Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Culture of Aeromonas salmonicida subsp. salmonicida
2.3. DNA Extraction
2.4. Library Preparation and Sequences Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Top 10 Species Groups in Global Aquaculture 2021; FAO: Rome, Italy, 2023. [Google Scholar]
- Liu, D. Aeromonas. In Molecular Medical Microbiology; Academic Press: Cambridge, MA, USA, 2015; pp. 1099–1110. [Google Scholar]
- Sanglas, A.; Albarral, V.; Farfán, M.; Lorén, J.G.; Fusté, M.C. Evolutionary roots and diversification of the genus Aeromonas. Front. Microbiol. 2017, 8, 127. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef]
- Bertran, X.; Rubio, M.; Góme, L.; Llovet, T.; Muñoz, C.; Navarro, F.; Miro, E. Taxonomic identification of different species of the genus Aeromonas by whole-genome sequencing and use of their species-specific β-lactamases as phylogenetic markers. Antibiotics 2021, 10, 354. [Google Scholar] [CrossRef]
- Barnes, A.C.; Rudenko, O.; Landos, M.; Dong, H.T.; Lusiastuti, A.; Phuoc, L.H.; Delamare-Deboutteville, J. Autogenous vaccination in aquaculture: A locally enabled solution towards reduction of the global antimicrobial resistance problem. Rev. Aquac. 2022, 14, 907–918. [Google Scholar] [CrossRef]
- Bernoth, E.M.; Ellis, A.E.; Midtlyng, P.J.; Olivier, G.; Smith, P. (Eds.) Furunculosis: Multidisciplinary Fish Disease Research; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Chong, R.S.M. Furunculosis. In Aquaculture Pathophysiology; Academic Press: Cambridge, MA, USA, 2022; pp. 395–406. [Google Scholar]
- Guillen, N.; Li, C.; Rosener, B.; Mitchell, A. Antibacterial activity of nonantibiotics is orthogonal to standard antibiotics. Science 2024, 384, 93–100. [Google Scholar] [CrossRef]
- Elbaz, M.; Stein, E.; Raykhshtat, E.; Weiss-Meilik, A.; Cohen, R.; Ben-Ami, R. Exposure to Non-Antimicrobial Drugs and Risk of Infection with Antibiotic-Resistant Enterobacteriaceae. Antibiotics 2023, 12, 789. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, I.C. Study III: Studies on the Sensitization of Patients with Bronchial Asthma to Bacterial Proteins as Demonstrated by the Skin Reaction and the Methods Employed in the Preparation of These Proteins. J. Med. Res. 1917, 35, 487. [Google Scholar]
- Giedrys-Kalemba, S.; Czernomysy-Furowicz, D.; Fijałkowski, K.; Jursa-Kulesza, J. Autovaccines in individual therapy of staphylococcal infections. In Pet-To-Man Travelling Staphylococci; Academic Press: Cambridge, MA, USA, 2018; pp. 253–264. [Google Scholar]
- Behr, K.P.; Zeller, G.; Selbitz, H.-J. Manual of Autogenous Vaccines (AV); The Association of European Manufacturers of Autogenous Vaccines and Sera: Munich, Germany, 2023. [Google Scholar]
- Stoler, N.; Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 2021, 3, lqab019. [Google Scholar] [CrossRef]
- Sheka, D.; Alabi, N.; Gordon, P.M. Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief. Bioinform. 2021, 22, bbaa403. [Google Scholar] [CrossRef]
- Mostafa, H.H. An evolution of Nanopore next-generation sequencing technology: Implications for medical microbiology and public health. J. Clin. Microbiol. 2024, 62, e00246-24. [Google Scholar] [CrossRef]
- Vanden Bergh, P.; Heller, M.; Braga-Lagache, S.; Frey, J. The Aeromonas salmonicida subsp. salmonicida exoproteome: Determination of the complete repertoire of Type-Three Secretion System effectors and identification of other virulence factors. Proteome Sci. 2013, 11, 42. [Google Scholar] [CrossRef]
