Application of Phyto-Stimulants for Growth, Survival Rate, and Meat Quality Improvement of Tiger Shrimp (Penaeus monodon) Maintained in a Traditional Pond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Location
2.2. Experimental Animal
2.3. Plant Extracts
2.4. The Mortality and Growth
2.5. The Hemolymph
2.6. The Phenol Oxidase Activity (PO)
2.7. The Amino and Fatty Acids
2.8. Data Analysis
3. Results
3.1. The Mortality and Growth
3.2. Immunomodulatory Activity
3.3. Amino and Fatty Contents of Shrimp
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deris, Z.M.; Iehata, S.; Ikhwanuddin, M.; Sahimi, M.B.M.K.; Do, T.D.; Sorgeloos, P.; Sung, Y.Y.; Wong, L.L. Immune and bacterial toxin genes expression in different giant tiger prawn, Penaeus monodon post-larvae stages following AHPND-causing strain of Vibrio parahaemolyticus challenge. Aquac. Res. 2020, 16, 100248. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals; FAO Fisheries and Aquaculture Department: Italy, Rome, 2018. [Google Scholar]
- BPS. Statistical Yearbook of Indonesia; BPS-Statistical Indonesia: Jakarta, Indonesia, 2020. [Google Scholar]
- Belton, B.; Little, D. The development of aquaculture in central Thailand: Domestic demand versus export-led production. J. Agrar. Chang. 2008, 8, 123–143. [Google Scholar] [CrossRef]
- Fitzgerald, W.J. Integrated mangrove forest and aquaculture systems in Indonesia. In Mangrove-Friendly Aquaculture, Proceedings of the Workshop on Mangrove-Friendly Aquaculture, Iloilo City, Philippines, 11–15 January 1999; Primavera, J.H., Garcia, L.M.B., Castaños, M.T., Surtida, M.B., Eds.; Southeast Asian Fisheries Development Center, Aquaculture Department: Tigbauan, Philippines, 2000; pp. 21–34. [Google Scholar]
- Bosma, R.H.; Tendencia, E.A.; Bunting, S.W. Financial feasibility of green-water shrimp farming associated with mangrove compared to extensive shrimp culture in the Mahakam Delta, Indonesia. Asian Fish. Sci. 2012, 25, 258–269. [Google Scholar] [CrossRef]
- Akber, M.A.; Aziz, A.A.; Lovelock, C. Major drivers of coastal aquaculture expansion in Southeast Asia. Ocean. Coast. Manag. 2020, 198, 105364. [Google Scholar] [CrossRef]
- Aftabuddin, S.; Siddique, M.A.M.; Romkey, S.S.; William, S.L. Antibacterial function of herbal extracts on growth, survival and immunoprotection in the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol. 2017, 65, 52–58. [Google Scholar] [CrossRef]
- Citarasu, T.; Venkatramalingam, K.; Babu, M.; Sekar, R.R.; Petermarian, M. Influence of the antibacterial herbs, Solamum trilobatum, Androgra phispaniculata and Psoralea corylifolia on the survival, growth and bacterial load of Penaeus monodon post larvae. Aquac. Int. 2003, 11, 581–595. [Google Scholar] [CrossRef]
- Galina, J.; Yin, G.; Ardo, L.; Jeney, Z. The use of immunostimulating herbs in fish. An overview of research. Fish Physiol. Biochem. 2009, 35, 669–676. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Kim, J.S.; Kim, M.C.; Balasundaram, C.; Heo, M.S. Lactuca indica extract as feed additive enhances immunological parameters and disease resistance in Epinephelus bruneus to Streptococcus iniae. Aquaculture 2011, 318, 43–47. [Google Scholar] [CrossRef]
- Immanuel, G.; Uma, R.P.; Iyapparaj, P.; Citarasu, T.; Peter, S.M.P.; Babu, M.; Palavesam, A. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus. J. Fish Biol. 2009, 74, 1462–1475. [Google Scholar] [CrossRef]
- Sivaram, V.; Babu, M.; Immanuel, G.; Murugadass, S.; Citarasu, T.; Marian, M.P. Growth and immune response of juvenile greasy groupers (Epinephelus tauvina) fed with herbal antibacterial active principle supplemented diets against Vibrio harveyi infections. Aquaculture 2004, 237, 9–20. [Google Scholar] [CrossRef]
- Vaseeharan, B.; Thaya, R. Medicinal plant derivatives as immunostimulants: An alternative to chemotherapeutics and antibiotics in aquaculture. Aquacult. Int. 2011, 22, 1079–1091. [Google Scholar] [CrossRef]
- Ministry of Agriculture No 14. In Klasifikasi Obat Hewan; Menteri Pertanian Republik Indonesia: Jakarta, Indonesia, 2017; p. 25.
