Enteric Fever Diagnosis: Current Challenges and Future Directions
Abstract
:1. Introduction
2. Current Enteric Fever Diagnostics
2.1. Bacterial-Culture-Based Diagnosis
2.2. Bacterial Nucleic Acid Detection-Based Diagnosis
2.3. Serological Diagnosis
3. Future Directions for New Diagnostic Development
3.1. Overview of Host–Pathogen Interactions
3.2. Emerging Diagnostic Methods
3.2.1. Protein Biomarkers
3.2.2. Nucleic Acid Biomarkers
3.2.3. Metabolite Biomarkers
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ochiai, R.L.; Acosta, C.J.; Danovaro-Holliday, M.C.; Baiqing, D.; Bhattacharya, S.K.; Agtini, M.D.; Bhutta, Z.A.; Canh, D.G.; Ali, M.; Shin, S.; et al. A study of typhoid fever in five Asian countries: Disease burden and implications for controls. Bull. World Health Organ. 2008, 86, 260–268. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; Bogoch, I.I.; Andrews, J.R. Advances in diagnosis, treatment, and prevention of invasive Salmonella infections. Curr. Opin. Infect. Dis. 2016, 29, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Favorov, M.; Dougan, G. Searching for the elusive typhoid diagnostic. BMC Infect. Dis. 2010, 10, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, F.W.; Villar, R.G.; Angulo, F.J.; Tauxe, R.; Swaminathan, B. Salmonella nomenclature. J. Clin. Microbiol. 2000, 38, 2465–2467. [Google Scholar] [CrossRef] [Green Version]
- Uzzau, S.; Brown, D.J.; Wallis, T.; Rubino, S.; Leori, G.; Bernard, S.; Casadesús, J.; Platt, D.J.; Olsen, J.E. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect. 2000, 125, 229–255. [Google Scholar] [CrossRef]
- Velge, P.; Cloeckaert, A.; Barrow, P. Emergence of Salmonella epidemics: The problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet. Res. 2005, 36, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499. [Google Scholar] [CrossRef]
- Khan, M.I.; Soofi, S.B.; Ochiai, R.L.; Khan, M.J.; Sahito, S.M.; Habib, M.A.; Puri, M.K.; von Seidlein, L.; Park, J.K.; You, Y.A.; et al. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan. J. Infect. Dev. Ctries. 2012, 6, 704–714. [Google Scholar] [CrossRef] [Green Version]
- Waddington, C.S.; Darton, T.C.; Jones, C.; Haworth, K.; Peters, A.; John, T.; Thompson, B.A.; Kerridge, S.A.; Kingsley, R.A.; Zhou, L.; et al. An outpatient, ambulant-design, controlled human infection model using escalating doses of Salmonella Typhi challenge delivered in sodium bicarbonate solution. Clin. Infect. Dis. 2014, 58, 1230–1240. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, S.J.; Stephens, H.A.; Blackwell, J.M.; Duc, C.M.; Lanh, M.N.; Dudbridge, F.; Phuong, C.X.; Luxemburger, C.; Wain, J.; Ho, V.A.; et al. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J. Infect. Dis. 2001, 183, 261–268. [Google Scholar] [CrossRef] [Green Version]
- van de Vosse, E.; Ali, S.; de Visser, A.W.; Surjadi, C.; Widjaja, S.; Vollaard, A.M.; van Dissel, J.T. Susceptibility to typhoid fever is associated with a polymorphism in the cystic fibrosis transmembrane conductance regulator (CFTR). Hum. Genet. 2005, 118, 138–140. [Google Scholar] [CrossRef]
- Maskey, A.P.; Day, J.N.; Phung, Q.T.; Thwaites, G.E.; Campbell, J.I.; Zimmerman, M.; Farrar, J.J.; Basnyat, B. Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin. Infect. Dis. 2006, 42, 1247–1253. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Reiner, R.C.; Blacker, B.F.; Goldberg, E.M.; Khalil, I.A.; Troeger, C.E.; Andrews, J.R.; Bhutta, Z.A.; Crump, J.A.; Im, J.; et al. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 2019, 19, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Sejvar, J.; Lutterloh, E.; Naiene, J.; Likaka, A.; Manda, R.; Nygren, B.; Monroe, S.; Khaila, T.; Lowther, S.A.; Capewell, L.; et al. Neurologic manifestations associated with an outbreak of typhoid fever, Malawi-Mozambique, 2009: An epidemiologic investigation. PLoS ONE 2012, 7, e46099. [Google Scholar] [CrossRef]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, J.A. Typhoid Fever and the challenge of nonmalaria febrile illness in sub-saharan Africa. Clin. Infect. Dis. 2012, 54, 1107–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olarte, J.; Galindo, E. Salmonella typhi resistant to chloramphenicol, ampicillin, and other antimicrobial agents: Strains isolated during an extensive typhoid fever epidemic in Mexico. Antimicrob. Agents Chemother. 1973, 4, 597–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roumagnac, P.; Weill, F.X.; Dolecek, C.; Baker, S.; Brisse, S.; Chinh, N.T.; Le, T.A.; Acosta, C.J.; Farrar, J.; Dougan, G.; et al. Evolutionary history of Salmonella typhi. Science 2006, 314, 1301–1304. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, S.; Sarker, M.R.; Jabeen, K.; Sattar, A.; Qamar, A.; Fasih, N. Antimicrobial resistance in Salmonella enterica serovar typhi and paratyphi in South Asia-current status, issues and prospects. Crit. Rev. Microbiol. 2015, 41, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Phan, M.D.; Baker, S.; Duy, P.T.; Nga, T.V.; Nair, S.; Turner, A.K.; Walsh, C.; Fanning, S.; Farrell-Ward, S.; et al. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl. Trop. Dis. 2011, 5, e1245. [Google Scholar] [CrossRef]