- Vanden Bergh, P.; Heller, M.; Braga-Lagache, S.; Frey, J. The Aeromonas salmonicida subsp. salmonicida exoproteome: Global analysis, moonlighting proteins and putative antigens for vaccination against furunculosis. Proteome Sci. 2013, 11, 44. [Google Scholar] [CrossRef]
- Vasquez, I.; Cao, T.; Hossain, A.; Valderrama, K.; Gnanagobal, H.; Dang, M.; Santander, J. Aeromonas salmonicida infection kinetics and protective immune response to vaccination in sablefish (Anoplopoma fimbria). Fish Shellfish Immunol. 2020, 104, 557–566. [Google Scholar] [CrossRef]
- Hirst, I.D.; Ellis, A.E. Iron-regulated outer membrane proteins of Aeromonas salmonicida are important protective antigens in Atlantic salmon against furunculosis. Fish Shellfish Immunol. 1994, 4, 29–45. [Google Scholar] [CrossRef]
- Yadav, S.K.; Meena, J.K.; Sharma, M.; Dixit, A. Recombinant outer membrane protein C of Aeromonas hydrophila elicits mixed immune response and generates agglutinating antibodies. Immunol. Res. 2016, 64, 1087–1099. [Google Scholar] [CrossRef]
- Yadav, S.K.; Sahoo, P.K.; Dixit, A. Characterization of immune response elicited by the recombinant outer membrane protein OmpF of Aeromonas hydrophila, a potential vaccine candidate in murine model. Mol. Biol. Rep. 2014, 41, 1837–1848. [Google Scholar] [CrossRef]
- Salte, R.; Norberg, K.; Arnesen, J.A.; Ødegaard, O.R.; Eggset, G. Serine protease and glycerophospholipid: Cholesterol acyltransferase of Aeromonas salmonicida work in concert in thrombus formation; in vitro the process is counteracted by plasma antithrombin and α2-macroglobulin. J. Fish Dis. 1992, 15, 215–227. [Google Scholar] [CrossRef]
- Chu, S.; Cavaignac, S.; Feutrier, J.; Phipps, B.M.; Kostrzynska, M.; Kay, W.W.; Trust, T.J. Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida. J. Biol. Chem. 1991, 266, 15258–15265. [Google Scholar] [CrossRef]
- Lutwyche, P.; Exner, M.M.; Hancock, R.E.; Trust, T.J. A conserved Aeromonas salmonicida porin provides protective immunity to rainbow trout. Infect. Immun. 1995, 63, 3137–3142. [Google Scholar] [CrossRef]
- Ebanks, R.O.; Goguen, M.; McKinnon, S.; Pinto, D.M.; Ross, N.W. Identification of the major outer membrane proteins of Aeromonas salmonicida. Dis. Aquat. Org. 2005, 68, 29–38. [Google Scholar] [CrossRef]
- Reith, M.E.; Singh, R.K.; Curtis, B.; Boyd, J.M.; Bouevitch, A.; Kimball, J.; Brown, L.L. The genome of Aeromonas salmonicida subsp. salmonicida A449: Insights into the evolution of a fish pathogen. BMC Genom. 2008, 9, 427. [Google Scholar] [CrossRef]
- Diao, J.; Li, L.; Fan, Y.; Wang, S.; Gai, C.; Wang, Y.; Ye, H. Recombinant outer membrane protein C of Aeromonas salmonicida subsp. masoucida, a potential vaccine candidate for rainbow trout (Oncorhynchus mykiss). Microb. Pathog. 2020, 145, 104211. [Google Scholar] [CrossRef]
- Stuber, K.; Burr, S.E.; Braun, M.; Wahli, T.; Frey, J. Type III secretion genes in Aeromonas salmonicida subsp. salmonicida are located on a large thermolabile virulence plasmid. J. Clin. Microbiol. 2003, 41, 3854–3856. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Van den Beek, M.; Blankenberg, D.; Bouvier, D.; Čech, M.; Goecks, J. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016, 44, W3–W10. [Google Scholar] [CrossRef]
- Batut, B.; Nasr, E.; Zierep, P. Pathogen Detection from (Direct Nanopore) Sequencing Data Using Galaxy—Foodborne Edition (Galaxy Training Materials). Available online: https://training.galaxyproject.org/training-material/topics/microbiome/tutorials/pathogen-detection-from-nanopore-foodborne-data/tutorial.html (accessed on 3 May 2024).
