Wheat Genes Associated with Different Types of Resistance against Stem Rust (Puccinia graminis Pers.)
Abstract
:1. Introduction
2. Own Resistance Genes in Bread Wheat
3. Introgressed Stem Rust Resistance Genes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Simón, M.R.; Börner, A.; Struik, P.C. Editorial: Fungal wheat diseases: Etiology, breeding, and integrated management. Front. Plant Sci. 2021, 12, 671060. [Google Scholar] [CrossRef]
- Olivera, P.; Newcomb, M.; Szabo, L.J.; Rouse, M.; Johnson, J.; Gale, S.; Luster, D.G.; Hodson, D.; Cox, J.A.; Burgin, L.; et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in Southern Ethiopia in 2013–2014. Phytopathology 2015, 105, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.L.; Leonard, K.J. Stem rust of wheat (black rust). Plant Health Instr. 2000. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts: An Atlas of Resistance Genes; CSIRO: Canberra, Australia, 1995; ISBN 978-94-010-4041-9. [Google Scholar]
- Newcomb, M.; Olivera, P.D.; Rouse, M.N.; Szabo, L.J.; Johnson, J.; Gale, S.; Luster, D.G.; Wanyera, R.; Macharia, G.; Bhavani, S.; et al. Kenyan isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: Virulence to SrTmp in the Ug99 race group and implications for breeding programs. Phytopathology 2016, 106, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Olivera Firpo, P.; Szabo, L.; Kokhmetova, A.; Morgunov, A.; Luster, D.G.; Jin, Y. Puccinia graminis f. sp. tritici population causing recent wheat stem rust epidemics in Kazakhstan is highly diverse and includes novel virulences. Phytopathology 2022. [Google Scholar] [CrossRef]
- Skolotneva, E.S.; Kosman, E.; Patpour, M.; Kelbin, V.N.; Morgounov, A.I.; Shamanin, V.P.; Salina, E.A. Virulence phenotypes of Siberian wheat stem rust population in 2017–2018. Front. Agron. 2020, 2, 6. [Google Scholar] [CrossRef]
- Olivera Firpo, P.D.; Newcomb, M.; Flath, K.; Sommerfeldt-Impe, N.; Szabo, L.J.; Carter, M.; Luster, D.G.; Jin, Y. Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol. 2017, 66, 1258–1266. [Google Scholar] [CrossRef]
- Lewis, C.M.; Persoons, A.; Bebber, D.P.; Kigathi, R.N.; Maintz, J.; Findlay, K.; Bueno-Sancho, V.; Corredor-Moreno, P.; Harrington, S.A.; Kangara, N.; et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 2018, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- GRRC Report: Samples of Stem Rust Infected Wheat from ITALY. 01/2016 // Aarhus University, Department of Agroecology. 2016. Available online: https://agro.au.dk/fileadmin/Country_report_Sicily_-_November2016.pdf (accessed on 30 August 2022).
- Patpour, M.; Hovmøller, M.S.; Rodriguez-Algaba, J.; Randazzo, B.; Villegas, D.; Shamanin, V.P.; Berlin, A.; Flath, K.; Czembor, P.; Hanzalova, A.; et al. Wheat stem rust back in Europe: Diversity, prevalence and impact on host resistance. Front Plant Sci. 2022, 13, 882440. [Google Scholar] [CrossRef]
- Leonard, K.J.; Szabo, L.J. Pathogen profile: Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 2005, 6, 99–111. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, Z.A.; Singh, R.P.; Wagoire, W.W.; Payne, T.S. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 2000, 84, 203. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, S.; Singh, P.K.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011, 49, 465–481. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Hodson, D.P.; Jin, Y.; Lagudah, E.S.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.A.; Szabo, L.J.; Huerta-Espino, J.; et al. Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology 2015, 105, 872–884. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, Z.A.; Szabo, L.J.; Boshoff, W.H.P. First report of a new TTKSF race of wheat stem rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Dis. 2012, 96, 590. [Google Scholar] [CrossRef]
- Fetch, T.; Zegeye, T.; Park, R.F.; Hodson, D.; Wanyera, R. Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. Plant Dis. 2016, 100, 1495. [Google Scholar] [CrossRef]
- Patpour, M.; Hovmøller, M.S.; Justesen, A.F.; Newcomb, M.; Olivera, P.; Jin, Y.; Szabo, L.J.; Hodson, D.; Shahin, A.A.; Wanyera, R.; et al. Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa. Plant Dis. 2016, 100, 522–552. [Google Scholar] [CrossRef]
- RustTracker.org. Pathotype Tracker—Where Is Ug99? 2021. Available online: https://rusttracker.cimmyt.org/?page_id=22 (accessed on 21 August 2022).
- Nazari, K.; Al-Maaroof, E.; Kurtulus, E.; Kavaz, H.; Hodson, D.; Ozseven, I. First report of Ug99 race TTKTT of wheat stem rust (Puccinia graminis f. sp. tritici) in Iraq. Plant Dis. 2021, 105, 2719. [Google Scholar] [CrossRef]
- Olivera, P.D.; Sikharulidze, Z.; Dumbadze, R.; Szabo, L.J.; Newcomb, M.; Natsarishvili, K.; Rouse, M.N.; Luster, D.G.; Jin, Y. Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology 2019, 109, 2152–2160. [Google Scholar] [CrossRef]
- Tesfaye, T.; Chala, A.; Shikur, E.; Hodson, D.P.; Szabo, L.J. First report of TTRTF race of wheat stem rust, Puccinia graminis f. sp. tritici in Ethiopia. Plant Dis. 2019, 104, 293. [Google Scholar] [CrossRef]
- Patpour, M.; Justesen, A.F.; Tecle, A.W.; Yazdani, M.; Yasaie, M.; Hovmøller, M.S. First report of race TTRTF of wheat stem rust (Puccinia graminis f. sp. tritici) in Eritrea. Plant Dis. 2020, 104, 973. [Google Scholar] [CrossRef]
- Olivera, P.D.; Villegas, D.; Cantero-Martínez, C.; Szabo, L.J.; Rouse, M.N.; Luster, D.G.; Bartaula, R.; Lopes, M.S.; Jin, Y. A unique race of the wheat stem rust pathogen with virulence on Sr31 identified in Spain and reaction of wheat and durum cultivars to this race. Plant Pathol. 2022, 71, 873–889. [Google Scholar] [CrossRef]
- Bhattacharya, S. Deadly new wheat disease threatens Europe’s crops. Nature 2017, 542, 145–146. [Google Scholar] [CrossRef]
- RIS—Genetic Resources Information System for Wheat and Triticale: Database, International Maize and Wheat Improvement Ceter, El Batan, Mexico. Available online: http://wheatpedigree.net (accessed on 28 August 2022).