- Ministry of Marine and Fisheries, No.1. In Obat Ikan; Menteri Kelautan dan Perikanan Republik Indonesia: Jakarta, Indonesia, 2019; p. 151.
- Hardi, E.H.; Saptiani, G.; Kusuma, I.; Suwinarti, W.; Sudaryono, A. Inhibition of fish bacteria pathogen in tilapia using a concoction three of Borneo plant extracts. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012015. [Google Scholar] [CrossRef]
- Hardi, E.H.; Kusuma, I.W.; Suwinarti, W.; Agustina, A.; Nugroho, R.A. Antibacterial activity of Boesenbergia pandurata, Zingiber zerumbet and Solanum ferox extracts against Aeromonas hydrophila and Pseudomonas sp. Nusant. Biosci. 2016, 8, 18–21. [Google Scholar] [CrossRef]
- Hardi, E.H.; Saptiani, G.; Nurkadina, M.; Kusuma, I.W.; Suwinarti, W. In Vitro test of concoction extracts Boesenbergia pandurata, Solanum ferox, Zingimber zerumbet against pathogen bacteria in tilapia. J. Vet. 2018, 19, 35–44. [Google Scholar]
- Hardi, E.H.; Nugroho, R.A.; Kusuma, I.; Apriza, A. Immunomodulatory effect and disease resistance from concoction three of Borneo plant extracts in tilapia, Oreochromis niloticus. J. Aquac. Indones. 2019, 20, 41–47. [Google Scholar] [CrossRef]
- Hardi, E.H.; Saptiani, G.; Nugroho, R.A.; Rahman, F.; Sulistyawati, S.; Rahayu, W.; Kusuma, I.W. Boesenbergia pandurate application un Gold fish feed to enhancing fish growth, immunity system, and resistance to bacterial infection. F1000 Res. 2021, 10, 766. [Google Scholar] [CrossRef]
- Hardi, E.H.; Nugroho, R.A.; Kusuma, I.W.; Suwinarti, W.; Sudaryono, A.; Rostika, R. Borneo herbal plant extracts as a natural medication for prophylaxis and treatment of Aeromonas hydrophila and Pseudomonas fluorescens infection in tilapia (Oreochromis niloticus). F1000 Res. 2018, 7, 1847. [Google Scholar] [CrossRef]
- Hardi, E.H.; Nugroho, R.A.; Rostika, R.; Mardliyaha, S.M.; Sukarti, K.; Rahayu, W.; Supriansyah, A.; Saptiani, G. Synbiotic application to enhance growth, immune system, and disease resistance toward bacterial infection in catfish. Aquaculture 2022, 549, 737794. [Google Scholar] [CrossRef]
- Yeh, S.T.; Lee, C.S.; Chen, J.C. Administration of hot-water extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2006, 20, 332–345. [Google Scholar] [CrossRef]
- Gigi, P. Immune Response of Penaeus Monodon to the Inactivated White Spot Syndrome Virus Preparation. Ph.D. Thesis, Cochin University of Science and Technology, Kochi, India, 2011. [Google Scholar]
- Chang, J. Medicinal herbs: Drugs or dietary supplements? Biochem. Pharmacol. 2000, 59, 211–219. [Google Scholar] [CrossRef]