- Wong, V.K.; Baker, S.; Pickard, D.J.; Parkhill, J.; Page, A.J.; Feasey, N.A.; Kingsley, R.A.; Thomson, N.R.; Keane, J.A.; Weill, F.X.; et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat. Genet. 2015, 47, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, S.; Holt, K.E.; Clements, A.C.; Karkey, A.; Arjyal, A.; Boni, M.F.; Dongol, S.; Hammond, N.; Koirala, S.; Duy, P.T.; et al. Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol. 2011, 1, 110008. [Google Scholar] [CrossRef] [Green Version]
- Holt, K.E.; Dolecek, C.; Chau, T.T.; Duy, P.T.; La, T.T.; Hoang, N.V.; Nga, T.V.; Campbell, J.I.; Manh, B.H.; Chau, N.V.V.; et al. Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam. PLoS Negl. Trop. Dis. 2011, 5, e929. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Li, X.; Liao, Q.; Li, F.; Zhang, J.; Kan, B. The emergence and outbreak of multidrug-resistant typhoid fever in China. Emerg. Microbes Infect. 2016, 5, e62. [Google Scholar] [CrossRef]
- Ingle, D.J.; Nair, S.; Hartman, H.; Ashton, P.M.; Dyson, Z.A.; Day, M.; Freedman, J.; Chattaway, M.A.; Holt, K.E.; Dallman, T.J. Informal genomic surveillance of regional distribution of Salmonella Typhi genotypes and antimicrobial resistance via returning travellers. PLoS Negl. Trop. Dis. 2019, 13, e0007620. [Google Scholar] [CrossRef]
- Chiou, C.S.; Lauderdale, T.L.; Phung, D.C.; Watanabe, H.; Kuo, J.C.; Wang, P.J.; Liu, Y.Y.; Liang, S.Y.; Chen, P.C. Antimicrobial resistance in Salmonella enterica Serovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam. Antimicrob. Agents Chemother. 2014, 58, 6501–6507. [Google Scholar] [CrossRef] [Green Version]
- Klemm, E.J.; Shakoor, S.; Page, A.J.; Qamar, F.N.; Judge, K.; Saeed, D.K.; Wong, V.K.; Dallman, T.J.; Nair, S.; Baker, S.; et al. Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins. mBio 2018, 9, e00105-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatham-Stephens, K.; Medalla, F.; Hughes, M.; Appiah, G.D.; Aubert, R.D.; Caidi, H.; Angelo, K.M.; Walker, A.T.; Hatley, N.; Masani, S.; et al. Emergence of Extensively Drug-Resistant Salmonella Typhi Infections Among Travelers to or from Pakistan-United States, 2016–2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.; Rawahi, H.A.; Patel, S.; Yau, Y.; Eshaghi, A.; Zittermann, S.; Tattum, L.; Morris, S.K. The first Canadian pediatric case of extensively drug-resistant Salmonella Typhi originating from an outbreak in Pakistan and its implication for empiric antimicrobial choices. IDCases 2019, 15, e00492. [Google Scholar] [CrossRef]
- López-Segura, N.; Corberó-Rivali, C.; Maldonado-Fernández, M.C.; Calpe-Fraile, S.; Peyra-Ros, J.; Martínez-Roig, A. Imported extensively drug resistant typhoid fever in a child travelling to Spain from Pakistan. J. Travel Med. 2019, 26, taz066. [Google Scholar] [CrossRef] [PubMed]
- Holubar, M. Antimicrobial resistance: A global public health emergency further exacerbated by international travel. J. Travel Med. 2020, 27, taz095. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.M.; Thieu, N.T.; Dolecek, C.; Karkey, A.; Gupta, R.; Turner, P.; Dance, D.; Maude, R.R.; Ha, V.; Tran, C.N.; et al. Clinically and microbiologically derived azithromycin susceptibility breakpoints for Salmonella enterica serovars Typhi and Paratyphi, A. Antimicrob. Agents Chemother. 2015, 59, 2756–2764. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.R.; Bharti, S.; Pratap, C.B.; Nath, G. Drug Resistance Pattern in the Recent Isolates of Salmonella Typhi with Special Reference to Cephalosporins and Azithromycin in the Gangetic Plain. J. Clin. Diagn. Res. 2017, 11, Dm01–Dm03. [Google Scholar] [CrossRef]
- Hooda, Y.; Sajib, M.S.I.; Rahman, H.; Luby, S.P.; Bondy-Denomy, J.; Santosham, M.; Andrews, J.R.; Saha, S.K.; Saha, S. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl. Trop. Dis. 2019, 13, e0007868. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Guerra, B.; Rodicio, M.R. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Vet. Sci. 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.M.; Black, R.E.; Lanata, C. Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J. Infect. Dis. 1982, 146, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Caygill, C.P.; Braddick, M.; Hill, M.J.; Knowles, R.L.; Sharp, J.C. The association between typhoid carriage, typhoid infection and subsequent cancer at a number of sites. Eur. J. Cancer Prev. 1995, 4, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Cvjetanović, B.; Grab, B.; Uemura, K. Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization and sanitation programmes. Bull. World Health Organ. 1971, 45, 53–75. [Google Scholar]
- Gunn, J.S.; Marshall, J.M.; Baker, S.; Dongol, S.; Charles, R.C.; Ryan, E.T. Salmonella chronic carriage: Epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 2014, 22, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. World Health Organization Background Document: The Diagnosis, Treatment, and Prevention of Typhoid Fever; World Health Organization Department of Vaccines and Biologicals: Geneva, Switzerland, 2003. [Google Scholar]
- Wain, J.; Pham, V.B.; Ha, V.; Nguyen, N.M.; To, S.D.; Walsh, A.L.; Parry, C.M.; Hasserjian, R.P.; HoHo, V.A.; Tran, T.H.; et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: Relationship between counts and clinical features. J. Clin. Microbiol. 2001, 39, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