- Luig, N.H. A Survey of Virulence Genes in Wheat Stem Rust, Puccinia graminis f. sp. tritici (Adv. in Plant Breed); Verlag Paul Parney: Berlin/Humburg, Germany, 1983; pp. 5–198. [Google Scholar]
- Huerta-Espino, J. Analysis of Wheat Leaf and Stem Rust Virulence on a Worldwide Basis. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1992. [Google Scholar]
- Watson, I.A.; Luig, N.H. Progressive increase in virulence in Puccinia graminis var. tritici. Phytopathology 1968, 5, 70–73. [Google Scholar]
- Knott, D.R.; Anderson, R.G. The inheritance of rust resistance. I. The inheritance of stem rust resistance in ten varieties of common wheat. Can. J. Agric. Sci. 1956, 36, 174–195. [Google Scholar]
- Knott, D.R. The inheritance of rust resistance. IV. Monosomic analysis of rust resistance and some other characters in six varieties of wheat including Gabo and Kenya Farmer. Can. J. Plant Sci. 1959, 39, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Loegering, W.Q.; Sears, E.R. Relationships among stem-rust genes on wheat chromosomes 2B, 4B and 6B. Crop Sci. 1966, 6, 157–160. [Google Scholar] [CrossRef]
- Sears, E.R.; Loegering, W.Q.; Rodenhiser, H.A. Identification of chromosomes carrying genes for stem rust resistance in four varieties of wheat. Agron. J. 1957, 49, 208–212. [Google Scholar] [CrossRef]
- McIntosh, R.A. Cytogenetical studies in wheat VI. Chromosome location and linkage studies involving Sr13 and Sr8 for reaction to Puccinia graminis f. sp. tritici. Aust. J. Biol. Sci. 1972, 25, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; McIntosh, R.A. Cytogenetical studies in wheat XIV. Sr8b for resistance to Puccinia graminis tritici. Can. J. Genet. Cytol. 1986, 28, 189–197. [Google Scholar] [CrossRef]
- Sears, E.R.; Loegering, W.Q. Mapping of stem rust genes Sr9 and Sr16 of wheat. Crop Sci. 1968, 8, 371–373. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Luig, N.H. Recombination between genes for reaction to P. graminis at or near the Sr9 locus. In Proceedings of the Fourth International Wheat Genetics Symposium, Agricultural Experiment Station, Columbia, MO, USA, 6–11 August 1973; Sears, E.R., Sears, L.M.S., Eds.; University of Missouri: Columbia, MO, USA, 1973; pp. 425–432. [Google Scholar]
- Green, G.J.; Knott, D.R.; Watson, I.A.; Pugsley, A.T. Seedling reactions to stem rust of lines of Marquis wheat with substituted genes for rust resistance. Can. J. Plant Sci. 1960, 40, 524–538. [Google Scholar] [CrossRef]
- Hiebert, C.W.; Thomas, J.B.; McCallum, B.D.; Humphreys, D.G.; DePauw, R.M.; Hayden, M.J.; Mago, R.; Schnippenkoetter, W.; Spielmeyer, W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor. Appl. Genet. 2010, 121, 1083–1091. [Google Scholar] [CrossRef]
- Green, G.J.; Knott, D.R. Adult plant reaction to stem rust of lines of Marquis wheat with substituted genes for resistance. Can. J. Plant Sci. 1962, 42, 163–168. [Google Scholar] [CrossRef]
- Sears, E.R.; Briggle, L.W. Mapping the gene Pm1 for resistance to Erysiphe graminis f. sp. tritici on chromosome 7A of wheat. Crop Sci. 1969, 9, 96–97. [Google Scholar] [CrossRef]
- Gousseau, H.D.M.; Deverall, B.J.; McIntosh, R.A. Temperature-sensitivity of the expression of resistance to Puccinia graminis conferred by the Sr15, Sr8b and Sr14 genes in wheat. Physiol. Plant Pathol. 1985, 27, 335–343. [Google Scholar] [CrossRef]
- Watson, I.A.; Luig, N.G. Sr15—A new gene for use in the classification of Puccina graminis var. tritici. Euphytica 1966, 15, 239–250. [Google Scholar] [CrossRef]
- Jayatilake, D.V.; Tucker, E.J.; Bariana, H.; Kuchel, H.; Edwards, J.; McKay, A.C.; Chalmers, K.; Mather, D.E. Genetic mapping and marker development for resistance of wheat against the root lesion nematode Pratylenchus neglectus. BMC Plant Biol. 2013, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, R.A. Nature of Induced Mutations Affecting Disease Reaction in Wheat in “Induced Mutations against Plant Disease”; International Atomic Energy Agency: Vienna, Austria, 1997; pp. 551–565. [Google Scholar]
- Baker, E.P.; Sanghi, A.K.; McIntosh, R.A.; Luig, N.H. Cytogenetical studies in wheat III. Studies of a gene conditioning resistance to stem rust strains with unusual genes for avirulence. Aust. J. Biol. Sci. 1970, 23, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.D.; Maan, S.S. Telosomic mapping of genes for resistance to stem rust of wheat. In Proceedings of the Fourth International Wheat Genetics Symposium, Columbia, MO, USA, 6–11 August 1973; Sears, E.R., Sears, L.M.S., Eds.; University of Missouri: Columbia, MO, USA, 1973; pp. 765–770. [Google Scholar]
- Anderson, M.K.; Williams, S.S.; Maan, S.S. Monosomic analyses of genes for resistance derived from Marquis and Reliance wheat. Crop Sci. 1971, 11, 556–558. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Luig, N.H. Linkage of genes for reaction to Puccinia graminis f. sp. tritici and P. recondita in Selkirk wheat and related cultivars. Aust. J. Biol. Sci. 1973, 26, 1145–1152. [Google Scholar] [CrossRef]
- Kassa, M.T.; You, F.M.; Hiebert, C.W.; Pozniak, C.J.; Fobert, P.R.; Sharpe, A.G.; Menzies, J.G.; Humphreys, D.G.; Rezac, H.N.; Fellers, J.P.; et al. Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biol. 2017, 17, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, R.A. Cytogenetical studies in wheat X. Monosomic analysis and linkage studies involving genes for resistance to Puccinia graminis f. sp. tritici in cultivar Kota. Heredity 1978, 41, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Singh, R.P.; Ward, R.W.; Wanyera, R.; Kinyua, M.; Njau, P.; Fetch, T.; Pretorius, Z.A.; Yahyaoui, A. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2007, 91, 1096–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouse, M.N.; Wanyera, R.; Njau, P.; Jin, Y. Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis. 2011, 95, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Babiker, E.M.; Gordon, T.C.; Chao, S.; Newcomb, M.; Rouse, M.N.; Jin, Y.; Wanyera, R.; Acevedo, M.; Brown-Guedira, G.; Williamson, S.; et al. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor. Appl. Genet. 2015, 128, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Babiker, E.M.; Gordon, T.C.; Chao, S.; Rouse, M.N.; Wanyera, R.; Acevedo, M.; Brown-Guedira, G.; Bonman, J.M. Molecular mapping of stem rust resistance loci effective against the Ug99 race group of the stem rust pathogen and validation of a single nucleotide polymorphism marker linked to stem rust resistance gene Sr28. Phytopathology 2017, 107, 208–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyck, P.L.; Kerber, E.R. Chromosome location of gene Sr29 for reaction to stem rust. Can. J. Genet. Cytol. 1977, 19, 371–373. [Google Scholar] [CrossRef]