- Huxley, V.; Lipton, A. Immunomodulatory effect of Sargassum wightii on Penaeus monodon (Fab.). Asian J. Anim. Sci. 2009, 4, 192–196. [Google Scholar]
- Da Silva, R.L.; Barbosa, J.M. Seaweed meal as a protein source for the white shrimp Litopenaeus vannamei. J Appl. Phycol. 2009, 21, 193–197. [Google Scholar] [CrossRef]
- Dashtiannasab, A.; Yeganeh, V. The effect of ethanol extract of a macroalgae Laurencia snyderia on growth parameters and vibriosis resistance in shrimp Litopenaeus vannamei. Iran. J. Fish. Sci. 2017, 16, 210–221. [Google Scholar]
- Cruz-Suarez, L.; Tapia-Salazar, M.; Nieto-Lopez, M.; Guajardo-Barbosa, C.; Ricque-Marie, D. Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aqua. Nutri. 2009, 15, 421–430. [Google Scholar] [CrossRef]
- Loof, T.G.; Schmidt, O.; Herwald, H.; Theopold, U. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: The same side of two coins? J. Innate Immun. 2011, 3, 34–40. [Google Scholar] [CrossRef]
- Chang, C.F.; Su, M.S.; Chen, H.Y.; Liao, I.C. Dietary b-1, 3-glu- can effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol. 2003, 15, 297–310. [Google Scholar] [CrossRef]
- Kimbrell, D.A.; Beutler, B. The evolution and genetics of innate immunity. Nat. Rev. Genet. 2001, 2, 256–267. [Google Scholar] [CrossRef]
- Citarasu, T.; Sivaram, V.; Immanuel, G.; Rout, N.; Murugan, V. Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol. 2006, 21, 372–384. [Google Scholar] [CrossRef]
- Kanjana, K.; Radtanatip, T.; Asuvapongpatana, S.; Withyachumnarnkul, B.; Wongprasert, K. Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol. 2011, 30, 389–396. [Google Scholar] [CrossRef]
- Le Moullac, G.; Soyez, C.; Saulnier, D.; Ansquer, D.; Avarre, J.C.; Levy, P. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol. 1998, 8, 621–629. [Google Scholar] [CrossRef]
- Ong, Y.L.; Hsieh, Y.T. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: Analysis of reactive oxygen species. Dev. Comp. Immunol. 1994, 18, 201–209. [Google Scholar]
- Bragagnolo, N.; Rodriguez-Amaya, D.B. Total lipid, cholesterol, and fatty acids of farmed freshwater prawn (Macrobrachium rosenbergii) and wild marine shrimp (Penaeus brasiliensis, Penaeus schimitti, Xiphopenaeus kroyeri). J. Food Comp. Anal. 2021, 14, 359–369. [Google Scholar] [CrossRef]
- Rosa, L.; Nunes, M.L. Nutritional quality of red shrimp, Aristeus antennatus (Risso), pink shrimp, Parapenaeus longirostris (Lucas) and Norway lobster, Nephrops norvegicus (Linnaeus). J. Sci. Food. Agric. 2004, 84, 89–94. [Google Scholar] [CrossRef]