- Gilman, R.H.; Terminel, M.; Levine, M.M.; Hernandez-Mendoza, P.; Hornick, R.B. Relative efficacy of blood, urine, rectal swab, bone-marrow, and rose-spot cultures for recovery of Salmonella typhi in typhoid fever. Lancet 1975, 1, 1211–1213. [Google Scholar] [CrossRef]
- Kaye, D.; Palmieri, M.; Rocha, H. Effect of bile on the action of blood against Salmonella. J. Bacteriol. 1966, 91, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Haebler, T.; Miles, A. The action of sodium polyanethol sulfonate (“Liquoid”) on blood cultures. J. Pathol. Bacteriol. 1938, 46, 245–252. [Google Scholar] [CrossRef]
- Escamilla, J.; Santiago, L.T.; Uylangco, C.V.; Cross, J.H. Evaluation of sodium polyanethanol sulfonate as a blood culture additive for recovery of Salmonella typhi and Salmonella paratyphi A. J. Clin. Microbiol. 1983, 18, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantur, B.G.; Bidari, L.H.; Akki, A.S.; Mulimani, M.S.; Tikare, N.V. Diagnostic yield of blood clot culture in the accurate diagnosis of enteric fever and human brucellosis. Clin. Lab. 2007, 53, 57–61. [Google Scholar] [PubMed]
- Watson, K.C. Clot culture in typhoid fever. J. Clin. Pathol. 1954, 7, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.K.; Darmstadt, G.L.; Baqui, A.H.; Hanif, M.; Ruhulamin, M.; Santosham, M.; Nagatake, T.; Black, R.E. Rapid identification and antibiotic susceptibility testing of Salmonella enterica serovar Typhi isolated from blood: Implications for therapy. J. Clin. Microbiol. 2001, 39, 3583–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, K.C. Isolation of Salmonella typhi from the blood stream. J. Lab. Clin. Med. 1955, 46, 128–134. [Google Scholar]
- Cockerill, F.R., III; Wilson, J.W.; Vetter, E.A.; Goodman, K.M.; Torgerson, C.A.; Harmsen, W.S.; Schleck, C.D.; Ilstrup, D.M.; Washington, J.A., 2nd; Wilson, W.R. Optimal testing parameters for blood cultures. Clin. Infect. Dis. 2004, 38, 1724–1730. [Google Scholar] [CrossRef]
- Edelman, R.; Levine, M.M. Summary of an international workshop on typhoid fever. Rev. Infect. Dis. 1986, 8, 329–349. [Google Scholar] [CrossRef]
- Farooqui, B.J.; Khurshid, M.; Ashfaq, M.K.; Khan, M.A. Comparative yield of Salmonella typhi from blood and bone marrow cultures in patients with fever of unknown origin. J. Clin. Pathol. 1991, 44, 258–259. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Sazawal, S.; Kumar, R.; Sood, S.; Reddaiah, V.P.; Singh, B.; Rao, M.; Naficy, A.; Clemens, J.D.; Bhan, M.K. Typhoid fever in children aged less than 5 years. Lancet 1999, 354, 734–737. [Google Scholar] [CrossRef]
- Gasem, M.H.; Dolmans, W.M.; Isbandrio, B.B.; Wahyono, H.; Keuter, M.; Djokomoeljanto, R. Culture of Salmonella typhi and Salmonella paratyphi from blood and bone marrow in suspected typhoid fever. Trop. Geogr. Med. 1995, 47, 164–167. [Google Scholar] [PubMed]
- Vallenas, C.; Hernandez, H.; Kay, B.; Black, R.; Gotuzzo, E. Efficacy of bone marrow, blood, stool and duodenal contents cultures for bacteriologic confirmation of typhoid fever in children. Pediatr. Infect. Dis. 1985, 4, 496–498. [Google Scholar] [CrossRef]
- Nizami, S.Q.; Bhutta, Z.A.; Siddiqui, A.A.; Lubbad, L. Enhanced detection rate of typhoid fever in children in a periurban slum in Karachi, Pakistan using polymerase chain reaction technology. Scand. J. Clin. Lab. Invest. 2006, 66, 429–436. [Google Scholar] [CrossRef]
- Song, J.H.; Cho, H.; Park, M.Y.; Na, D.S.; Moon, H.B.; Pai, C.H. Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J. Clin. Microbiol. 1993, 31, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Haque, A.; Haque, A.; Sarwar, Y.; Mohsin, M.; Bashir, S.; Tariq, A. Multiplex PCR for differential diagnosis of emerging typhoidal pathogens directly from blood samples. Epidemiol. Infect. 2009, 137, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Lim, C.K.; Chan, Y.N. Detection of Salmonella typhi by polymerase chain reaction. J. Appl. Bacteriol. 1996, 80, 244–251. [Google Scholar] [CrossRef]
- Ambati, S.R.; Nath, G.; Das, B.K. Diagnosis of typhoid fever by polymerase chain reaction. Indian, J. Pediatr. 2007, 74, 909–913. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, V.; Bashamboo, A.; Ali, S. Detection of Salmonella typhi by polymerase chain reaction: Implications in diagnosis of typhoid fever. Infect. Genet. Evol. 2002, 2, 107–110. [Google Scholar] [CrossRef]
- Massi, M.N.; Shirakawa, T.; Gotoh, A.; Bishnu, A.; Hatta, M.; Kawabata, M. Quantitative detection of Salmonella enterica serovar Typhi from blood of suspected typhoid fever patients by real-time PCR. Int. J. Med. Microbiol. 2005, 295, 117–120. [Google Scholar]
- Nga, T.V.; Karkey, A.; Dongol, S.; Thuy, H.N.; Dunstan, S.; Holt, K.; Le, T.P.T.; Campbell, J.I.; Chau, T.T.; Chau, N.V.; et al. The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect. Dis. 2010, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Tennant, S.M.; Toema, D.; Qamar, F.; Iqbal, N.; Boyd, M.A.; Marshall, J.M.; Blackwelder, W.C.; Wu, Y.; Quadri, F.; Khan, A.; et al. Detection of Typhoidal and Paratyphoidal Salmonella in Blood by Real-time Polymerase Chain Reaction. Clin. Infect. Dis. 2015, 61 (Suppl. S4), S241–S250. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Pollard, A.J. A novel method of selective removal of human DNA improves PCR sensitivity for detection of Salmonella Typhi in blood samples. BMC Infect. Dis. 2012, 12, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darton, T.C.; Zhou, L.; Blohmke, C.J.; Jones, C.; Waddington, C.S.; Baker, S.; Pollard, A.J. Blood culture-PCR to optimise typhoid fever diagnosis after controlled human infection identifies frequent asymptomatic cases and evidence of primary bacteraemia. J. Infect. 