- Baraibar, S.; García, R.; Silva, P.; Lado, B.; Castro, A.; Gutiérrez, L.; Kavanová, M.; Quincke, M.; Bhavani, S.; Randhawa, M.S.; et al. QTL mapping of resistance to Ug99 and other stem rust pathogen races in bread wheat. Mol. Breed. 2020, 40, 1–6. [Google Scholar] [CrossRef]
- Zeller, F.J.; Oppitz, K. Monosomic analysis for localizing the gene SrEC for resistance to stem rust in the wheat cv. ‘Etoile de Choisy’. Z. Für Pflanz. 1977, 78, 79–82. [Google Scholar]
- Knott, D.R.; McIntosh, R.A. The inheritance of stem rust resistance in the common wheat cultivar Webster. Crop Sci. 1978, 17, 365–369. [Google Scholar] [CrossRef]
- Sears, E.R. Chromosome mapping with the aid of telocentrics. In Proceedings of the Second International Wheat Genetics Symposium, Lund, Sweden, 18–24 August 1963; pp. 370–381. [Google Scholar]
- Riede, C.R.; Williams, N.D.; Miller, J.D.; Joppa, L.R. Chromosomal location of genes for stem rust resistance derived from ‘Waldron’ wheat. Theor. Appl. Genet. 1995, 90, 1158–1163. [Google Scholar] [CrossRef]
- Ghazvini, H.; Hiebert, C.W.; Zegeye, T.; Liu, S.; Dilawari, M.; Tsilo, T.; Anderson, J.A.; Rouse, M.N.; Jin, Y.; Fetch, T. Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of Sr42. Theor. Appl. Genet. 2012, 125, 817–824. [Google Scholar] [CrossRef]
- Prins, R.; Dreisigacker, S.; Pretorius, Z. Stem rust resistance in a geographically diverse collection of spring wheat lines collected from across Africa. Front. Plant Sci. 2016, 7, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, U.K.; Hayden, M.J.; Keller, B.; Wellings, C.R.; Park, R.F.; Bariana, H.S. Relationship between wheat rust resistance genes Yr1 and Sr48 and a microsatellite marker. Plant Pathol. 2009, 58, 1039–1043. [Google Scholar] [CrossRef]
- Bansal, U.K.; Muhammad, S.; Forrest, K.L.; Hayden, M.J.; Bariana, H.S. Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theor. Appl. Genet. 2015, 128, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Ghazvini, H.; Hiebert, C.W.; Thomas, J.B.; Fetch, T. Development of a multiple bulked segregant analysis (MBSA) method used to locate a new stem rust resistance gene (Sr54) in the winter wheat cultivar Norin 40. Theor. Appl. Genet. 2013, 126, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Laroche, A.; Demeke, T.; Gaudet, D.A.; Puchalski, B.; Frick, M.; McKenzie, R. Development of a PCR marker for rapid identification of the Bt-10 gene for common bunt resistance in wheat. Genome 2000, 43, 217–223. [Google Scholar] [CrossRef]
- German, S.E.; Kolmer, J.A. Effect of the gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theor. Appl. Genet. 1992, 84, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Kassa, M.T.; You, F.M.; Fetch, F.M.; Fobert, P.; Sharpe, A.; Pozniak, C.J.; Menzies, J.G.; Jordan, M.C.; Humphreys, G.; Zhu, T.; et al. Genetic mapping of SrCad and SNP marker development for marker-assisted selection of Ug99 stem rust resistance in wheat. Theor. Appl. Genet. 2016, 129, 1373–1382. [Google Scholar] [CrossRef]
- Park, R.F.; Welling, C.R. Pathogenic specialisation of wheat rusts in Australia and New Zealand in 1988 and 1989. Australas. Plant Pathol. 1992, 21, 61–69. [Google Scholar] [CrossRef]
- Roelfs, A.P.; McVey, D.V. Low infection types produced by Puccinia graminis f.sp. tritici and wheat lines with designated genes for resistance. Phytopathology 1979, 69, 722–730. [Google Scholar] [CrossRef]
- Nsabiyera, V.; Bariana, H.; Zhang, P.; Hayden, M.J.; Bansal, U. Closely linked markers for stem rust resistance gene Sr48 in wheat. In Proceedings of the Resilience Emerging from Scarcity and Abundance, Phoenix, AZ, USA, 6–9 November 2016; pp. 6–9. [Google Scholar]
- Aktar-Uz-Zaman, M.; Tuhina-Khatun, M.; Musa Hanafi, M.; Sahebi, M. Genetic analysis of rust resistance genes in global wheat cultivars: An overview. Biotechnol. Biotechnol. Equip. 2017, 31, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Keller, B.; Lagudah, E.S.; Selter, L.L.; Risk, J.M.; Harsh, C.; Krattinger, S.G. How has Lr34/Yr18 conferred effective rust resistance in wheat for so long? In Proceedings of the Borlaug Global Rust Initiative Technical Workshop 2012, Beijing, China, 1–4 September 2012; Institute of Plant Biology, University of Zurich: Zürich, Switzerland, 2012. [Google Scholar]
- Krattinger, S.G.; Lagudah, E.S.; Spielmeyer, W.; Singh, R.P.; Huerta-Espino, J.; McFadden, H.; Bossolini, E.; Selter, L.L.; Keller, B. A Putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 2009, 323, 1360–1363. [Google Scholar] [CrossRef] [Green Version]
- Krattinger, S.G.; Kang, J.; Bräunlich, S.; Boni, R.; Chauhan, H.; Selter, L.L.; Robinson, M.D.; Schmid, M.W.; Wiederhold, E.; Hensel, G.; et al. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol. 2019, 223, 853–866. [Google Scholar] [CrossRef] [Green Version]
- Lagudah, E.S.; Krattinger, S.G.; Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; Spielmeyer, W.; Brown-Guedira, G.; Selter, L.L.; Keller, B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor. Appl. Genet. 2009, 119, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Dyck, P.L.; Samborski, D.J. Adult-plant leaf rust resistance in PI 250413, an introduction of common wheat. Can. J. Plant Sci. 1979, 59, 329–332. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.A.; Singh, R.P.; Lillemo, M.; Huerta-Espino, J.; Bhavani, S.; Singh, S.; Lan, C.; Calvo-Salazar, V.; Lagudah, E.S. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor. Appl. Genet. 2014, 127, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Bansal, U.K.; Bossolini, E.; Miah, H.; Keller, B.; Park, R.F.; Barianam, H.S. Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica 2008, 164, 821–828. [Google Scholar] [CrossRef]
