Fatty Acid Profiles of Leishmania major Derived from Human and Rodent Hosts in Endemic Cutaneous Leishmaniasis Areas of Tunisia and Algeria
Abstract
:1. Introduction
2. Results
2.1. In Silico Leishmania major Genes and Related Lipids Compounds Interaction Network
2.2. Mass Spectrometry-Based Lipidomic Analyses Reveal the Total FA and Sterol Composition of Different L. major Clones Differing from Their Host Nature
2.3. GC-MS Analyses Reveal Differences in the FA Composition of the Different Clones
2.4. Neutral Lipids and Lipids Droplet Content
2.5. In Vitro Assay for Drug Susceptibility and Host–Pathogen Infectivity Ratio and Lipid Content Correlation
3. Discussion
4. Materials and Methods
4.1. Parasite Culture
4.2. Bioinformatic Analysis
4.3. Parasite Harvesting
4.4. Lipid Extraction
4.5. Total Lipid Analysis
4.6. Thin Layer Chromatography for Neutral Lipids
4.7. Detection of Lipid Droplets Using Nile Red
4.8. In Vitro Drug Sensitivity Assay
4.9. Parasite Infectivity
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGwire, B.S.; Satoskar, A.R. Leishmaniasis: Clinical Syndromes and Treatment. QJM 2014, 107, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A Review. F1000Res 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, B.; Alemayehu, M. Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Health Sci. J. 2017, 11, 1. [Google Scholar] [CrossRef]
- Izri, A.; Bendjaballah-Laliam, A.; Sereno, D.; Akhoundi, M. Updates on Geographical Dispersion of Leishmania Parasites Causing Cutaneous Affections in Algeria. Pathogens 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Ghawar, W.; Attia, H.; Bettaieb, J.; Yazidi, R.; Laouini, D.; Salah, A.B. Genotype Profile of Leishmania Major Strains Isolated from Tunisian Rodent Reservoir Hosts Revealed by Multilocus Microsatellite Typing. PLoS ONE 2014, 9, e107043. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, B.; Berg, M.; Imamura, H.; Dumetz, F.; De Muylder, G.; Domagalska, M.A.; Rijal, S.; Bhattarai, N.R.; Maes, I.; Sanders, M.; et al. Integrated Genomic and Metabolomic Profiling of ISC1, an Emerging Leishmania Donovani Population in the Indian Subcontinent. Infect. Genet. Evol. 2018, 62, 170–178. [Google Scholar] [CrossRef]
- Biagiotti, M.; Dominguez, S.; Yamout, N.; Zufferey, R. Lipidomics and Anti-trypanosomatid Chemotherapy. Clin. Transl. Med. 2017, 6, e27. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, S.; Serricchio, M.; Striepen, B.; Bütikofer, P. Lipid Synthesis in Protozoan Parasites: A Comparison between Kinetoplastids and Apicomplexans. Prog. Lipid Res. 2013, 52, 488–512. [Google Scholar] [CrossRef] [Green Version]
- Ropert, C.; Gazzinelli, R.T. Signaling of Immune System Cells by Glycosylphosphatidylinositol (GPI) Anchor and Related Structures Derived from Parasitic Protozoa. Curr. Opin. Microbiol. 2000, 3, 395–403. [Google Scholar] [CrossRef]