2017, 74, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanata, C.F.; Levine, M.M.; Ristori, C.; Black, R.E.; Jimenez, L.; Salcedo, M.; Garcia, J.; Sotomayor, V. Vi serology in detection of chronic Salmonella typhi carriers in an endemic area. Lancet 1983, 2, 441–443. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Bao, H.; Liu, H.W. Vi antigen biosynthesis in Salmonella typhi: Characterization of UDP-N-acetylglucosamine C-6 dehydrogenase (TviB) and UDP-N-acetylglucosaminuronic acid C-4 epimerase (TviC). Biochemistry 2006, 45, 8163–8173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virlogeux, I.; Waxin, H.; Ecobichon, C.; Popoff, M.Y. Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology 1995, 141 Pt 12, 3039–3047. [Google Scholar] [CrossRef] [Green Version]
- Virlogeux, I.; Waxin, H.; Ecobichon, C.; Lee, J.O.; Popoff, M.Y. Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J. Bacteriol. 1996, 178, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Pickard, D.; Wain, J.; Baker, S.; Line, A.; Chohan, S.; Fookes, M.; Barron, A.; Gaora, P.O.; Chabalgoity, J.A.; Thanky, N.; et al. Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J. Bacteriol. 2003, 185, 5055–5065. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.; Sarwar, Y.; Aziz, H.; Haque, A.; Ali, A.; Dougan, G.; Wain, J.; Haque, A. Detection of Vi-negative Salmonella enterica serovar typhi in the peripheral blood of patients with typhoid fever in the Faisalabad region of Pakistan. J. Clin. Microbiol. 2005, 43, 4418–4425. [Google Scholar] [CrossRef] [Green Version]
- Pickard, D.; Li, J.; Roberts, M.; Maskell, D.; Hone, D.; Levine, M.; Dougan, G.; Chatfield, S. Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression. Infect. Immun. 1994, 62, 3984–3993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, S.M.; Twittenhoff, C.; Kortmann, J.; Brubaker, S.W.; Honeycutt, J.; Massis, L.M.; Pham, T.H.M.; Narberhau, F.; Monack, D.M. A salmonella typhi rna thermosensor regulates virulence factors and innate immune evasion in response to host temperature. PLoS Pathog. 2021, 17, e1009345. [Google Scholar] [CrossRef]
- Luk, J.M.; Kongmuang, U.; Reeves, P.R.; Lindberg, A.A. Selective amplification of abequose and paratose synthase genes (rfb) by polymerase chain reaction for identification of Salmonella major serogroups (A, B, C2, and D). J. Clin. Microbiol. 1993, 31, 2118–2123. [Google Scholar] [CrossRef] [Green Version]
- Popoff, M.Y.; Bockemühl, J.; Gheesling, L.L. Supplement 2001 (no. 45) to the Kauffmann-White scheme. Res. Microbiol. 2003, 154, 173–174. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.; Reeves, P.R. The variation of O antigens in gram-negative bacteria. Subcell. Biochem. 2010, 53, 123–152. [Google Scholar]
- Wain, J.D.; House, A.; Zafar, S.; Baker, S.; Nair, C.; Kidgell, Z.; Bhutta, G. Dougan and R. Hasan. Vi antigen expression in Salmonella enterica serovar Typhi clinical isolates from Pakistan. J. Clin. Microbiol. 2005, 43, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Silverman, M.; Simon, M. Phase variation: Genetic analysis of switching mutants. Cell 1980, 19, 845–854. [Google Scholar] [CrossRef]
- Frankel, G.; Newton, S.M.; Schoolnik, G.K.; Stocker, B.A. Intragenic recombination in a flagellin gene: Characterization of the H1-j gene of Salmonella typhi. EMBO J. 1989, 8, 3149–3152. [Google Scholar] [CrossRef]
- Baker, S.; Hardy, J.; Sanderson, K.E.; Quail, M.; Goodhead, I.; Kingsley, R.A.; Parkhill, J.; Stocker, B.; Dougan, G. A novel linear plasmid mediates flagellar variation in Salmonella Typhi. PLoS Pathog. 2007, 3, e59. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.M.; Grados, O.; Gilman, R.H.; Woodward, W.E.; Solis-Plaza, R.; Waldman, W. Diagnostic value of the Widal test in areas endemic for typhoid fever. Am. J. Trop. Med. Hyg. 1978, 27, 795–800. [Google Scholar] [CrossRef]
- Rodrigues, C. The Widal test—More than 100 years old: Abused but still used. J. Assoc. Physicians India 2003, 51, 7–8. [Google Scholar]
- House, D.; Chinh, N.T.; Diep, T.S.; Parry, C.M.; Wain, J.; Dougan, G.; White, N.J.; Hien, T.T.; Farrar, J.J. Use of paired serum samples for serodiagnosis of typhoid fever. J. Clin. Microbiol. 2005, 43, 4889–4890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, C.M.; Hoa, N.T.; Diep, T.S.; Wain, J.; Chinh, N.T.; Vinh, H.; Hien, T.T.; White, N.J.; Farrar, J.J. Value of a single-tube widal test in diagnosis of typhoid fever in Vietnam. J. Clin. Microbiol. 1999, 37, 2882–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, M.L.; Rego, S.J. Value of single Widal test in the diagnosis of typhoid fever. Indian Pediatr. 1994, 31, 1373–1377. [Google Scholar]
- Clegg, A.; Passey, M.; Omena, M.; Karigifa, K.; Suve, N. Re-evaluation of the Widal agglutination test in response to the changing pattern of typhoid fever in the highlands of Papua New Guinea. Acta Trop. 1994, 57, 255–263. [Google Scholar] [CrossRef]