- Bansal, U.K.; Bariana, H.; Wong, D.; Randhawa, M.; Wicker, T.; Hayden, M.; Keller, B. Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor. Appl. Genet. 2014, 127, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Dakouri, A.; McCallum, B.D.; Walichnowski, A.Z.; Cloutier, S. Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm collections support the ABC transporter as essential for gene function. Theor. Appl. Genet. 2010, 121, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.; Niks, R.E.; Singh, R.P.; Rubiales, D. Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust. Hereditas 2001, 135, 111–114. [Google Scholar] [CrossRef]
- Moore, J.; Herrera-Foessel, S.; Lan, C.; Schnippenkoetter, W.; Ayliffe, M.; Huerta-Espino, J.; Lillemo, M.; Viccars, L.; Milne, R.; Periyannan, S.; et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015, 47, 1494–1498. [Google Scholar] [CrossRef] [PubMed]
- William, M.; Singh, R.P.; Huerta-Espino, J.; Islas, S.O.; Hoisington, D. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 2003, 93, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.; Friebe, B.; Zhang, P.; Gill, B.S. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 2007, 15, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Zwer, P.K.; Park, R.F.; McIntosh, R.A. Wheat stem rust in Australia –1969-1985. Aust. J. Agric. Res. 1992, 43, 399–431. [Google Scholar] [CrossRef]
- Roux, J.L.; Rijkenberg, F.H.L. Occurrence and pathogenicity of Puccinia graminis f.sp. tritici in South Africa during the period 1981-1985. Phytophylactica 1987, 19, 456–472. [Google Scholar]
- Harder, D.E.; Dunsmore, K.M. Incidence and virulence of Puccinia graminis f.sp. tritici on wheat and barley in Canada in 1989. Can. J. Plant Pathol. 1990, 12, 424–427. [Google Scholar] [CrossRef]
- Roelfs, A.P.; Casper, D.H.; Long, D.L.; Roberts, J.J. Races of Puccinia graminis in the United States in 1989. Plant Dis. 1991, 75, 1127–1130. [Google Scholar] [CrossRef]
- McFadden, E.S. A successful transfer of emmer characters to vulgare wheat. J. Am. Soc. Agron. 1930, 22, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Mago, R.; Tabe, L.; McIntosh, R.A.; Kota, R.; Paux, E.; Wicker, T.; Breen, J.; Lagudah, E.S.; Ellis, J.G.; Spielmeyer, W. A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor. Appl. Genet. 2011, 123, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Knott, D.R. The inheritance of rust resistance. IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Can. J. Plant Sci. 1962, 42, 415–419. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Abate, Z.; Nirmala, J.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA 2017, 114, 9483–9492. [Google Scholar] [CrossRef] [PubMed]
- The, T.T. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nature New Biol. 1973, 241, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The, T.T.; McIntosh, R.A.; Bennett, F.G.A. Cytogenetical studies in wheat IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4, and Mle. Aust. J. Biol. Sci. 1979, 32, 115–125. [Google Scholar] [CrossRef]
- The, T.T.; Latter, B.D.H.; McIntosh, R.A.; Ellison, F.W.; Brennan, P.S.; Fisher, J.; Hollamby, G.J.; Rathjen, A.J.; Wilson, R.E. Grain yields of near isogenic lines with added genes for stem rust resistance. In Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge, UK, 13–19 July 1988; Miller, T.E., Koebner, R.M.D., Eds.; Institute of Plant Sciences: Cambridge, UK, 1988; pp. 901–909. [Google Scholar]
- McIntosh, R.A.; Dyck, P.L.; Green, G.J. Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust. J. Agric. Res. 1976, 28, 37–45. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Knott, D.R.; Gill, B.S. Compensation indexes of radiation-induced wheat Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 1994, 34, 400–404. [Google Scholar] [CrossRef]
- Zhang, W.; Lukaszewski, A.J.; Kolmer, J.; Soria, M.A.; Goyal, S.; Dubcovsky, J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005, 111, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Knott, D.R. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci. 1961, 41, 109–123. [Google Scholar] [CrossRef]
- Acosta, A.C. The transfer of stem rust resistance from rye to wheat. Diss. Abstr. 1962, 23, 34–35. [Google Scholar]
- Mettin, D.; Bluthner, W.D.; Schlegel, G. Additional evidence on spontaneous 1B.1R wheat-rye substitutions and translocations. In Proceedings of the Fourth International Wheat Genetics Symposium, Columbia, MO, USA, 6–11 August 1973; pp. 179–184. [Google Scholar]
- Mago, R.; Verlin, D.; Zhang, P.; Bansal, U.; Bariana, H.; Jin, Y.; Ellis, J.; Hoxha, S.; Dundas, I. Development of wheat–Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor. Appl. Genet. 2013, 126, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.S.; Dvorak, J.; Knott, D.R.; Qualset, C.O. Use of double-ditelosomic and normal chromosome 1D recombinant substitution lines to map Sr33 on chromosome arm 1DS in wheat. Genome 1991, 34, 505–508. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Miller, T.E.; Chapman, V. Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z. Für Pflanz. 1982, 89, 295–306. [Google Scholar]
- McIntosh, R.A.; Gyarfas, J. Triticum timopheevi as a source of resistance to wheat stem rust. Z. Fur Pflanzenzucht. 1971, 66, 240–248. [Google Scholar]
- Gyarfas, J. Transference of Disease Resistance from Triticum timopheevii to Triticum aestivum. Master’s Thesis, University of Sydney, Camperdown, Australia, 1978. [Google Scholar]
- Bariana, H.S.; McIntosh, R.A. Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 1993, 36, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Kerber, E.R.; Dyck, P.L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from amphiploid of Aegiolops speltoides x Triticum monoccum. Genome 1990, 33, 530–537. [Google Scholar] [CrossRef]