- Yao, C.; Wilson, M.E. Dynamics of Sterol Synthesis during Development of Leishmania Spp. Parasites to Their Virulent Form. Parasites Vectors 2016, 9, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, F.-F.; Matthew Kuhlmann, F.; Turk, J.; Beverley, S.M. Multiple-Stage Linear Ion-Trap with High Resolution Mass Spectrometry towards Complete Structural Characterization of Phosphatidylethanolamines Containing Cyclopropane Fatty Acyl Chain in Leishmania infantum: Characterization of Rare PE by Mass Spectrometry. J. Mass Spectrom. 2014, 49, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Bouazizi-Ben Messaoud, H.; Guichard, M.; Lawton, P.; Delton, I.; Azzouz-Maache, S. Changes in Lipid and Fatty Acid Composition During Intramacrophagic Transformation of Leishmania Donovani Complex Promastigotes into Amastigotes. Lipids 2017, 52, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denny, P.W.; Goulding, D.; Ferguson, M.A.J.; Smith, D.F. Sphingolipid-Free Leishmania Are Defective in Membrane Trafficking, Differentiation and Infectivity: Leishmania Sphingolipid Biosynthesis. Mol. Microbiol. 2004, 52, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pompey, J.M.; Hsu, F.-F.; Key, P.; Bandhuvula, P.; Saba, J.D.; Turk, J.; Beverley, S.M. Redirection of Sphingolipid Metabolism toward de Novo Synthesis of Ethanolamine in Leishmania. EMBO J. 2007, 26, 1094–1104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Hsu, F.-F.; Scott, D.A.; Docampo, R.; Turk, J.; Beverley, S.M. Leishmania Salvage and Remodelling of Host Sphingolipids in Amastigote Survival and Acidocalcisome Biogenesis: Leishmania Amastigotes Salvage Sphingolipids. Mol. Microbiol. 2005, 55, 1566–1578. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K. Sphingolipids Are Essential for Differentiation but Not Growth in Leishmania. EMBO J. 2003, 22, 6016–6026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beach, D.H.; Pascal, R.A.; Holz, G.G. Effects of Thiastearic Acids on Growth and on Dihydrosterculic Acid and Other Phospholipid Fatty Acyl Groups of Leishmania Promastigotes. Mol. Biochem. Parasitol. 1989, 35, 57–66. [Google Scholar] [CrossRef]
- Vessal, M.; Rezai, H.R.; Pakzad, P. Leishmania Species: Fatty Acid Composition of Promastigotes. Exp. Parasitol. 1974, 36, 455–461. [Google Scholar] [CrossRef]
- Korn, E.D.; Greenblatt, C.L. Synthesis of Ca-Linolenic Acid by Leishmania Enriettii. Science 1963, 142, 1301–1303. [Google Scholar] [CrossRef]
- De Azevedo, A.F.; de Lisboa Dutra, J.L.; Barbosa Santos, M.L.; de Alexandria Santos, D.; Alves, P.B.; de Moura, T.R.; de Almeida, R.P.; Fernandes, M.F.; Scher, R.; Fernandes, R.P.M. Fatty Acid Profiles in Leishmania Spp. Isolates with Natural Resistance to Nitric Oxide and Trivalent Antimony. Parasitol. Res 2014, 113, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacchina, P.; Tripodi, K.E.J.; Escalante, A.M.; Uttaro, A.D. Characterization of Bifunctional Sphingolipid Δ4-Desaturases/C4-Hydroxylases of Trypanosomatids by Liquid Chromatography–Electrospray Tandem Mass Spectrometry. Mol. Biochem. Parasitol. 2012, 184, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Zufferey, R.; Al-Ani, G.K.; Dunlap, K. Leishmania Dihydroxyacetonephosphate Acyltransferase LmDAT Is Important for Ether Lipid Biosynthesis but Not for the Integrity of Detergent Resistant Membranes. Mol. Biochem. Parasitol. 