- Dutta, S.; Sur, D.; Manna, B.; Sen, B.; Deb, A.K.; Deen, J.L.; Wain, J.; von Seidlein, L.; Ochiai, L.; Clemens, J.D.; et al. Evaluation of new-generation serologic tests for the diagnosis of typhoid fever: Data from a community-based surveillance in Calcutta, India. Diagn. Microbiol. Infect. Dis. 2006, 56, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Espersen, F.; Høiby, N.; Hertz, J.B. Cross-reactions between Salmonella typhi and 24 other bacterial species. Acta Pathol. Microbiol. Scand. B 1980, 88, 243–248. [Google Scholar] [CrossRef]
- Wijedoru, L.; Mallett, S.; Parry, C.M. Rapid diagnostic tests for typhoid and paratyphoid (enteric) fever. Cochrane Database Syst. Rev. 2017, 5, Cd008892. [Google Scholar] [CrossRef] [Green Version]
- Lim, P.L.; Tam, F.C.; Cheong, Y.M.; Jegathesan, M. One-step 2-minute test to detect typhoid-specific antibodies based on particle separation in tubes. J. Clin. Microbiol. 1998, 36, 2271–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, F.C.; Wang, M.; Dong, B.; Leung, D.T.; Ma, C.H.; Lim, P.L. New rapid test for paratyphoid a fever: Usefulness, cross-detection, and solution. Diagn. Microbiol. Infect. Dis. 2008, 62, 142–150. [Google Scholar] [CrossRef]
- Choo, K.E.; Davis, T.M.; Ismail, A.; Ibrahim, T.A.T.; Ghazali, W.N. Rapid and reliable serological diagnosis of enteric fever: Comparative sensitivity and specificity of Typhidot and Typhidot-M tests in febrile Malaysian children. Acta Trop. 1999, 72, 175–183. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Mansurali, N. Rapid serologic diagnosis of pediatric typhoid fever in an endemic area: A prospective comparative evaluation of two dot-enzyme immunoassays and the Widal test. Am. J. Trop. Med. Hyg. 1999, 61, 654–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, S.; Dougan, G. The genome of Salmonella enterica serovar Typhi. Clin. Infect. Dis. 2007, 45 (Suppl. S1), S29–S33. [Google Scholar] [CrossRef] [Green Version]
- Parkhill, J.; Dougan, G.; James, K.D.; Thomson, N.R.; Pickard, D.; Wain, J.; Churcher, C.; Mungall, K.L.; Bentley, S.D.; Holden, M.T.; et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 2001, 413, 848–852. [Google Scholar] [CrossRef]
- McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; Courtney, L.; Porwollik, S.; Ali, J.; Dante, M.; Du, F.; et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 2001, 413, 852–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosa, J.H.; Brenner, D.J.; Ewing, W.H.; Falkow, S. Molecular relationships among the Salmonelleae. J. Bacteriol. 1973, 115, 307–315. [Google Scholar] [CrossRef] [Green Version]
- McClelland, M.; Sanderson, K.E.; Clifton, S.W.; Latreille, P.; Porwollik, S.; Sabo, A.; Meyer, R.; Bieri, T.; Ozersky, P.; McLellan, M.; et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 2004, 36, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Thomson, N.R.; Wain, J.; Langridge, G.C.; Hasan, R.; Bhutta, Z.A.; Quail, M.A.; Norbertczak, H.; Walker, D.; Simmonds, M.; et al. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genom. 2009, 10, 36. [Google Scholar] [CrossRef]
- Thomson, N.R.; Clayton, D.J.; Windhorst, D.; Vernikos, G.; Davidson, S.; Churcher, C.; Quail, M.A.; Stevens, M.; Jones, M.A.; Watson, M.; et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008, 18, 1624–1637. [Google Scholar] [CrossRef] [Green Version]
- Ochman, H.; Groisman, E.A. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 1996, 64, 5410–5412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemire, S.; Figueroa-Bossi, N.; Bossi, L. A singular case of prophage complementation in mutational activation of recET orthologs in Salmonella enterica serovar Typhimurium. J. Bacteriol. 2008, 190, 6857–6866. [Google Scholar] [CrossRef] [Green Version]
- Helmuth, R.; Stephan, R.; Bunge, C.; Hoog, B.; Steinbeck, A.; Bulling, E. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serotypes. Infect. Immun. 1985, 48, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsui, I.S.; Yip, C.M.; Hackett, J.; Morris, C. The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect. Immun. 2003, 71, 6049–6050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, J.A.; Villagra, N.; Castillo-Ruiz, M.; Mora, G.C. The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice. Res. Microbiol. 2008, 159, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.C.; Chang, S.J.; Gao, X.; Geiger, T.; Stack, G.; Galán, J.E. Emerging insights into the biology of typhoid toxin. Curr. Opin. Microbiol. 2017, 35, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Gao, X.; Galán, J.E. Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature 2013, 499, 350–354. [Google Scholar] [CrossRef]
- de Jong, H.K.; Parry, C.M.; van der Poll, T.; Wiersinga, W.J. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog. 2012, 8, e1002933. [Google Scholar] [CrossRef] [Green Version]
- Garai, P.; Gnanadhas, D.P.; Chakravortty, D. Salmonella enterica serovars Typhimurium and Typhi as model organisms: Revealing paradigm of host-pathogen interactions. Virulence 2012, 3, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.M.; Tacket, C.O.; Sztein, M.B. Host-Salmonella interaction: Human trials. Microbes Infect. 2001, 3, 1271–1279. [Google Scholar] [CrossRef]
- Jepson, M.A.; Clark, M.A. The role of M cells in Salmonella infection. Microbes Infect. 2001, 3, 1183–1190. [Google Scholar] [CrossRef]