- Dyck, P.L. Transfer of a gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome 1992, 35, 788–792. [Google Scholar] [CrossRef]
- Wua, S.; Pumphrey, M.; Bai, G. Molecular mapping of stem-rust-resistance gene Sr40 in wheat. Crop Sci. 2008, 49, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- Kibiridge-Sebunya, I.; Knott, D.R. Transfer of stem rust resistance to wheat from an Agropyron chromosome having a gametocidal effect. Canad. J. Genet. Cytol. 1983, 25, 215–221. [Google Scholar] [CrossRef]
- Liu, W.; Danilova, T.V.; Rouse, M.N.; Bowden, R.L.; Friebe, B.; Gill, B.S.; Pumphrey, M.O. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 2013, 126, 1167–1177. [Google Scholar] [CrossRef] [Green Version]
- Marais, G.F.; Potgieter, G.F.; Roux, H.S.; Roux, J. An assessment of the variation for stem rust resistance in the progeny of a cross involving the Triticum species aestivum, turgidum and tauschii. S. Afr. J. Plant. Soil. 1994, 11, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Rouse, M.N.; Olson, E.L.; Gill, B.S.; Pumphrey, M.O.; Jin, Y. Stem rust resistance in Aegilops tauschii germplasm. Crop Sci. 2011, 51, 2074–2078. [Google Scholar] [CrossRef]
- Faris, J.D.; Xu, S.S.; Cai, X.; Friesen, T.L.; Jin, Y. Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res. 2008, 16, 1097–1105. [Google Scholar] [CrossRef]
- Klindworth, D.L.; Niu, Z.; Chao, S.; Friesen, T.L.; Jin, Y.; Faris, J.D.; Cai, X.; Xu, S.S. Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3 (Bethesda) 2012, 2, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anugrahwati, D.R.; Shepherd, K.W.; Verlin, D.C.; Zhang, P.; Mirzaghaderi, G.; Walker, E.; Francki, M.G.; Dundas, I.S. Isolation of wheat–rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome 2008, 51, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Jin, Y.; Rouse, M.; Friebe, B.; Gill, B.; Pumphrey, M.O. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 2011, 122, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.L.; Pumphrey, M.O.; Friebe, B.; Zhang, P.; Qian, C.; Bowden, R.L.; Rouse, M.N.; Jin, Y.; Gill, B.S. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor. Appl. Genet. 2011, 123, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Rouse, M.; Friebe, B. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011, 19, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Rahmatov, M.; Rouse, M.N.; Nirmala, J.; Danilova, T.; Friebe, B.; Steffenson, B.J.; Johansson, E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor. Appl. Genet. 2016, 129, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Rouse, M.N.; Zhang, W.; Zhang, X.; Guo, Y.; Briggs, J.; Dubcovsky, J. Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol. 2020, 225, 948–959. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hewitt, T.C.; Boshoff, W.; Dundas, I.; Upadhyaya, N.; Li, J.; Patpour, M.; Chandramohan, S.; Pretorius, Z.A.; Hovmøller, M.; et al. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021, 12, 3378. [Google Scholar] [CrossRef] [PubMed]
- Millet, E.; Steffenson, B.J.; Prins, R.; Sela, H.; Przewieslik-Allen, A.M.; Pretorius, Z.A. Genome targeted introgression of resistance to African stem rust from Aegilops sharonensis into bread wheat. Plant Genome 2017, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Champouret, N.; Steuernagel, B.; Olivera, P.D.; Simmons, J.; Williams, C.; Johnson, R.; Moscou, M.J.; Hernández-Pinzón, I.; Green, P.; et al. Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theor. Appl. Genet. 2017, 130, 1207–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mago, R.; Chen, C.; Xia, X.; Whan, A.; Forrest, K.; Basnet, B.R.; Perera, G.; Chandramohan, S.; Randhawa, M.; Hayden, M. Adult plant stem rust resistance in durum wheat Glossy Huguenot: Mapping, marker development and validation. Theor. Appl. Genet. 2022, 135, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, S.V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 1998, 100, 323–340. [Google Scholar] [CrossRef]
- Periyannan, S.K.; Qamar, Z.U.; Bansal, U.K.; Bariana, H.S. Development and validation of molecular markers linked with stem rust resistance gene Sr13 in durum wheat. Crop. Pasture Sci. 2014, 65, 74–79. [Google Scholar] [CrossRef]
- Gill, B.K.; Klindworth, D.L.; Rouse, M.N.; Zhang, J.; Zhang, Q.; Sharma, J.S.; Chu, C.; Long, Y.; Chao, S.; Olivera, P.D.; et al. Function and evolution of allelic variations of Sr13 conferring resistance to stem rust in tetraploid wheat (Triticum turgidum L.). Plant J. 2021, 106, 1674–1691. [Google Scholar] [CrossRef]
- Baker, E.P.; McIntosh, R.A. Utilization of marked telocentric chromosomes in more efficient genetic analysis. In Proceedings of the Fourth International Wheat Genetics Symposium, Agricultural Experiment Station, University of Missouri, Columbia, MO, USA, 6–11 August 1973; pp. 635–636. [Google Scholar]
- McIntosh, R.A. Chromosome location and linkage studies involving the wheat stem rust resistance gene Sr14. Cereal Res. Commun. 1980, 8, 315–320. [Google Scholar]
- McIntosh, R.A.; Luig, N.H.; Baker, E.P. Genetic and cytogenetic studies of stem rust, leaf rust and powdery midew resistances in Hope and related wheat cultivars. Aust. J. Biol. Sci. 1967, 20, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Stakman, E.C.; Stewart, D.M.; Loegering, W.Q. Identification of Physiologic Races of Puccinia graminis var. tritici. Agricultural Research Service E617; United States Department of Agriculture: Washington, DC, USA, 1962. [Google Scholar]
- Chen, S.; Rouse, M.N.; Zhang, W.; Jin, Y.; Akhunov, E.; Wei, Y.; Dubcovsky, J. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor. Appl. Genet. 2015, 128, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, W.; Bolus, S.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet. 2018, 14, e1007287. [Google Scholar] [CrossRef] [Green Version]
- Kerber, E.R.; Dyck, P.L. Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Canad. J. Genet. Cytol. 1973, 15, 397–409. [Google Scholar] [CrossRef]