- Oksuz, A.; Ozyilmaz, A.; Aktas, M.; Gercek, G.; Motte, J. A comparative study on proximate, mineral and fatty acid compositions of deep seawater rose shrimp (Parapenaeus longirostris, Lucas 1846) and red shrimp (Plesionika martia, A. Milne-Edwards, 1883). J. Anim. Vet. Adv. 2009, 8, 183–189. [Google Scholar]
Composition | P0 | P1 | P2 |
---|---|---|---|
Shrimp head meal (g) | 180 | 180 | 180 |
Fish meal (g) | 320 | 320 | 320 |
Wheat flour (g) | 220 | 220 | 220 |
Gluten meal (g) | 60 | 60 | 60 |
Rice flour (g) | 60 | 60 | 60 |
Soybean meal | 100 | 100 | 100 |
Fish oil (mL) | 20 | 20 | 20 |
Strach (g) | 20 | 20 | 20 |
Mineral mix (g) | 20 | 20 | 20 |
Phytoimmune 1 (mL) | 0 | 20 | 30 |
Approximate feed composition | |||
Water content (%) | 8.27 | 8.3 | 8.22 |
Ash (%) | 15.18 | 16.13 | 17.42 |
Crude protein (%) | 35.22 | 35.4 | 35.53 |
Crude lipid (%) | 2.26 | 3.42 | 3.1 |
Carbohydrate (%) | 39.07 | 36.75 | 35.73 |
Composition | Group | Observation Period | |||
---|---|---|---|---|---|
Day 10 | Day 20 | Day 30 | Day 40 | ||
ABW (g) | P0 | 1.1 ± 0.1 a | 2.1 ± 0.4 b | 2.4 ± 0.1 b | 3.9 ± 0.3 c |
P1 | 2.2 ± 0.2 b | 4.1 ± 0.1 c | 5.3 ± 0.0 c | 6.2 ± 0.1 d | |
P2 | 2.5 ± 0.2 b | 4.8 ± 0.2 c | 6.4 ± 0.2 d | 7.2 ± 0.2 e | |
ADG (g day−1) | P0 | 0.11 ± 0.1 a | 0.11 ± 0.1 a | 0.08 ± 0.1 a | 0.10 ± 0.1 a |
P1 | 0.22 ± 0.1 b | 0.21 ± 0.1 b | 0.18 ± 0.1 b | 0.16 ± 0.1 b | |
P2 | 0.25 ± 0.1 c | 0.24 ± 0.1 c | 0.21 ± 0.1 c | 0.18 ± 0.1 b | |
SGR (%) | P0 | 0.95 ± 0.1 a | 3.71 ± 0.1 a | 2.92 ± 0.1 a | 3.40 ± 0.1 a |
P1 | 7.88 ± 0.1 b | 7.05 ± 0.1 b | 5.56 ± 0.1 b | 4.56 ± 0.1 b | |
P2 | 9.16 ± 0.1 b | 7.84 ± 0.1 b | 6.19 ± 0.1 b | 4.94 ± 0.1 b |
Composition | Group | Observation Period | |||
---|---|---|---|---|---|
Day 10 | Day 20 | Day 30 | Day 40 | ||
TH (105 cells mL−1) | P0 | 4.9 ± 0.4 a | 4.7 ± 0.2 a | 5.1 ± 0.2 a | 5.1 ± 0.5 a |
P1 | 5.0 ± 0.2 a | 5.1 ± 0.1 a | 5.4 ± 0.1 b | 5.4 ± 0.2 b | |
P2 | 5.2 ± 0.3 a | 5.5 ± 0.4 b | 5.6 ± 0.4 b | 5.7 ± 0.2 b | |
PO (OD 490 nm) | P0 | 0.19 ± 0.04 a | 0.19 ± 0.04 a | 0.19 ± 0.06 a | 0.20 ± 0.02 a |
P1 | 0.18 ± 0.01 a | 0.19 ± 0.04 a | 0.20 ± 0.07 a | 0.20 ± 0.01 a | |
P2 | 0.20 ± 0.02 b | 0.20 ± 0.02 b | 0.21 ± 0.04 b | 0.23 ± 0.03 b | |
SO (OD 630 nm) | P0 | 0.05 ± 0.01 a | 0.06 ± 0.01 a | 0.06 ± 0.02 a | 0.06 ± 0.01 a |
P1 | 0.06 ± 0.01 a | 0.07 ± 0.00 a | 0.09 ± 0.01 b | 0.08 ± 0.00 b | |
P2 | 0.07 ± 0.00 a | 0.07 ± 0.01 a | 0.09 ± 0.01 b | 0.09 ± 0.01 b |
Amino Acid Type (mg kg−1) | Shrimp Meat | Shrimp Head | ||