- Forrest, B.D.; LaBrooy, J.T.; Beyer, L.; Dearlove, C.E.; Shearman, D.J. The human humoral immune response to Salmonella typhi Ty21a. J. Infect. Dis. 1991, 163, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, A.; Nencioni, L.; Caffarena, A.; Villa, L.; Boraschi, D.; Cazzola, G.; Cavalieri, S. Cellular immunity against Salmonella typhi after live oral vaccine. Clin. Exp. Immunol. 1985, 62, 242–247. [Google Scholar] [PubMed]
- Perez-Lopez, A.; Behnsen, J.; Nuccio, S.P.; Raffatellu, M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 2016, 16, 135–148. [Google Scholar] [CrossRef]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410, 1099–1103. [Google Scholar] [CrossRef]
- Tötemeyer, S.; Kaiser, P.; Maskell, D.J.; Bryant, C.E. Sublethal infection of C57BL/6 mice with Salmonella enterica Serovar Typhimurium leads to an increase in levels of Toll-like receptor 1 (TLR1), TLR2, and TLR9 mRNA as well as a decrease in levels of TLR6 mRNA in infected organs. Infect. Immun. 2005, 73, 1873–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangdi, T.; Lee, C.Y.; Spees, A.M.; Yu, C.; Kingsbury, D.D.; Winter, S.E.; Hastey, C.J.; Wilson, R.P.; Heinrich, V.; Bäumler, A.J. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis. PLoS Pathog. 2014, 10, e1004306. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.S.; Raupach, B.; Takeda, K.; Akira, S.; Zychlinsky, A. Toll-like receptors are temporally involved in host defense. J. Immunol. 2004, 172, 4463–44639. [Google Scholar] [CrossRef] [Green Version]
- Pier, G.B.; Grout, M.; Zaidi, T.; Meluleni, G.; Mueschenborn, S.S.; Banting, G.; Ratcliff, R.; Evans, M.J.; Colledge, W.H. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 1998, 393, 79–82. [Google Scholar] [CrossRef]
- Dougan, G.; Baker, S. Salmonella enterica serovar Typhi and the pathogenesis of typhoid fever. Annu. Rev. Microbiol. 2014, 68, 317–336. [Google Scholar] [CrossRef]
- Raffatellu, M.; Chessa, D.; Wilson, R.P.; Dusold, R.; Rubino, S.; Bäumler, A.J. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun. 2005, 73, 3367–3374. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yang, Y.A.; Milano, S.K.; Nguyen, T.; Ahn, C.; Sim, J.H.; Thompson, A.J.; Hillpot, E.C.; Yoo, G.; Paulson, J.C.; et al. Salmonella Typhoid Toxin PltB Subunit and Its Non-typhoidal Salmonella Ortholog Confer Differential Host Adaptation and Virulence. Cell Host Microbe 2020, 27, 937–949.e6. [Google Scholar] [CrossRef]
- Yang, Y.A.; Lee, S.; Zhao, J.; Thompson, A.J.; McBride, R.; Tsogtbaatar, B.; Paulson, J.C.; Nussinov, R.; Deng, L.; Song, J. In vivo tropism of Salmonella Typhi toxin to cells expressing a multiantennal glycan receptor. Nat. Microbiol. 2018, 3, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Hornick, R.B.; Greisman, S.E.; Woodward, T.E.; DuPont, H.L.; Dawkins, A.T.; Snyder, M.J. Typhoid fever: Pathogenesis and immunologic control. N. Engl. J. Med. 1970, 283, 686–691. [Google Scholar] [CrossRef]
- Hiyoshi, H.; Wangdi, T.; Lock, G.; Saechao, C.; Raffatellu, M.; Cobb, B.A.; Bäumler, A.J. Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Rep. 2018, 22, 1787–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, H.L.; Huang, Y.; Crudder, C.; Golden, A.; de los Santos, T.; Hawkins, K. A Meta-Analysis of Typhoid Diagnostic Accuracy Studies: A Recommendation to Adopt a Standardized Composite Reference. PLoS ONE 2015, 10, e0142364. [Google Scholar] [CrossRef] [PubMed]
- Helman, S.K.; Mummah, R.O.; Gostic, K.M.; Buhnerkempe, M.G.; Prager, K.C.; Lloyd-Smith, J.O. Estimating prevalence and test accuracy in disease ecology: How Bayesian latent class analysis can boost or bias imperfect test results. Ecol. Evol. 2020, 10, 7221–7232. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Sayeed, M.A.; Hossen, E.; Khanam, F.; Charles, R.C.; Andrews, J.; Ryan, E.T.; Qadri, F. Comparison of the Performance of the TPTest, Tubex, Typhidot and Widal Immunodiagnostic Assays and Blood Cultures in Detecting Patients with Typhoid Fever in Bangladesh, Including Using a Bayesian Latent Class Modeling Approach. PLoS Negl. Trop. Dis. 2016, 10, e0004558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, P.; Thorlund, K.; Brenner, D.R.; Andrews, R.J. Comparative accuracy of typhoid diagnostic tools: A Bayesian latent-class network analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007303. [Google Scholar] [CrossRef]
- Moore, C.E.; Pan-Ngum, W.; Wijedoru, L.P.M.; Sona, S.; Nga, T.V.T.; Duy, P.T.; Vinh, P.V.; Chheng, K.; Kumar, V.; Emary, K.; et al. Evaluation of the diagnostic accuracy of a typhoid IgM flow assay for the diagnosis of typhoid fever in Cambodian children using a Bayesian latent class model assuming an imperfect gold standard. Am. J. Trop. Med. Hyg. 2014, 90, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Juarez, S.; Nga, T.V.; Dunstan, S.; Nakajima-Sasaki, R.; Davies, D.H.; McSorley, S.; Baker, S.; Felgner, P.L. Immune profiling with a Salmonella Typhi antigen microarray identifies new diagnostic biomarkers of human typhoid. Sci. Rep. 2013, 3, 1043. [Google Scholar] [CrossRef] [PubMed]