- Luo, J.; Rouse, M.N.; Hua, L.; Li, H.; Li, B.; Li, T.; Zhang, W.; Gao, C.; Wang, Y.; Dubcovsky, J.; et al. Identification and characterization of Sr22b, a new allele of the wheat stem rust resistance gene Sr22 effective against the Ug99 race group. Plant Biotechnol. J. 2022, 20, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.L.; Brown-Guedira, G.; Marshall, D.; Stack, E.; Bowden, R.L.; Jin, Y.; Rouse, M.; Pumphrey, M.O. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci. 2010, 50, 1823–1830. [Google Scholar] [CrossRef]
- Steuernagel, B.; Periyannan, S.; Hernández-Pinzón, I.; Witek, K.; Rouse, M.N.; Yu, G.; Hatta, A.; Ayliffe, M.; Bariana, H.; Jones, J.D.; et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016, 34, 652–655. [Google Scholar] [CrossRef]
- Hatta, M.A.M.; Ghosh, S.; Athiyannan, N.; Richardson, T.; Steuernagel, B.; Yu, G.; Rouse, M.N.; Ayliffe, M.; Lagudah, E.S.; Radhakrishnan, G.V.; et al. Extensive genetic variation at the Sr22 wheat stem rust resistance gene locus in the grasses revealed through evolutionary genomics and functional analyses. Mol. Plant Microbe Interact. 2020, 33, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
- Hart, G.E.; McMillin, D.E.; Sears, E.R. Determination of the chromosomal location of a glutamate oxaloacetate transaminase structural gene using Triticum-Agropyron translocations. Genetics 1976, 83, 49–61. [Google Scholar] [CrossRef]
- Bhardwaj, S.C.; Nyar, S.K.; Prashar, M.; Kumar, J.; Menon, M.K.; Singh, S.B. A pathotype of Puccinia graminis f. sp. tritici on Sr24 in India. Cereal Rusts Powdery Mildews Bull. 1990, 18, 35–38. [Google Scholar]
- Mago, R.; Bariana, H.S.; Dundas, I.S.; Spielmeyer, W.; Lawrence, G.J.; Pryor, A.J.; Ellis, J.G. Development of PCR markers for the selection of wheat stem Gousseau rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor. Appl. Genet. 2005, 111, 496–504. [Google Scholar] [CrossRef]
- Dvorak, J.; Knott, D.R. Homoeologous chromatin exchange in a radiation-induced gene transfer. Canad. J. Genet. Cytol. 1977, 19, 125–131. [Google Scholar] [CrossRef]
- Liu, S.; Yu, L.X.; Singh, R.P.; Jin, Y.; Sorrells, M.E.; Anderson, J.A. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor. Appl. Genet. 2010, 120, 691–697. [Google Scholar] [CrossRef]
- Dundas, I.S.; Anugrahwati, D.R.; Verlin, D.C.; Park, R.F.; Bariana, H.S.; Mago, R.; Islam, A.K.M.R. New sources of rust resistance from alien species: Meliorating linked defects and discovery. Aust. J. Agric. Res. 2007, 58, 545–549. [Google Scholar] [CrossRef]
- Randhawa, M.S.; Bains, N.S.; Sohu, V.S.; Chhuneja, P.; Trethowan, R.M.; Bariana, H.S.; Bansal, U. Marker Assisted Transfer of Stripe Rust and Stem Rust Resistance Genes into Four Wheat Cultivars. Agronomy 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.X.; Lin, Q.J.; Ni, X.Y.; Sun, Q.; Chen, R.Z.; Xu, X.F.; Qiu, Y.C.; Li, T.Y. Characterization of wheat monogenic lines with known Sr genes and wheat lines with resistance to the Ug99 race Ggroup for resistance to prevalent races of Puccinia graminis f. sp. tritici in China. Plant Dis. 2020, 104, 1939–1943. [Google Scholar] [CrossRef]
- Upadhyaya, N.M.; Mago, R.; Panwar, V.; Hewitt, T.; Luo, M.; Chen, J.; Sperschneider, J.; Nguyen-Phuc, H.; Wang, A.; Ortiz, D.; et al. Genomics accelerated isolation of a new stem rust avirulence gene-wheat resistance gene pair. Nat. Plants 2021, 7, 1220–1228. [Google Scholar] [CrossRef]
- Das, B.K.; Sainti, A.; Bhagwat, S.G.; Jawali, N. Development of SCAR markers for identification of stem rust resistance gene Sr31. Plant Breed. 2006, 125, 544–549. [Google Scholar] [CrossRef]
- Tomar, S.M.S.; Menon, M.K. Genes for Resistance to Rusts and Powdery Mildew in Wheat; Indian Agricultural Research Institute: New Delhi, India, 2001; p. 152. [Google Scholar]
- Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 1996, 91, 59–87. [Google Scholar] [CrossRef]
- Kerber, E.R. Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii. Crop Sci. 1987, 27, 204–206. [Google Scholar] [CrossRef]
- Cesaria, S.; Moorea, J.; Chen, C.; Webb, D.; Periyannan, S.; Mago, R.; Bernoux, M.; Lagudah, E.S.; Dodds, P.N. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC–NLR proteins. Stella Cesari 2016, 113, 10204–10209. [Google Scholar] [CrossRef] [Green Version]
- Sambasivam, P.K.; Bansal, U.K.; Hayden, M.J.; Lagudah, E.S.; Bariana, H.S. Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In Proceedings of the 11th International Wheat Genetics Symposium, Brisbane, Australia, 24–29 August 2008; Russell, R.A., Lagudah, E.E., Langridge, P., Lynne, M.M., Eds.; Sydney University Press: Sydney, Australia, 2008. 3p. [Google Scholar]
- Periyannan, S.; Moore, J.; Ayliffe, M.; Bansal, U.; Wang, X.; Huang, L.; Deal, K.; Luo, M.; Kong, X.; Bariana, H.; et al. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 2013, 341, 786–788. [Google Scholar] [CrossRef]
- Casey, L.W.; Lavrencic, P.; Bentham, A.R.; Cesari, S.; Ericsson, D.J.; Croll, T.; Turk, D.; Anderson, P.A.; Mark, A.E.; Dodds, P.N.; et al. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc. Natl. Acad. Sci. USA 2016, 113, 12856–12861. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, R.A.; Dyck, P.L.; The, T.T. Cytogenetical studies in wheat. XIII. Sr35—A 3rd Gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z. Für Pflazenzüchtung 1984, 92, 1–14. [Google Scholar]
- Saintenac, C.; Zhang, W.; Salcedo, A.; Rouse, M.N.; Trick, H.N.; Akhunov, E.; Dubcovsky, J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 2013, 341, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.X.; Barbier, H.; Rouse, M.N.; Singh, S.; Singh, R.P.; Bhavani, S.; Huerta-Espino, J.; Sorrells, M.E. A consensus map for Ug99 stem rust resistance loci in wheat. Theor. Appl. Genet. 2014, 127, 1561–1581. [Google Scholar] [CrossRef] [Green Version]
- Boshoff, W.H.P.; Pretorius, Z.A.; van Niekerk, B.D.; Komen, J.S. First report of virulence in Puccinia graminis f. sp. tritici to wheat stem rust resistance genes Sr8b and Sr38 in South Africa. Plant Dis. 2002, 86, 922. [Google Scholar] [CrossRef]