---|---|---|---|---|
Control | P2 | Control | P2 | |
L-Cystine | 56,413.07 | 56,466.18 | 24,160.76 | 24,180.44 |
L-Methionine | 8500.58 | 8520.86 | 2916.78 | 2918.05 |
L-Serine | 24,633.41 | 24,716.14 | 14,953.73 | 14,999.02 |
L-Glutamic Acid | 90,620.8 | 91,109.07 | 34,657.86 | 34,566.42 |
L-Phenylalanine | 25,928.48 | 25,979.99 | 14,079.15 | 14,086.56 |
L-Isoleucine | 24,248.84 | 24,341.69 | 11,318.36 | 11,345.83 |
L-Valine | 25,367.82 | 25,549.14 | 14,749.06 | 14,810.70 |
L-Alanine | 34,077.31 | 34,275.23 | 17,059.32 | 17,115.16 |
L-Arginine | 52,698.91 | 52,975.34 | 16,568.30 | 16,625.57 |
Glycine | 44,871.87 | 45,070.06 | 20,865.24 | 20,931.82 |
L-Lysine | 51,634.89 | 51,881.43 | 16,421.97 | 16,475.75 |
L-Aspartic Acid | 52,336.6 | 52,583.77 | 23,428.32 | 23,458.00 |
L-Leucine | 43,825.49 | 44,013.44 | 17,229.53 | 17,268.10 |
L-Tyrosine | 19,491.9 | 19,611.29 | 8731.65 | 8746.47 |
L-Proline | 16,979.02 | 17,039.32 | 12,610.90 | 12,623.35 |
L-Threonine | 27,163.5 | 27,301.99 | 14,497.80 | 14,522.81 |
L-Histidine | 12,748.99 | 12,754.34 | 7409.95 | 7458.42 |
L-Tryptophan | 2867.86 | 2873.6 | 2781.41 | 2795.45 |
Taurine | 1349.4 | 1372.01 | 5609.91 | 5626.02 |
Amino Acid Type (%) | Shrimp Meat | Shrimp Head | ||
---|---|---|---|---|
Control | P2 | Control | P2 | |
Linolenic Acid | 0.0435 | 0.0452 | 0.0267 | 0.0272 |
Linoleic Acid | 0.2582 | 0.2593 | 0.2632 | 0.2714 |
Oleic Acid | 0.4290 | 0.4312 | 1.0678 | 1.0756 |
C 18:2 W6 (Linoleic Acid/W6) | 0.2582 | 0.2593 | 0.2632 | 0.2714 |
C 18:2 W6C (C-Linoleic Acid) | 0.2582 | 0.2593 | 0.2632 | 0.2714 |
C 18:1 W9C (C-Oleic Acid) | 0.4290 | 0.4312 | 1.0678 | 1.0756 |
C 20:5 W3 (Eicosatpentaenoic Acid) | 0.4188 | 0.4199 | 0.1193 | 0.1227 |
C 17:1 (Heptadecanoic Acid) | 0.0365 | 0.0378 | 0.0454 | 0.0477 |
C 16:1 (Palmitoleic Acid) | 0.0758 | 0.0788 | 0.0925 | 0.0947 |
C 20:4 W6 (Arachidonic Acid) | 0.5616 | 0.5686 | 0.3444 | 0.3457 |
Omega 6 Fatty Acids | 0.6234 | 0.8198 | 0.6089 | 0.6158 |
C 20:2 (Eicosadienoic Acid) | 0.0290 | 0.0305 | 0.0268 | 0.0276 |
DHA | 0.3070 | 0.3149 | 0.1243 | 0.1256 |
Omega 3 Fatty Acids | 0.7721 | 0.7771 | 0.2720 | 0.2736 |
C 18:3 W3 (Linolenic Acid/W3) | 0.0435 | 0.0452 | 0.0267 | 0.0272 |
C 24:0 (Lignoseric Acid) | 0.0831 | 0.0849 | 0.0534 | 0.0543 |
Polyunsaturated Fat | 1.7888 | 1.7917 | 1.0752 | 1.076 |
C 22:6 W3 (Docosahexanoic Acid) | 0.307 | 0.3149 | 0.1243 | 0.1256 |
C 18:0 (Stearic Acid) | 0.5055 | 0.5084 | 0.4736 | 0.4806 |
C 22:2 (Docosadinoic Acid) | 0.1612 | 0.1628 | 0.1603 | 0.165 |