2009, 168, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Zufferey, R.; Mamoun, C.B. Leishmania Major Expresses a Single Dihydroxyacetone Phosphate Acyltransferase Localized in the Glycosome, Important for Rapid Growth and Survival at High Cell Density and Essential for Virulence. J. Biol. Chem. 2006, 281, 7952–7959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zufferey, R.; Allen, S.; Barron, T.; Sullivan, D.R.; Denny, P.W.; Almeida, I.C.; Smith, D.F.; Turco, S.J.; Ferguson, M.A.J.; Beverley, S.M. Ether Phospholipids and Glycosylinositolphospholipids Are Not Required for Amastigote Virulence or for Inhibition of Macrophage Activation by Leishmania Major. J. Biol. Chem. 2003, 278, 44708–44718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moitra, S.; Basu, S.; Pawlowic, M.; Hsu, F.; Zhang, K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania Major. Front. Cell. Infect. Microbiol. 2021, 11, 647870. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K. Balancing de Novo Synthesis and Salvage of Lipids by Leishmania Amastigotes. Curr. Opin. Microbiol. 2021, 63, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Uttaro, A.D. Acquisition and Biosynthesis of Saturated and Unsaturated Fatty Acids by Trypanosomatids. Mol. Biochem. Parasitol. 2014, 196, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Livore, V.I.; Tripodi, K.E.J.; Uttaro, A.D. Elongation of Polyunsaturated Fatty Acids in Trypanosomatids: PUFA Elongation in Trypanosomatids. FEBS J. 2007, 274, 264–274. [Google Scholar] [CrossRef]
- Beach, D.H.; Holz, G.G.; Anekwe, G.E. Lipids of Leishmania Promastigotes. J. Parasitol. 1979, 65, 203. [Google Scholar] [CrossRef]
- Wassef, M.K.; Fioretti, T.B.; Dwyer, D.M. Lipid Analyses of Isolated Surface Membranes OfLeishmania Donovani Promastigotes. Lipids 1985, 20, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Adosraku, R.K.; Anderson, M.M.; Anderson, G.J.; Choi, G.; Croft, S.L.; Yardley, V.; Phillipson, J.D.; Gibbons, W.A. Proton NMR Lipid Profile of Leishmania Donovani Promastigotes. Mol. Biochem. Parasitol. 1993, 62, 251–262. [Google Scholar] [CrossRef]
- Eddaikra, N.; Ait-Oudhia, K.; Oury, B.; Farida, M.; Harrat, Z. Leishmania Antimony Resistance/ Susceptibility in Algerian Foci. Open J. Trop. Med. 2017, 1, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Bettaieb, J.; Nouira, M. Epidemiology of Cutaneous Leishmaniasis in Tunisia. In the Epidemiology and Ecology of Leishmaniasis; Claborn, D., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-2971-4. [Google Scholar]
- Ghawar, W.; Toumi, A.; Snoussi, M.-A.; Chlif, S.; Zâatour, A.; Boukthir, A.; Bel Haj Hamida, N.; Chemkhi, J.; Diouani, M.F.; Ben-Salah, A. Leishmania major Infection Among Psammomys Obesus and Meriones Shawi: Reservoirs of Zoonotic Cutaneous Leishmaniasis in Sidi Bouzid (Central Tunisia). Vector-Borne Zoonotic Dis. 2011, 11, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashford, R.W. When Is a Reservoir Not a Reservoir? Emerg. Infect. Dis. 2001, 9, 1495–1496. [Google Scholar] [CrossRef] [Green Version]
- Navea-Pérez, H.M.; Díaz-Sáez, V.; Corpas-López, V.; Merino-Espinosa, G.; Morillas-Márquez, F.; Martín-Sánchez, J. Leishmania Infantum in Wild Rodents: Reservoirs or Just Irrelevant Incidental Hosts? Parasitol. Res. 2015, 114, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Dixon, H.; Williamson, J. The Lipid Composition of Blood and Culture Forms of Trypanosoma Lewisi and Trypanosoma Rhodesiense Compared with That of Their Environment. Comp. Biochem. Physiol. 1970, 33, 111–128. [Google Scholar] [CrossRef]
- Godfrey, D.G. Phospholipids of Trypanosoma Lewisi, T. Vivax, T. Congolense, and T. Brucei. Exp. Parasitol. 1967, 20, 106–118. [Google Scholar] [CrossRef]