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Argimón, S.; Abudahab, K.; Goater, R.; Fedosejev, A.; Bhai, J.; Glasner, C.; Feil, E.; Holden, M.; Yeats, C.; Grundmann, H.; et al. Microreact: Visualizing and sharing data for genomic epidemiology and phylogeography. Microb. Genom. 2016, 2, e000093. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 2017, 8, 10–128. [Google Scholar] [CrossRef]
- Gonzalez-Avila, L.U.; Loyola-Cruz, M.A.; Hernández-Cortez, C.; Bello-López, J.M.; Castro-Escarpulli, G. Colistin resistance in Aeromonas spp. Int. J. Mol. Sci. 2021, 22, 5974. [Google Scholar] [CrossRef]
- Piotrowska, M.; Przygodzińska, D.; Matyjewicz, K.; Popowska, M. Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front. Microbiol. 2017, 8, 863. [Google Scholar] [CrossRef]
- Bottoni, C.; Marcoccia, F.; Compagnoni, C.; Colapietro, M.; Sabatini, A.; Celenza, G.; Segatore, B.; Maturo, M.G.; Amicosante, G.; Perilli, M. Identification of new natural CphA metallo-β-Lactamases CphA4 and CphA5 in Aeromonas veronii and Aeromonas hydrophila isolates from municipal sewage in central Italy. Antimicrob. Agents Chemother. 2015, 59, 4990–4993. [Google Scholar] [CrossRef]
- Bogaerts, P.; Naas, T.; Saegeman, V.; Bonnin, R.A.; Schuermans, A.; Evrard, S.; Bouchahrouf, W.; Jove, T.; Tande, D.; De Bolle, X.; et al. OXA-427, a new plasmid-borne carbapenem-hydrolysing class D β-lactamase in Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 2469–2477. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef]
- Long, M.; Fan, H.; Gan, Z.; Jiang, Z.; Tang, S.; Xia, H.; Lu, Y. Comparative genomic analysis provides insights into taxonomy and temperature adaption of Aeromonas salmonicida. J. Fish Dis. 2023, 46, 545–561. [Google Scholar] [CrossRef]
- Charette, S.J. Aeromonas salmonicida: Genomics, Taxonomy, Diversity, Pathogenesis, Treatments and Beyond. Microorganisms 2023, 11, 1189. [Google Scholar] [CrossRef]
- Dallaire-Dufresne, S.; Tanaka, K.H.; Trudel, M.V.; Lafaille, A.; Charette, S.J. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet. Microbiol. 2014, 169, 1–7. [Google Scholar] [CrossRef]
- Vincent, A.T.; Hosseini, N.; Charette, S.J. The Aeromonas salmonicida plasmidome: A model of modular evolution and genetic diversity. Ann. N. Y. Acad. Sci. 2021, 1488, 16–32. [Google Scholar] [CrossRef]
- Studer, N.; Frey, J.; Vanden Bergh, P. Clustering subspecies of Aeromonas salmonicida using IS630typing. BMC Microbiol. 2013, 13, 36. [Google Scholar] [CrossRef]
- Martínez-Murcia, A.J.; Soler, L.; Saavedra, M.J.; Chacón, M.R.; Guarro, J.; Stackebrandt, E.; Figueras, M.J. Phenotypic, genotypic, and phylogenetic discrepancies to differentiate Aeromonas salmonicida from Aeromonas bestiarum. Int. Microbiol. 2005, 8, 259–269. [Google Scholar]
- Pradhan, S.K.; Devi, R.; Khan, M.I.R.; Kamilya, D.; Choudhury, T.G.; Parhi, J. Isolation of Aeromonas salmonicida subspecies salmonicida from aquaculture environment in India: Polyphasic identification, virulence characterization, and antibiotic susceptibility. Microb. Pathog. 2023, 179, 106100. [Google Scholar] [CrossRef]
