | 126 | 59/51 | 8/2 |
Fusarenon X | [M+Ac]− | 413.2 | 59.1/263.0 | −70 | −44/−22 | −9/−16 |
Gliotoxin | [M+H]+ | 327.1 | 263.2/245.3 | 61 | 15/25 | 16/20 |
Griseofulvin | [M+H]+ | 353.2 | 165.2/215.2 | 81 | 27/27 | 10/12 |
HT-2 Toxin | [M+NH4]+ | 442.2 | 263.1/345.1 | 76 | 21/27 | 19/20 |
Mevinolin | [M+H]+ | 405.3 | 199.2/173.3 | 76 | 17/29 | 14/10 |
Moniliformin | [M-H]− | 96.9 | 41,2 | −100 | −24 | −5 |
Monoacetoxyscirpenol | [M+NH4]+ | 342.2 | 265.1/307.2 | 71 | 13/13 | 26/8 |
Mycophenolic acid | [M+NH4]+ | 338.1 | 207.2/303.2 | 61 | 33/19 | 16/18 |
Neosolaniol | [M+NH4]+ | 400.2 | 215.0/185.0 | 76 | 25/29 | 12/14 |
Nivalenol | [M+Ac]− | 371.1 | 281.1/59.1 | −75 | −22/−45 | −15/−7 |
Ochratoxin A | [M+H]+ | 404.0 | 239.0/102.0 | 91 | 37/105 | 16/14 |
Ochratoxin B | [M+H]+ | 370.1 | 205.0/103.1 | 86 | 33/77 | 12/16 |
Patulin | [M-H]− | 153.0 | 109.0/81.0 | −50 | −12/−18 | −9/−11 |
Roquefortine C | [M+H]+ | 390.2 | 193.2/322.2 | 91 | 39/29 | 10/18 |
Sterigmatocystin | [M+H]+ | 325.1 | 310.2/281.1 | 96 | 35/51 | 18/16 |
T-2 Tetraol | [M+NH4]+ | 316.2 | 215.2/281.2 | 61 | 13/13 | 16/8 |
T-2 Toxin | [M+NH4]+ | 484.3 | 215.2/185.1 | 56 | 29/31 | 18/11 |
T-2 Triol | [M+NH4]+ | 400.2 | 281.3/215.2 | 71 | 13/17 | 16/12 |
Zearalenone | [M-H]− | 319.2 | 205.2/107.0 | −125 | −34/−40 | −13/−5 |
Zearalenone | [M-H]− | 317.1 | 131.1/175.0 | −110 | −42/−34 | −8/−13 |
Limit of Detection LOD (ng/g) | Limit of Quantification (LOQ) (ng/g) | |
---|---|---|
15-acetyldeoxynivalenol | 3.6 | 12.0 |
3-acetyldeoxynivalenol | 4.2 | 14.0 |
aflatoxin B1 | 0.9 | 3.0 |
aflatoxin B2 | 1.5 | 5.0 |
aflatoxin G1 | 1.2 | 4.0 |
aflatoxin G2 | 1.2 | 4.0 |
aflatoxin M1 | 1.5 | 5.0 |
deepoxydeoxynivalenol | 4.2 | 14.0 |
deoxynivalenol | 7.8 | 26.0 |
deoxynivalenol 3-glucoside | 7.5 | 25.0 |
diacetoxyscirpenol | 1.2 | 4.0 |
fumonisin B1 | 3.6 | 12.0 |
fumonisin B2 | 3.0 | 10.0 |
fumonisin B3 | 3.6 | 12.0 |
fusarenon X | 6.0 | 20.0 |
gliotoxin | 2.1 | 7.0 |
griseofulvin | 1.2 | 4.0 |
HT-2 toxin | 1.8 | 6.0 |
mevinolin | 2.4 | 8.0 |
moniliformin | 15.0 | 50.0 |
monoacetoxyscirpenol | 1.8 | 6.0 |
mycophenolic acid | 3.6 | 12.0 |
neosolaniol | 1.5 | 5.0 |
nivalenol | 9.0 | 30.0 |
ochratoxin A | 1.5 | 5.0 |
ochratoxin B | 1.8 | 6.0 |
patulin | 6.0 | 20.0 |
roquefortine C | 1.8 | 6.0 |
sterigmatocystin | 1.5 | 5.0 |
T-2 toxin | 0.9 | 3.0 |
T-2 tetraol | 13.5 | 45.0 |
T-2 triol | 2.4 | 8.0 |
zearalanone | 3.3 | 11.0 |
zearalenone | 1.5 | 5.0 |
α-zearalanol | 2.1 | 7.0 |
α-zearalenol | 2.4 | 8.0 |
β-zearalanol | 3.0 | 10.0 |
β-zearalenol | 2.1 | 7.0 |
Species | Level of Cytotoxicity | IC50 | Dilution | |||
---|---|---|---|---|---|---|
cm2/mL | Steps * | |||||
P. commune 5aw | ++ | 3.906 | 4 | |||
P. commune 14bz | + | 7.813 | 3 | |||
P. commune 22az | + | 7.813 | 3 | |||
P. commune 17fz | + | 31.25 | 1 | |||
P. commune 14aj | + | 7.813 | 3 | |||
P. solitum 15aj | + | 31.25 | 1 | |||
P. raistrickii 9bw | ++ | 0.977 | 6 | |||
P. glandicola 8bw | ++ | 0.977 | 6 | |||
P. glandicola 7aw | ++ | 0.977 | 6 | |||
P. glandicola 7bw | ++ | 0.488 | 7 | |||
P. glandicola 6aw | ++ | 1.953 | 5 | |||