- Roberts, C.W.; McLeod, R.; Rice, D.W.; Ginger, M.; Chance, M.L.; Goad, L.J. Fatty Acid and Sterol Metabolism: Potential Antimicrobial Targets in Apicomplexan and Trypanosomatid Parasitic Protozoa. Mol. Biochem. Parasitol. 2003, 126, 129–142. [Google Scholar] [CrossRef]
- Zhang, K.; Beverley, S.M. Phospholipid and Sphingolipid Metabolism in Leishmania. Mol. Biochem. Parasitol. 2010, 170, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, L.; Cos, P.; Croft, S.L. The Relevance of Susceptibility Tests, Breakpoints, and Markers. In Drug Resistance in Leishmania Parasites: Consequences, Molecular Mechanisms and Possible Treatments; Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M., Eds.; Springer: Vienna, Austria, 2013; ISBN 978-3-7091-1125-3. [Google Scholar]
- Fernández, O.L.; Diaz-Toro, Y.; Ovalle, C.; Valderrama, L.; Muvdi, S.; Rodríguez, I.; Gomez, M.A.; Saravia, N.G. Miltefosine and Antimonial Drug Susceptibility of Leishmania Viannia Species and Populations in Regions of High Transmission in Colombia. PLoS Negl. Trop. Dis. 2014, 8, e2871. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez Guarnizo, S.A.; Tikhonova, E.B.; Zabet-Moghaddam, M.; Zhang, K.; Muskus, C.; Karamyshev, A.L.; Karamysheva, Z.N. Drug-Induced Lipid Remodeling in Leishmania Parasites. Microorganisms 2021, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Soto, J.; Toledo, J.; Gutierrez, P.; Nicholls, R.S.; Padilla, J.; Engel, J.; Fischer, C.; Voss, A.; Berman, J. Treatment of American Cutaneous Leishmaniasis with Miltefosine, an Oral Agent. Clin. Infect. Dis. 2001, 33, e57–e61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croft, S.L.; Neal, R.A.; Pendergast, W.; Chan, J.H. The Activity of Alkyl Phosphorylcholines and Related Derivatives against Leishmania Donovani. Biochem. Pharmacol. 1987, 36, 2633–2636. [Google Scholar] [CrossRef]
- Escobar, P.; Matu, S.; Marques, C.; Croft, S.L. Sensitivities of Leishmania Species to Hexadecylphosphocholine (Miltefosine), ET-18-OCH3 (Edelfosine) and Amphotericin B. Acta Trop. 2002, 81, 151–157. [Google Scholar] [CrossRef]
- Rakotomanga, M.; Saint-Pierre-Chazalet, M.; Loiseau, P.M. Alteration of Fatty Acid and Sterol Metabolism in Miltefosine-Resistant Leishmania Donovani Promastigotes and Consequences for Drug-Membrane Interactions. Antimicrob. Agents Chemother 2005, 49, 2677–2686. [Google Scholar] [CrossRef] [Green Version]
- Amiar, S.; MacRae, J.I.; Callahan, D.L.; Dubois, D.; van Dooren, G.G.; Shears, M.J.; Cesbron-Delauw, M.-F.; Maréchal, E.; McConville, M.J.; McFadden, G.I.; et al. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma Gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. PLoS Pathog. 2016, 12, e1005765. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Docampo, M.D.; MacRae, J.I.; Pujol, F.M.; Brooks, C.F.; van Dooren, G.G.; Hiltunen, J.K.; Kastaniotis, A.J.; McConville, M.J.; Striepen, B. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma Gondii. J. Biol. Chem. 2012, 287, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- Dass, S.; Shunmugam, S.; Berry, L.; Arnold, C.-S.; Katris, N.J.; Duley, S.; Pierrel, F.; Cesbron-Delauw, M.-F.; Yamaryo-Botté, Y.; Botté, C.Y. Toxoplasma LIPIN Is Essential in Channeling Host Lipid Fluxes through Membrane Biogenesis and Lipid Storage. Nat. Commun. 2021, 12, 2813. [Google Scholar] [CrossRef]
Fatty Acid Composition | L. major Reference Isolates | ||||