- Labuschagne, M.T.; Pretorius, Z.A.; Grobbelaar, B. The influence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on bread making quality in wheat. Euphytica 2002, 124, 65–70. [Google Scholar] [CrossRef]
- Mago, R.; Zhang, P.; Bariana, H.S.; Verlin, D.C.; Bansal, U.K.; Ellis, J.G.; Dundas, I.S. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor. Appl. Genet. 2009, 124, 65–70. [Google Scholar] [CrossRef]
- Niu, Z.; Klindworth, D.L.; Friesen, T.L.; Chao, S.; Jin, Y.; Cai, X.; Xu, S.S. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 2011, 187, 1011–1021. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, A.N.; Bowden, R.L.; Rouse, M.N.; Newcomb, M.S.; Marshall, D.S.; Bai, G. Validation of molecular markers for new stem rust resistance genes in U.S. hard winter wheat. Crop Sci. 2013, 53, 755–764. [Google Scholar] [CrossRef]
- Knott, D.R.; Dvorak, J.; Nanda, J.S. The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Canad. J. Genet. Cytol. 1977, 19, 75–79. [Google Scholar] [CrossRef]
- Kerber, E.R.; Dyck, P.L. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Canad. J. Genet. Cytol. 1969, 11, 639–647. [Google Scholar] [CrossRef]
- Arora, S.; Steuernagel, B.; Gaurav, K.; Chandramohan, S.; Long, Y.; Matny, O.; Johnson, R.; Enk, J.; Periyannan, S.; Singh, N.; et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019, 37, 139–143. [Google Scholar] [CrossRef]
- Mago, R.; Zhang, P.; Vautrin, S.; Šimková, H.; Bansal, U.; Luo, M.C.; Rouse, M.; Karaoglu, H.; Periyannan, S.; Kolmer, J.; et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 2015, 1, 15186. [Google Scholar] [CrossRef]
- Ortiz, D.; Chen, J.; Outram, M.A.; Saur, I.M.L.; Upadhyaya, N.M.; Mago, R.; Ericsson, D.J.; Cesari, S.; Chen, C.; Williams, S.J.; et al. The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface-exposed residue. New Phytol. 2022, 234, 592–606. [Google Scholar] [CrossRef]
- Sebesta, E.E.; Wood, E.A.; ·Porter, D.R.; Webster, J.A.; Smith, E.L. Registration of Gaucho greenbug-resistant triticale germplasm. Crop Sci. 1994, 34, 1428. [Google Scholar] [CrossRef]
- Olivera, P.D.; Jin, Y.; Rouse, M.; Badebo, A.; Fetch, T., Jr.; Singh, R.P.; Yahyaoui, A. Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis. 2012, 96, 623–628. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Matny, O.; Champouret, N.; Steuernagel, B.; Moscou, M.J.; Hernández-Pinzón, I.; Green, P.; Hayta, S.; Smedley, M.; Harwood, W.; et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 2022, 13, 1607. [Google Scholar] [CrossRef]
- Hare, R.A. Characterization and inheritance of adult plant stem rust resistance in durum wheat. Crop Sci. 1997, 37, 1094–1098. [Google Scholar] [CrossRef]
- Hare, R.A.; McIntosh, R.A. Genetic and cytogenetic studies of durable adult-plant resistance in Hope and related cultivars to wheat rusts. Z. Pflanzenzuecht. 1979, 83, 350–367. [Google Scholar]
- Sunderwirth, S.D.; Roelfs, A.P. Greenhouse evaluation of the adult plant resistance of Sr2 to wheat stem rust. Phytopathology 1980, 70, 634–637. [Google Scholar] [CrossRef]
- Yu, L.X.; Morgounov, A.; Wanyera, R.; Keser, M.; Singh, S.K.; Sorrells, M. Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor. Appl. Genet. 2012, 125, 749–758. [Google Scholar] [CrossRef]
- Singh, S.; Singh, R.P.; Bhavani, S.; Huerta-Espino, J.; Eugenio, L.V. QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. Theor. Appl. Genet. 2013, 126, 1367–1375. [Google Scholar] [CrossRef]
- Brown, G.N. The inheritance and expression of leaf chlorosis associated with gene Sr2 for adult plant resistance to wheat stem rust. Euphytica 1997, 95, 67–71. [Google Scholar] [CrossRef]
- Kota, R.; Spielmeyer, W.; McIntosh, R.A.; Lagudah, E.S. Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 112, 492–499. [Google Scholar] [CrossRef]
- Spielmeyer, W.; Sharp, P.J.; Lagudah, E.S. Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci. 2003, 43, 333–336. [Google Scholar] [CrossRef]
- Hayden, M.J.; Kuchel, H.; Chalmers, K.J. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004, 109, 1641–1647. [Google Scholar] [CrossRef]
- McNeil, M.D.; Kota, R.; Paux, E.; Dunn, D.; McLean, R.; Feuillet, C.; Li, D.; Kong, X.; Lagudah, E.; Zhang, J.; et al. BAC-derived markers for assaying the stem rust resistance gene, Sr2, in wheat breeding programs. Mol. Breed. 2008, 22, 15–24. [Google Scholar] [CrossRef]
- Mago, R.; Tabe, L.; Vautrin, S.; Šimková, H.; Kubaláková, M.; Upadhyaya, N.; Berges, H.; Kong, H.; Breen, J.; Doležel, J.; et al. Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biol. 2014, 14, 379. [Google Scholar] [CrossRef] [Green Version]
- Lagudah, E.S. Molecular genetics of race non-specific rust resistance in wheat. Euphytica 2011, 179, 81–91. [Google Scholar] [CrossRef]
- Bokore, F.E.; Cuthbert, R.D.; Hiebert, C.W.; Fetch, T.W.; Pozniak, C.J.; N’Diaye, A.; Ruan, Y.; Meyer, B.; Knox, R.E. Mapping stem rust resistance loci effective in Kenya in Canadian spring wheat (Triticum aestivum L.) lines ‘AAC Prevail’ and ‘BW961’. Canad. J. Plant Pathol. 2021, 43 (Suppl. 2), S263–S274. [Google Scholar] [CrossRef]
- Bajgain, P.; Rouse, M.N.; Bhavani, S.; Anderson, J.A. QTL mapping of adult plant resistance to Ug99 stem rust in the spring wheat population RB07/MN06113-8. Mol. Breed. 2015, 35, 170. [Google Scholar] [CrossRef]
- Kosgey, Z.C.; Edae, E.A.; Dill-Macky, R.; Jin, Y.; Bulbula, W.D.; Gemechu, A.; Macharia, G.; Bhavani, S.; Randhawa, M.S.; Rouse, M.N. Mapping and validation of stem rust resistance loci in spring wheat line CI 14275. Front. Plant Sci. 2021, 11, 609659. [Google Scholar] [CrossRef]
- Shewabez, E.; Bekele, E.; Alemu, A.; Mugnai, L.; Tadesse, W. Genetic characterization and genome-wide association mapping for stem rust resistance in spring bread wheat. BMC Genom. Data 2022, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Chemonges, M.; Herselman, L.; Pretorius, Z.A.; Maré, A.; Boshoff, W.H.P. Characterisation of stem rust resistance in the South African winter wheat cultivar PAN 3161. Euphytica 2022, 218, 139. [Google Scholar] [CrossRef]