P. griseofulvum 17az | +++ | 0.061 | 10 | |||
P. griseofulvum 18cz | +++ | 0.061 | 10 | |||
P. griseofulvum 19dz | +++ | 0.061 | 10 | |||
P. chrysogenum 18bj | ++ | 3.906 | 4 | |||
P. chrysogenum 22aj | + | 31.25 | 1 | |||
P. chrysogenum 20aez | + | 15.625 | 2 | |||
P. chrysogenum 15aw | +++ | 0.244 | 8 | |||
P. glabrum 1bw | ++ | 0.488 | 7 | |||
P. glabrum 4cw | + | 7.813 | 3 | |||
P. glabrum 9aw | ++ | 1.953 | 5 | |||
P. citreosulfuratum 1az | + | 31.25 | 1 | |||
P. lanosocoeruleum 24aj | ++ | 1.953 | 5 | |||
P. lanosocoeruleum 17aj | + | 7.813 | 3 | |||
P. allii 19ez | + | 15.625 | 2 | |||
P. citrinum 15az | + | 7.813 | 3 | |||
P. citrinum 19bz | + | 7.813 | 3 | |||
P. citrinum 15bl | + | 15.625 | 2 | |||
P. citrinum 15dl | +++ | 0.244 | 8 | |||
P. steckii 18cw | +++ | 0.244 | 8 | |||
P. steckii 20cz | + | 31.25 | 1 | |||
P. steckii 21bj | ++ | 3.906 | 4 | |||
P. steckii 22ej | + | 15.625 | 2 | |||
P. steckii 18bz | none | - | - | |||
P. steckii 25cj | ++ | 3.906 | 4 | |||
P. sumatraense 15bz | +++ | 0.122 | 9 | |||
P. sumatraense 8dl | ++ | 0.977 | 6 | |||
P. sumatraense 16dw | ++ | 0.488 | 7 | |||
P. copticola 17bz | ++ | 7.813 | 3 | |||
P. brevicompactum 30ej | ++ | 1.953 | 5 | |||
P. brevicompactum 28 d | ++ | 1.953 | 5 | |||
P. brevicompactum 2b | + | 7.813 | 3 | |||
P. bialowieziense 29a | ++ | 1.953 | 5 | |||
P. bialowieziense 9bj | + | 31.25 | 1 | |||
P. olsonii 25bj | ++ | 3.906 | 4 | |||
P. olsonii 13bz | + | 15.625 | 2 | |||
Penicillium sp. 1cz | + | 31.25 | 1 | |||
Penicillium sp. 11dl | ++ | 1.953 | 5 | |||
Penicillium sp. 12al | ++ | 1.953 | 5 | |||
Penicillium sp. 19bj | + | 31.25 | 1 | |||
Penicillium sp. 19cj | + | 31.25 | 1 | |||
Penicillium sp. 27bj | ++ | 3.906 | 4 |
Species | Level of Cytotoxicity | IC50 | Dilution | |||
---|---|---|---|---|---|---|
cm2/mL | Steps * | |||||
A. ochraceus 4bw | ++ | 1.953 | 5 | |||
A. ochraceus 17ez | ++ | 0.488 | 7 | |||
A. ochraceus 2bz | + | 31.25 | 1 | |||
A. ochraceus 1bl | ++ | 0.488 | 7 | |||
A. westerdijikiae 11al | +++ | 0.244 | 8 | |||
A. westerdijikiae 1dz | +++ | 0.122 | 9 | |||
A. ostianus 17cj | ++ | 3.906 | 4 | |||
A. ostainus 17cz A.elegans 14al | + | +++ | 15.625 | 2 | ||
A. elegans 14cl | ++ | 3.906 | 4 | |||
A. elegans 24bz | ++ | 1.953 | 5 | |||
A. elegans 22cz | ++ | 3.906 | 4 | |||
A. flavus 2gw | ++ | 0.977 | 2 | |||
A. flavus 18aw | ++ | 3.906 | 4 | |||
A. giganteus 19cz | +++ | 0.061 | 10 | |||
A. sydowii 5bl | + | 15.625 | 2 | |||
A. puulaeansis 4bl | + | 7.813 | 3 | |||
A. niger 7fj | ++ | 3.906 | 4 | |||
A. niger 15cj | none | - | - | |||
A. niger 25aj | ++ | 3.906 | 4 | |||
A. niger 2al | ++ | 3.906 | 4 | |||
A. niger 21az | + | 31.25 | 1 | |||
A. niger 25cz | + | 31.25 | 1 | |||
A. fumigatus 5bw | +++ | 0.061 | 10 | |||
A. fumigatus 4gw | +++ | 0.122 | 9 | |||
A. fumigatus 3fw | +++ | 0.061 | 10 | |||
A. fumigatus 9bl | ++ | 0.977 | 6 | |||
A. fumigatus 10al | + | 7.813 | 3 | |||
A. fumigatus 6cw | + | 31.25 | 1 | |||
A. fumigatus 9dl | +++ | 0.0038 | 14 | |||
A. fumigatus 10bl | +++ | 0,0038 | 14 | |||
A. fumigatus 6dl | ++ | 3.906 | 4 |