---|---|---|---|---|---|
FA (Mol%) | PGLC | 32-1 | 32-2 | 32-3 | |
SFA | C12:0 | 1.4 ± 0.2 | 1.6 ± 0.2 | 2 ± 0.2 | 1.9 ± 0.5 |
C14:0 | 3.5 ± 0.2 | 3.4 ± 0.2 | 3.2 ± 0.3 | 3 ± 0.3 | |
C16:0 | 3.1 ± 0.2 | 2.7 ± 0.1 | 3 ± 0.4 | 3. ± 0.2 | |
C17:0 | 0.5 ± 0.0 | 0.4 ± 0.0 | 0.5 ± 0.1 | 0.3 ± 0.1 | |
C18:0 | 18.3 ± 0.3 | 18.1 ± 0.4 | 19 ± 0.9 | 18.8 ± 0.2 | |
C20:0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.0 | 0.5 ± 0.1 | |
C22:0 | 0.0 | 0.0 | 0.1 ± 0.1 | 0.0 | |
C24:0 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.0 | 0.1 ± 0.1 | |
Total | 27.4 | 26.8 | 28.4 | 27.6 | |
MUFA | C16:1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.0 | 0.1 ± 0.1 |
C18:1 cis | 24 ± 0.3 | 26.9 ± 0.8 | 23.1 ± 1.0 | 24.3 ± 0.9 | |
C18:1trans | 1.5 ± 0.4 | 1.6 ± 0.2 | 1.8 ± 0.7 | 1.8 ± 0.5 | |
C20:1 | 0.0 | 0.0 | 0.0 | 0.0 | |
C22:1 | 0.0 | 0.0 | 0.0 | 0.0 | |
C24:1 | 0.0 | 0.0 | 0.0 | 0.0 | |
Total | 25.6 | 28.7 | 24.9 | 26.2 | |
PUFA | C18:2 (n-6) | 38.8 ± 0.6 | 36.5 ± 0.1 | 38.1 ± 1.3 | 36.9 ± 1.4 |
C18:3 (n-6) | 1.1 ± 0.1 | 1.2 ± 0.2 | 1.2 ± 0.1 | 1.1 ± 0.2 | |
C20:2 (n-6) | 1.5 ± 0.0 | 1.4 ± 0.1 | 1.5 ± 0.2 | 1.5 ± 0.1 | |
C20:3 (n-3) | 0.6 ± 0.1 | 0.6 ± 0.2 | 0.9 ± 0.1 | 0.8 ± 0.1 | |
C20:3 (n-6) | 1.3 ± 0.1 | 1.2 ± 0.1 | 1.4 ± 0.1 | 1.4 ± 0.1 | |
C20:4 (n-6) | 0.0 | 0.0 | 0.0 | 0.2 ± 0.2 | |
C20:5(n-3) | 0.0 | 0.0 | 0.0 | 0.1 ± 0.1 | |
C22:2 | 0.0 | 0.0 | 0.0 | 0.0 | |
C22:6 (n-3) | 3.7 ± 0.1 | 3.5 ± 0.2 | 3.9 ± 0.2 | 4.1 ± 0.4 | |
Total | 47.0 | 44.4 | 47 | 46.1 |
L. major Reference Isolates | ||||
---|---|---|---|---|
PGLC | 32-1 | 32-2 | 32-3 | |
Sb(III) µg/mL | 4.71 ± 0.5 | 5.47 ± 0.34 | 3.62 ± 1.04 | 6.09 ± 0.16 |
Miltefosine µM | 9.93 ± 3.7 | 12.26 ± 2.19 | 10.29 ± 0.03 | 13.24 ± 1.39 |
Infectivity | 53% ± 13.4 | 40% ± 2.8 | 47% ± 4.9 | 37% ± 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouabid, C.; Yamaryo-Botté, Y.; Rabhi, S.; Bichiou, H.; Hkimi, C.; Bouglita, W.; Chaouach, M.; Eddaikra, N.; Ghedira, K.; Guizani-Tabbane, L.; et al. Fatty Acid Profiles of Leishmania major Derived from Human and Rodent Hosts in Endemic Cutaneous Leishmaniasis Areas of Tunisia and Algeria. Pathogens 2022, 11, 92. https://doi.org/10.3390/pathogens11010092
Bouabid C, Yamaryo-Botté Y, Rabhi S, Bichiou H, Hkimi C, Bouglita W, Chaouach M, Eddaikra N, Ghedira K, Guizani-Tabbane L, et al. Fatty Acid Profiles of Leishmania major Derived from Human and Rodent Hosts in Endemic Cutaneous Leishmaniasis Areas of Tunisia and Algeria. Pathogens. 2022; 11(1):92. https://doi.org/10.3390/pathogens11010092
Chicago/Turabian StyleBouabid, Cyrine, Yoshiki Yamaryo-Botté, Sameh Rabhi, Haifa Bichiou, Chaima Hkimi, Wafa Bouglita, Melek Chaouach, Naouel Eddaikra, Kais Ghedira, Lamia Guizani-Tabbane, and et al. 2022. "Fatty Acid Profiles of Leishmania major Derived from Human and Rodent Hosts in Endemic Cutaneous Leishmaniasis Areas of Tunisia and Algeria" Pathogens 11, no. 1: 92. https://doi.org/10.3390/pathogens11010092
APA StyleBouabid, C., Yamaryo-Botté, Y., Rabhi, S., Bichiou, H., Hkimi, C., Bouglita, W., Chaouach, M., Eddaikra, N., Ghedira, K., Guizani-Tabbane, L., Botté, C. Y., & Rabhi, I. (2022). Fatty Acid Profiles of Leishmania major Derived from Human and Rodent Hosts in Endemic Cutaneous Leishmaniasis Areas of Tunisia and Algeria. Pathogens, 11(1), 92. https://doi.org/10.3390/pathogens11010092