- Charles, R.C.; Liang, L.; Khanam, F.; Sayeed, M.A.; Hung, C.; Leung, D.T.; Baker, S.; Ludwig, A.; Harris, J.B.; Larocque, R.C.; et al. Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. Clin. Vaccine Immunol. 2014, 21, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Darton, T.C.; Baker, S.; Randall, A.; Dongol, S.; Karkey, A.; Voysey, M.; Carter, M.J.; Jones, C.; Trappl, K.; Pablo, J.; et al. Identification of Novel Serodiagnostic Signatures of Typhoid Fever Using a Salmonella Proteome Array. Front. Microbiol. 2017, 8, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, R.C.; Sheikh, A.; Krastins, B.; Harris, J.B.; Bhuiyan, M.S.; LaRocque, R.C.; Logvinenko, T.; Sarracino, D.A.; Kudva, I.T.; Eisenstein, J.; et al. Characterization of anti-Salmonella enterica serotype Typhi antibody responses in bacteremic Bangladeshi patients by an immunoaffinity proteomics-based technology. Clin. Vaccine Immunol. 2010, 17, 1188–1195. [Google Scholar] [CrossRef] [Green Version]
- Ansong, C.; Yoon, H.; Norbeck, A.D.; Gustin, J.K.; McDermott, J.E.; Mottaz, H.M.; Rue, J.; Adkins, J.N.; Heffron, F.; Smith, R.D. Proteomics analysis of the causative agent of typhoid fever. J. Proteome Res. 2008, 7, 546–557. [Google Scholar] [CrossRef]
- Yang, Y.A.; Chong, A.; Song, J. Why Is Eradicating Typhoid Fever So Challenging: Implications for Vaccine and Therapeutic Design. Vaccines 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Mylona, E.; Frankel, G. Typhoidal Salmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol. 2018, 20, e12939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.B.; Baresch-Bernal, A.; Rollins, S.M.; Alam, A.; LaRocque, R.C.; Bikowski, M.; Peppercorn, A.F.; Handfield, M.; Hillman, J.D.; Qadri, F.; et al. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect. Immun. 2006, 74, 5161–5168. [Google Scholar] [CrossRef] [Green Version]
- Park, K.S.; Chung, H.J.; Khanam, F.; Lee, H.; Rashu, R.; Bhuiyan, M.T.; Berger, A.; Harris, J.B.; Calderwood, S.B.; Ryan, E.T.; et al. A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever. Sci. Rep. 2016, 6, 32878. [Google Scholar] [CrossRef]
- Kirkpatrick, B.D.; Bentley, M.D.; Thern, A.M.; Larsson, C.J.; Ventrone, C.; Sreenivasan, M.V.; Bourgeois, L. Comparison of the antibodies in lymphocyte supernatant and antibody-secreting cell assays for measuring intestinal mucosal immune response to a novel oral typhoid vaccine (M01ZH09). Clin. Diagn. Lab. Immunol. 2005, 12, 1127–1129. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, A.; Bhuiyan, M.S.; Khanam, F.; Chowdhury, F.; Saha, A.; Ahmed, D.; Jamil, K.M.; LaRocque, R.C.; Harris, J.B.; Ahmad, M.M.; et al. Salmonella enterica serovar Typhi-specific immunoglobulin A antibody responses in plasma and antibody in lymphocyte supernatant specimens in Bangladeshi patients with suspected typhoid fever. Clin. Vaccine Immunol. 2009, 16, 1587–1594. [Google Scholar] [CrossRef] [Green Version]
- von Rhein, C.; Hunfeld, K.P.; Ludwig, A. Serologic evidence for effective production of cytolysin a in salmonella enterica serovars typhi and paratyphi a during human infection. Infect. Immun. 2006, 74, 6505–6508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, J.R.; Khanam, F.; Rahman, N.; Hossain, M.; Bogoch, I.I.; Vaidya, K.; Kelly, M.; Calderwood, S.B.; Bhuiyan, T.R.; Ryan, E.T.; et al. Plasma Immunoglobulin A Responses Against 2 Salmonella Typhi Antigens Identify Patients with Typhoid Fever. Clin. Infect. Dis. 2019, 68, 949–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, D.H.; Jain, A.; Nakajima, R.; Liang, L.; Jasinskis, A.; Supnet, M.; Felgner, P.L.; Teng, A.; Pablo, J.; Molina, D.M.; et al. Serodiagnosis of Acute Typhoid Fever in Nigerian Pediatric Cases by Detection of Serum IgA and IgG Against Hemolysin E and Lipopolysaccharide. Am. J. Trop. Med. Hyg. 2016, 95, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, E.B.; Ignatius, J.; Anthony, A.A.; Aziah, I.; Ismail, A.; Lim, T.S. Multi-isotype antibody responses against the multimeric salmonella typhi recombinant hemolysin e antigen. Multi-isotype antibody responses against the multimeric Salmonella Typhi recombinant hemolysin E antigen. Microbiol. Immunol. 2015, 59, 43–47. [Google Scholar] [CrossRef]
- Felgner, J.; Jain, A.; Nakajima, R.; Liang, L.; Jasinskas, A.; Gotuzzo, E.; Vinetz, J.M.; Miyajima, F.; Pirmohamed, M.; Hassan-Hanga, F.; et al. Development of ELISAs for diagnosis of acute typhoid fever in Nigerian children. PLoS Negl. Trop. Dis. 2017, 11, e0005679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, F.; Chong, C.W.; Chua, L.H.; Anthony, A.A.; Liew, M.W.O.; Aziah, I.; Ong, E.B.B. Evaluation of Salmonella Typhi antigen YncE alongside HlyE for the detection of typhoid fever and its carriers. Med. Microbiol. Immunol. 2020, 209, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.L.; Redhuan, N.E.; Balaram, P.; Phua, K.K.; Ong, E.B. Detection of Salivary IgA Antibodies Against the HlyE Antigen as a Diagnosis of Typhoid Fever. J. Clin. Diagn. Res. 2016, 10, Dm01–Dm03. [Google Scholar] [CrossRef]
- Kumar, S.; Nodoushani, A.; Khanam, F.; DeCruz, A.T.; Lambotte, P.; Scott, R.; Bogoch, I.I.; Vaidya, K.; Calderwood, S.B.; Bhuiyan, T.R.; et al. Evaluation of a Rapid Point-of-Care Multiplex Immunochromatographic Assay for the Diagnosis of Enteric Fever. mSphere 2020, 5. [Google Scholar] [CrossRef]
- Sharma, T.; Sharma, C.; Sankhyan, A.; Bedi, S.P.; Bhatnagar, S.; Khanna, N.; Gautam, V.; Sethi, S.; Vrati, S.; Tiwari, A. Serodiagnostic evaluation of recombinant CdtB of S. Typhi as a potential candidate for acute typhoid. Immunol. Res. 2018, 66, 503–512. [Google Scholar] [CrossRef]