C 17:0 (Heptadecanoic Acid) | 0.0968 | 0.1000 | 0.0702 | 0.0721 |
C 16:0 (Palmitic Acid) | 0.5478 | 0.555 | 0.9938 | 1.0023 |
Unsaturated Fat | 2.3324 | 2.3373 | 2.2832 | 2.2907 |
Omega 9 Fatty Acids | 0.429 | 0.4312 | 1.0678 | 1.0756 |
C 15:0 (Pentadecanoic Acid) | 0.0243 | 0.0251 | 0.0171 | 0.0171 |
AA | 0.5616 | 0.5686 | 0.3444 | 0.3577 |
C 14:0 (Myristic Acid) | 0.0244 | 0.025 | 0.036 | 0.038 |
EPA | 0.4188 | 0.4199 | 0.1193 | 0.1227 |
C 12:0 (Lauraic Acid) | 0.0099 | 0.0102 | 0.0337 | 0.0348 |
Monounsaturated Fat | 0.5436 | 0.5456 | 1.208 | 1.2157 |
C 20:0 (Arachidic Acid) | 0.00145 | 0.00156 | 0.0237 | 0.0241 |
Saturated Fat | 1.2976 | 1.3027 | 1.7068 | 1.7193 |
Parameter | Unit | Value |
---|---|---|
Temperature | °C | 18–30 |
Salinity | ‰ | 15–25 |
pH | 5.5–8 | |
Dissolved oxygen (DO) | mg L−1 | 4–5 |
pH of pond substrate | - | 6–8 |
Pyrite | ‰ | 1.46–2.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardi, E.H.; Nugroho, R.A.; Agriandini, M.; Rizki, M.; Falah, M.E.N.; Almadi, I.F.; Susmiyati, H.R.; Diana, R.; Palupi, N.P.; Saptiani, G.; et al. Application of Phyto-Stimulants for Growth, Survival Rate, and Meat Quality Improvement of Tiger Shrimp (Penaeus monodon) Maintained in a Traditional Pond. Pathogens 2022, 11, 1243. https://doi.org/10.3390/pathogens11111243
Hardi EH, Nugroho RA, Agriandini M, Rizki M, Falah MEN, Almadi IF, Susmiyati HR, Diana R, Palupi NP, Saptiani G, et al. Application of Phyto-Stimulants for Growth, Survival Rate, and Meat Quality Improvement of Tiger Shrimp (Penaeus monodon) Maintained in a Traditional Pond. Pathogens. 2022; 11(11):1243. https://doi.org/10.3390/pathogens11111243
Chicago/Turabian StyleHardi, Esti Handayani, Rudi Agung Nugroho, Maulina Agriandini, Muhammad Rizki, Muhammad Eko Nur Falah, Ismail Fahmy Almadi, Haris Retno Susmiyati, Rita Diana, Nurul Puspita Palupi, Gina Saptiani, and et al. 2022. "Application of Phyto-Stimulants for Growth, Survival Rate, and Meat Quality Improvement of Tiger Shrimp (Penaeus monodon) Maintained in a Traditional Pond" Pathogens 11, no. 11: 1243. https://doi.org/10.3390/pathogens11111243
APA StyleHardi, E. H., Nugroho, R. A., Agriandini, M., Rizki, M., Falah, M. E. N., Almadi, I. F., Susmiyati, H. R., Diana, R., Palupi, N. P., Saptiani, G., Agustina, A., Asikin, A. N., & Sukarti, K. (2022). Application of Phyto-Stimulants for Growth, Survival Rate, and Meat Quality Improvement of Tiger Shrimp (Penaeus monodon) Maintained in a Traditional Pond. Pathogens, 11(11), 1243. https://doi.org/10.3390/pathogens11111243