Metabolites | Concentration (ng g−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P. chrysogenum 18bj | P. chrysogenum 22aj | P. chrysogenum 9aw | P. lanosocoeruleum 24aj | P. lanosocoeruleum 17aj | P.allii 19ez | Penicillium sp. 11dl | Penicllium sp.12al | Penicillium sp. 19bj | Penicillium sp. 19cj | Penicillium sp. 27 bj | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
griseofulvin | <LOD | <LOQ | <LOD | <LOD | 52240 | <LOD | 550000 | 430500 | <LOQ | <LOQ | <LOD |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOQ | <LOQ | 24.2 | <LOQ | 41.1 | <LOD | <LOD | <LOD | <LOQ | <LOQ | 209200 |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
roquefortine C | 2941 | 2347 | <LOD | 3.47 | 53.4 | 1090 | 12.5 | <LOD | 2051 | 3210 | <LOD |
sterigmatocystin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Metabolites | Concentration (ng g−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
P. commune 14bz | P. commune 17fz | P. commune 14aj | P. solitum 15aj | P. raistrickii 9bw | P. glandicola 7aw | P. griseofulvum 17az | P. griseofulvum 18cz | P. griseofulvum 19dz | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
griseofulvin | <LOD | <LOD | <LOD | <LOD | 1210 | <LOD | 8220 | 10900 | 13600 |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 8500 | <LOD |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOD | <LOD | 108.9 | 237.5 | <LOD | 1470 | <LOD | <LOD | <LOD |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 366000 | 380000 | 30300 |
roquefortine C | 1580 | 2350 | 19.4 | 29690 | <LOD | <LOD | <LOD | <LOD | <LOD |
sterigmatocystin | <LOD | <LOD | 6.658 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Metabolites | Concentration (ng −1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A.giganteus 19cz | A.sydowii 5bl | A. puulaeansis 4bl | A. niger 7f | A.niger 15c | A. niger 25a | A. niger 25cz | A. westerdijikiae 11al | A. westerdijikiae 1dz | A. ostianus 17cj | A. ostianus 17cz | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | 127.9 | 195.3 | 30.9 | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
griseofulvin | <LOD | <LOD | <LOD | <LOD | <LOQ | <LOD | <LOD | <LOD | <LOD | 6.93 | 10300 |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 52900 |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOD | <LOD | <LOD | 158.4 | 40.9 | <LOD | <LOD | <LOD | <LOD | 21.8 | <LOD |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 23.6 | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 20.3 | <LOD | <LOD | <LOD | <LOD |
patulin | 84600 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 59.0 | <LOD | 491000 |
roquefortine C | <LOD | 9.6 | <LOQ | 21.9 | 38.4 | <LOQ | <LOD | 383000 | <LOD | <LOQ | <LOD |
sterigmatocystin | <LOD | 24850 | 29050 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Metabolites | Concentration (ng g−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A. elegans 14al | A. elegans 14cl | A. elegans 24bz | A. fumigatus 5bw | A. fumigatus 4gw | A. fumigatus 3fw | A. fumigatus 9bl | A. fumigatus 10al | A. fumigatus 6cw | A. fumigatus 9dl | A. fumigatus 10bl | A. fumigatus 6dl | |