- Tran Vu Thieu, N.; Van, T.T.; Tuan, A.T.; Klemm, E.J.; Minh, C.N.N.; Vinh, P.V.; Thanh, D.P.; Dan, T.H.N.; Duc, T.P.; Langat, P.; et al. An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever. J. Infect. 2017, 75, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Khanam, F.; Sheikh, A.; Sayeed, M.A.; Bhuiyan, M.S.; Choudhury, F.K.; Salma, U.; Pervin, S.; Sultana, T.; Ahmed, D.; Goswami, D.; et al. Evaluation of a typhoid/paratyphoid diagnostic assay (TPTest) detecting anti-Salmonella IgA in secretions of peripheral blood lymphocytes in patients in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 2013, 7, e2316. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, A.; Charles, R.C.; Sharmeen, N.; Rollins, S.M.; Harris, J.B.; Bhuiyan, M.S.; Arifuzzaman, M.; Khanam, F.; Bukka, A.; Kalsy, A.; et al. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl. Trop. Dis. 2011, 5, e1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, L.J.; Dunstan, S.J.; Dolecek, C.; Perkins, T.; House, D.; Dougan, G.; Nguyen, T.H.; Tran, T.P.; Doan, C.D.; Le, T.P.; et al. Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proc. Natl. Acad. Sci. USA 2009, 106, 22433–22438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blohmke, C.J.; Muller, J.; Gibani, M.M.; Dobinson, H.; Shrestha, S.; Perinparajah, S.; Jin, C.; Hughes, H.; Blackwell, L.; Dongol, S.; et al. Diagnostic host gene signature for distinguishing enteric fever from other febrile diseases. EMBO Mol. Med. 2019, 11, e10431. [Google Scholar] [CrossRef] [PubMed]
- Näsström, E.; Thieu, N.T.V.; Dongol, S.; Karkey, A.; Vinh, P.V.; Thanh, T.H.; Johansson, A.; Arjyal, A.; Thwaites, G.; Dolecek, C.; et al. Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever. eLife 2014, 3. [Google Scholar] [CrossRef]
- Darton, T.C.; Blohmke, C.J.; Giannoulatou, E.; Waddington, C.S.; Jones, C.; Sturges, P.; Webster, C.; Drakesmith, H.; Pollard, A.J.; Armitage, A.E. Rapidly Escalating Hepcidin and Associated Serum Iron Starvation Are Features of the Acute Response to Typhoid Infection in Humans. PLoS Negl. Trop. Dis. 2015, 9, e0004029. [Google Scholar] [CrossRef] [PubMed]
- Blohmke, C.J.; Darton, T.C.; Jones, C.; Suarez, N.M.; Waddington, C.S.; Angus, B.; Zhou, L.; Hill, J.; Clare, S.; Kane, L.; et al. Interferon-driven alterations of the host’s amino acid metabolism in the pathogenesis of typhoid fever. J. Exp. Med. 2016, 213, 1061–1077. [Google Scholar] [CrossRef]
Methods | Advantages | Limitations | Adjustments * |
---|---|---|---|
Blood/bone marrow culture (confirmed by positive culture results) | a. 100% specificity. b. Isolated bacteria can also be used for subsequent antibiotic susceptibility tests and molecular characterization. | a. Low sensitivity: ~50% blood culture, ~80% bone marrow culture. b. Bone marrow collection is invasive. c. Time-consuming (≥48 h). d. These test methods require trained personnel and infrastructure, which are not necessarily common in endemic areas. | a. Use of larger sample volume. b. Lowering bactericidal activity of blood (by supplementing bile salt or sodium polyethanol sulfonate, removing serum, or diluting blood). c. Lysis of blood cells to release bacteria. |
Bile/stool culture (suggested by positive results) | a. Isolated bacteria can also be used for subsequent antibiotic susceptibility tests and molecular characterization. | a. Bile/stool positive can also be due to chronic infection. b. Test methods show moderate sensitivity and specificity. c. Time-consuming (≥48 h). d. These test methods require trained personnel and infrastructure, which are not necessarily common in endemic areas. | a. Use of larger sample volume. |
Bacterial nucleic acid detection (suggested by positive results) | a. Nucleic acid tests can also detect non-culturable/dead bacteria (beneficial for patients who already take antibiotics before office visits). | a. Moderate sensitivity and specificity. | a. Bacterial nucleic acids can be enriched by removing human DNA and transient culture. |
Serological tests (suggested by positive results) | a. Quick turnaround time associated with high point-of-care compatibility. b. Some serological tests are simple, quick, and inexpensive. | a. Cross-reactivity. b. Moderate sensitivity and specificity. | a. Use of isolated or cultured bacteria. |
Serovar Name | LPS O Ag | Flagella H Ag | Vi Ag * | Cross-Reactivity |
---|---|---|---|---|
S. Typhi | 9 | d | Positive | O9 Ag is present in S. Enteritidis, S. Dublin, and S. Gallinarum. Vi Ag is present in S. Paratyphi C, S. Dublin, and Citrobacter freundii. |
S. Paratyphi A | 2 | a | Negative | |
S. Paratyphi B | 4 | b | Negative | O4 Ag is present in S. Typhimurium. |
S. Paratyphi C | 6/7 | c | Positive | O6/7 Ags are present in S. Choleraesuis. Vi Ag is present in S. Dublin, Citrobacter freundii, and S. Typhi. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, D.P.; Dulal, H.P.; Song, J. Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens 2021, 10, 410. https://doi.org/10.3390/pathogens10040410
Neupane DP, Dulal HP, Song J. Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens. 2021; 10(4):410. https://doi.org/10.3390/pathogens10040410
Chicago/Turabian StyleNeupane, Durga P., Hari P. Dulal, and Jeongmin Song. 2021. "Enteric Fever Diagnosis: Current Challenges and Future Directions" Pathogens 10, no. 4: 410. https://doi.org/10.3390/pathogens10040410
APA StyleNeupane, D. P., Dulal, H. P., & Song, J. (2021). Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens, 10(4), 410. https://doi.org/10.3390/pathogens10040410