Gene | Allele | Resistance Against Ug99 | Possible Source | Chromosome | DNA Marker Available | References |
---|---|---|---|---|---|---|
Sr5 | - | No | Kanred | 6DS | No | [5,29,30] |
Sr6 | - | No | McMurachy | 2D | No | [5,31] |
Sr7 | a | No | Ciano-67 | 4AL | No | [32,33,34,35] |
b | No | Selkirk | ||||
Sr8 | a | No | Frontana | 6AS | No | [36,37] |
b | No | Bezostaya 1 | ||||
Sr9 | a | No | TAM-107 | 2BL | Yes | [38,39] |
b | No | Chinese spring | ||||
e | No | Arrivato | ||||
f | No | Chinese white | ||||
h | Yes | Webster | [40,41] | |||
Sr10 | - | No | Marquiz | 2B | No | [40,42] |
Sr15 | - | Maybe | Norka | 7AL | Yes | [43,44,45,46] |
Sr16 | - | No | Reliance | 2BL | No | [38,47] |
Sr18 | - | No | Gabo | 1DL | No | [48,49] |
Sr19 | - | No | Marquiz | 2B | No | [50] |
Sr20 | - | |||||
Sr23 | - | No | Myronovskaya 264 | 2BS | Yes | [51,52] |
Sr28 | - | Moderate | Kota | 2BL | Yes | [53,54,55,56,57] |
Sr29 | - | No | Aurora | 6D | No | [58,59] |
Sr30 | - | No | Webster | 5DL | No | [60,61] |
Sr41 | - | No | Waldron | 4D | Yes | [62,63] |
Sr42 | - | No | Norin 40 | 6DS | Yes | [64,65] |
Sr48 | - | Moderate | Arina | 2AL | ? | [66] |
Sr49 | - | No | Mahmoudi | 5BL | ? | [67] |
Sr54 | No | Norin 40 | 2DL | ? | [68] | |
SrCad | - | Yes | Cadillac | 6DS | Yes | [41,69,70,71] |
SrTmp | - | Yes | Triumph 64 | Yes | [41,71] |
Gene | Cosegregating Resistance Factors | Resistance Against Ug99 | Possible Source | Chromosome | DNA Marker Available | References |
---|---|---|---|---|---|---|
Sr55 | Lr67/Yr46Pm46 | Yes | PI250413 | 4DL | Yes | [41,80,81] |
Sr56 | - | Yes | Arina | 5BL | Yes | [82,83] |
Sr57 | Lr34/Yr18/Pm38/Bdv1 | Yes | Bezostaya 1 | 7DS | Yes | [77,79,84] |
Sr58 | Lr46/Yr29/Pm39 | Yes | Pavon 76 | 2D | Yes | [85] |
Gene | Cosegregating Resistance Genes, or Genes on the Same Arm | Resistance Against Ug99 | Source Species | Possible Source Cultivar | Chromosome | DNA Marker Available | References |
---|---|---|---|---|---|---|---|
Sr2 | Lr27 | Moderate | T. turgidum ssp. dicoccum | Hope | 3BS | Yes | [93,94] |
Sr9d | - | No | T. turgidum ssp. dicoccum | NIL-LMPG-Sr9d-TR.DR | 2BL | Yes | [93] |
Sr9g | - | No | T. turgidum ssp. durum | - | 2BL | Yes | [39] |
Sr11 | - | No | T. turgidum ssp. durum | Gaza | 5BL | Yes | [32,62] |
Sr12 | - | Moderate | T. turgidum ssp. durum | Marquillo | 3BS | No | [92,95] |
Sr13 | - | Yes | T. turgidum ssp. dicoccum | NIL-Marquis-Sr13,Sr14-Khapstein | 6AL | Yes | [36,96] |
Sr14 | - | No | T. turgidum ssp. dicoccum | NIL-Marquis-Sr13,Sr14-Khapstein | 1BL | Yes | [44] |
sr17 | - | No | T. turgidum ssp. dicoccum | Selkirk | 7BL | No | [93] |
Sr21 | - | Yes | T. monococcum | Einkorn C.I.2433 | 2AL | Yes | [97,98] |
Sr22 | - | Yes | T. monococcum ssp. boeoticum | Schomburgk | 7AL | Yes | [99] |
Sr24 | - | Yes | Thinopyrum ponticum (Podp.) Z.-W.Liu and R.-C.Wang | NIL-LMPG-Sr24 | 3DL | Yes | [100] |
Sr25 | Lr19 | Yes | Ag. elongatum Host. (Th. ponticum) | NIL-LMPG-Sr25 | 7DL | Yes | [101,102] |
Sr26 | - | Yes | Ag. elongatum Host. (Th. ponticum) | NIL-LMPG-Sr26 | 6A/6Ag | Yes | [103] |
Sr27 | - | Yes | S. cereale | NIL-LMPG-Sr27 | 3A/3R | No | [104] |
Sr31 | Lr26, Yr9 | No | S. cereale | Knyahynia Olha | 1BL/1RS | Yes | [105] |
Sr32 | - | Yes | Aegilops speltoides Tausch | - | 2A, 2B, 2D | Yes | [106] |
Sr33 | Lr21 | Yes | Ae. tauschii Coss. | Lorikeet | 1DS | Yes | [107] |
Sr34 | Yr8 | No | Ae. comosa Sibth. and Sm. | Marquillo | 2A/2M, 2D/2M | Yes | [108] |
Sr35 | - | Yes | T. monococcum | NIL-STEWART-Sr35-G-2919 | 3AL | Yes | |
Sr36 | - | Yes | T. timopheevi | Songlen | 2BS | Yes | [109] |
Sr37 | - | Yes | T. timopheevi | Boohai | 4B | Yes | [110] |
Sr38 | Lr37/Yr17 | No | Ae. ventricosa Tausch | Trident | 2AS/2NS | Yes | [111] |
Sr39 | - | Yes | Ae. speltoides R.L.5344. | RL-6082 | 2B | Yes | [112] |
Sr40 | - | Yes | T. timopheevii subsp. armeniacum (Jakubz.) | Maris-Fundin | 2BS | Yes | [113,114] |
Sr43 | - | Yes | Ag. elongatum Host. (Th. ponticum) | RWG-33 | 7DS/7el2L | Yes | [115] |
Sr44 | - | Yes | Th. intermedium (Host) Barkworth and D.R. Dewey | Payne | 7DL/7J#1S | Yes | [116] |
Sr45 | - | Yes | Ae. tauschii | Thornbill | 1DS | Yes | [117] |
Sr46 | - | ? | Ae. tauschii var. meyeri | AUS-18913 | 2DS | Yes | [118] |
Sr47 | - | ? | Ae. speltoides | 96–90 | 2BL/2SL·2SS | Yes | [119,120] |
Sr50 | - | Yes | S. cereale cv. Imperial | - | 1DL.1DS/1R#3S/1DS | Yes | [121] |
Sr51 | - | Yes | Ae. searsii Feldman and Kislev ex K.Hammer | TA-6555 | 3AL/3SSS, 3BL/3SSS 3DL/3SSS | Yes | [122] |
Sr52 | - | Yes | D. villosum (L.) Borbas | KS-12-WGGRC-57 | 6AL/6V.3L | Yes | [123] |
Sr53 | - | Yes | Ae. geniculata Roth | KS-12-WGGRC-58-T1 | 5M(g)L/5M(g)S / 5DL | Yes | [124] |
Sr59 | - | Yes | S. cereale | TA5094 | T2DS·2RL | Yes | [125] |
Sr60 | - | No | T. monococcum | 5AmS | [126] | ||
Sr61 | - | Yes | Ag. elongatum Host.(Th. ponticum) | W3757 | T6AS.6AL-6Ae#1 | Yes | [127] |
Sr62 | - | Ae. sharonensis Eig | AS_1644 | 1SshS·1SshL-1BL/1SshS·1SshL-1DL | Yes | [128,129] | |
Sr63 | Yes | T. turgidum ssp. durum | Glossy Huguenot | 2AL | Yes | [130] | |
SrAmigo | - | Yes | S. cereale cv. Insave | Amigo | 1AL/1RS | Yes | [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karelov, A.; Kozub, N.; Sozinova, O.; Pirko, Y.; Sozinov, I.; Yemets, A.; Blume, Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust (Puccinia graminis Pers.). Pathogens 2022, 11, 1157. https://doi.org/10.3390/pathogens11101157
Karelov A, Kozub N, Sozinova O, Pirko Y, Sozinov I, Yemets A, Blume Y. Wheat Genes Associated with Different Types of Resistance against Stem Rust (Puccinia graminis Pers.). Pathogens. 2022; 11(10):1157. https://doi.org/10.3390/pathogens11101157
Chicago/Turabian StyleKarelov, Anatolii, Natalia Kozub, Oksana Sozinova, Yaroslav Pirko, Igor Sozinov, Alla Yemets, and Yaroslav Blume. 2022. "Wheat Genes Associated with Different Types of Resistance against Stem Rust (Puccinia graminis Pers.)" Pathogens 11, no. 10: 1157. https://doi.org/10.3390/pathogens11101157