15-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
3-acetyldeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin G2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
aflatoxin M1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deepoxydeoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
deoxynivalenol 3-glucoside | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
diacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B1 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B2 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fumonisin B3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
fusarenon X | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
gliotoxin | <LOD | <LOD | <LOD | 3490 | 2820 | 4190 | 2155 | 391.5 | <LOD | 34300 | 2555 | 173.5 |
griseofulvin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
HT-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mevinolin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
moniliformin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
monoacetoxyscirpenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
mycophenolic acid | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
neosolaniol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
nivalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin A | <LOD | 530 | 203 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
ochratoxin B | <LOD | 247.5 | 79.3 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
patulin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
roquefortine C | 65000 | 25.0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOQ | 348000 | <LOD | 18.6 | <LOD |
sterigmatocystin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 toxin | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 tetraol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
T-2 triol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalanone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
zearalenone | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
α-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalanol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
β-zearalenol | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plewa-Tutaj, K.; Twarużek, M.; Kosicki, R.; Soszczyńska, E. Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens 2024, 13, 294. https://doi.org/10.3390/pathogens13040294
Plewa-Tutaj K, Twarużek M, Kosicki R, Soszczyńska E. Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens. 2024; 13(4):294. https://doi.org/10.3390/pathogens13040294
Chicago/Turabian StylePlewa-Tutaj, Kinga, Magdalena Twarużek, Robert Kosicki, and Ewelina Soszczyńska. 2024. "Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research" Pathogens 13, no. 4: 294. https://doi.org/10.3390/pathogens13040294
APA StylePlewa-Tutaj, K., Twarużek, M., Kosicki, R., & Soszczyńska, E. (2024). Analysis of Mycotoxins and Cytotoxicity of Airborne Molds Isolated from the Zoological Garden—Screening Research. Pathogens, 13(4), 294. https://doi.org/10.3390/pathogens13040294