- Bartkova, S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Dalsgaard, I. Epidemiology of Danish Aeromonas salmonicida subsp. salmonicida in fish farms using whole genome sequencing. Front. Microbiol. 2017, 8, 2411. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, N.; Amer, S.; Qian, M.; Lv, M.; Zhao, Y.; Zhao, B. Protective efficacy of PLGA microspheres loaded with divalent DNA vaccine encoding the ompA gene of Aeromonas veronii and the hly gene of Aeromonas hydrophila in mice. Vaccine 2013, 31, 5754–5759. [Google Scholar] [CrossRef]
- Dacanay, A.; Knickle, L.; Solanky, K.S.; Boyd, J.M.; Walter, J.A.; Brown, L.L.; Reith, M. Contribution of the type III secretion system (TTSS) to virulence of Aeromonas salmonicida subsp. salmonicida. Microbiology 2006, 152, 1847–1856. [Google Scholar] [CrossRef]
- Ebanks, R.O.; Knickle, L.C.; Goguen, M.; Boyd, J.M.; Pinto, D.M.; Reith, M.; Ross, N.W. Expression of and secretion through the Aeromonas salmonicida type III secretion system. Microbiology 2006, 152, 1275–1286. [Google Scholar] [CrossRef]
- Marcoux, P.É.; Vincent, A.T.; Massicotte, M.A.; Paquet, V.E.; Doucet, É.J.; Hosseini, N.; Charette, S.J. Systematic analysis of the stress-induced genomic instability of Type Three Secretion System in Aeromonas salmonicida subsp. salmonicida. Microorganisms 2020, 9, 85. [Google Scholar] [CrossRef]
- Burr, S.E.; Pugovkin, D.; Wahli, T.; Segner, H.; Frey, J. Attenuated virulence of an Aeromonas salmonicida subsp. salmonicida type III secretion mutant in a rainbow trout model. Microbiology 2005, 151, 2111–2118. [Google Scholar] [CrossRef]
- Daher, R.K.; Filion, G.; Tan, S.G.E.; Dallaire-Dufresne, S.; Paquet, V.E.; Charette, S.J. Alteration of virulence factors and rearrangement of pAsa5 plasmid caused by the growth of Aeromonas salmonicida in stressful conditions. Vet. Microbiol. 2011, 152, 353–360. [Google Scholar] [CrossRef]
Sample_ID | GC_ Content | % of Identity | No bp | Sample_ID | GC_ Content | % of Identity | No bp |
---|---|---|---|---|---|---|---|
280-1 | 58.07 | 97.82 | 5,102,882 | 249-1 | 58.14 | 97.86 | 5,170,112 |
133-1 | 58.31 | 97.98 | 4,193,552 | 237-1 | 58.15 | 97.86 | 5,097,470 |
8-1 | 58.37 | 97.78 | 4,877,049 | 236-1 | 58.29 | 97.92 | 4,946,207 |
F4-1 | 58.07 | 97.85 | 5,124,310 | 234-1 | 58.10 | 97.98 | 5,156,757 |
F3-1 | 58.07 | 97.87 | 5,123,926 | 222-1 | 58.32 | 97.01 | 4,705,879 |
482A-1 | 58.32 | 97.85 | 4,874,581 | 217-1 | 58.29 | 97.75 | 4,903,569 |
461-1 | 58.11 | 97.81 | 5,090,948 | 206-1 | 58.11 | 97.86 | 5,089,959 |
458-1 | 58.26 | 97.83 | 4,960,305 | 187-1 | 58.28 | 97.83 | 4,996,262 |
457-1 | 58.20 | 98.11 | 5,041,256 | 179-1 | 58.19 | 97.82 | 4,958,944 |
410-1 | 58.21 | 97.81 | 4,952,850 | 160-1 | 58.32 | 97.71 | 4,874,696 |
409 -1 | 58.17 | 97.82 | 5,010,907 | 156-1 | 58.20 | 97.81 | 5,018,443 |
356-1 | 58.26 | 97.88 | 5,002,169 | 155-1 | 58.29 | 97.81 | 4,923,057 |
354-1 | 28.33 | 97.90 | 4,958,302 | 142-1 | 58.26 | 97.84 | 4,944,355 |
352-1 | 58.19 | 97.83 | 5,059,069 | 140-1 | 58.29 | 97.85 | 4,979,227 |
330-1 | 58.30 | 97.84 | 4,908,635 | 137-1 | 58.19 | 98.00 | 5,016,263 |
327-1 | 58.13 | 97.78 | 5,092,954 | 135-1 | 58.39 | 97.85 | 4,874,196 |
311-1 | 58.31 | 98.00 | 4,957,054 | 117ES-1 | 58.22 | 97.78 | 5,007,215 |
303-1 | 58.13 | 97.97 | 5,106,372 | 117BS-1 | 58.22 | 97.76 | 5,004,904 |
300-1 | 58.32 | 97.91 | 4,986,132 | 115-1 | 58.17 | 97.97 | 5,067,920 |
295-1 | 58.37 | 97.70 | 4,876,990 | 78ES-1 | 58.31 | 97.90 | 4,899,038 |
290-1 | 58.06 | 97.83 | 5,161,521 | 71-1 | 58.16 | 97.89 | 5,081,602 |
282-1 | 58.36 | 97.90 | 4,952,918 | 57-1 | 58.12 | 97.78 | 4,961,082 |
277-1 | 58.14 | 97.81 | 5,057,870 | 54-1 | 58.15 | 97.82 | 5,039,876 |
262-1 | 58.15 | 97.76 | 5,057,594 | 14f3-1 | 58.16 | 97.86 | 5,024,076 |
256-1 | 58.09 | 97.81 | 5,101,717 | 302-1 | 58.07 | 97.83 | 5,102,887 |
255-1 | 58.38 | 97.91 | 4,877,049 | 185-1 | 58.15 | 97.85 | 5,022,918 |
250-1 | 58.09 | 97.82 | 5,194,870 | 254-1 | 58.00 | 97.22 | 4,877,053 |
Genes | Resistance | Other Information | Accesion Number | References | Data Base |
---|---|---|---|---|---|
MCR-3 | Peptide | MCR-3 is a plasmid-borne phosphoethanolamine transferase that interferes with binding of colistin to the cell membrane via addition of phosphoethanolamine to lipid A, resulting in a reduction in negative charge of the cell membrane. Originally described by Yin et al. 2017 from a porcine Escherichia coli plasmid pWJ1. | ARO:3004139 | [36,37] | CARD |
FOX-2 | cephalosporin; cephamycin | FOX-2 is a beta-lactamase found in Escherichia coli | ARO:3002156 | [38] | CARD |
cphA5 | Carbapenem | cphA5 is an Ambler Class B MBL; subclass B2 originally isolated from Aeromonas salmonicida. This enzyme has specific activity against carbapenems and is active as a mono-zinc protein. | ARO:3003101 | [39] | CARD |
OXA-427 | cephalosporin; penam | OXA-427 is a novel CHDL most closely related to chromosomal class D β-lactamase. It confers resistance to penicillins, ceftazidime, aztreonam and, in some instances, to carbapenems. | ARO:3007719 | [40] | CARD |
Genes | Product | Accession Number | Data Base | ||
VPA0450 | (VPA0450) type III secretion system effector [T3SS1 (VF0408)] | NP_799960 | vfdb | ||
pscR | (pscR) type III secretion system protein PscR [TTSS (VF0083)] | NP_250384 | vfdb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojnarowski, K.; Cholewińska, P.; Steinbauer, P.; Lautwein, T.; Hussein, W.; Streb, L.-M.; Palić, D. Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit. Pathogens 2024, 13, 908. https://doi.org/10.3390/pathogens13100908
Wojnarowski K, Cholewińska P, Steinbauer P, Lautwein T, Hussein W, Streb L-M, Palić D. Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit. Pathogens. 2024; 13(10):908. https://doi.org/10.3390/pathogens13100908
Chicago/Turabian StyleWojnarowski, Konrad, Paulina Cholewińska, Peter Steinbauer, Tobias Lautwein, Wanvisa Hussein, Lisa-Marie Streb, and Dušan Palić. 2024. "Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit" Pathogens 13, no. 10: 908. https://doi.org/10.3390/pathogens13100908
APA StyleWojnarowski, K., Cholewińska, P., Steinbauer, P., Lautwein, T., Hussein, W., Streb, L.-M., & Palić, D. (2024). Genomic Analysis of Aeromonas salmonicida ssp. salmonicida Isolates Collected During Multiple Clinical Outbreaks Supports Association with a Single Epidemiological Unit. Pathogens, 13(10), 908. https://doi.org/10.3390/pathogens13100908