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Abstract: Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi, namely typhoidal Salmonellae,
are the cause of (para) typhoid fever, which is a devastating systemic infectious disease in humans.
In addition, the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) S. Typhi
in many low and middle-income countries poses a significant risk to human health. While currently
available typhoid vaccines and therapeutics are efficacious, they have some limitations. One
important limitation is the lack of controlling individuals who chronically carry S. Typhi. However,
due to the strict host specificity of S. Typhi to humans, S. Typhi research is hampered. As a result,
our understanding of S. Typhi pathogenesis is incomplete, thereby delaying the development and
improvement of prevention and treatment strategies. Nonetheless, to better combat and contain
S. Typhi, it is vital to develop a vaccine and therapy for controlling both acutely and chronically
infected individuals. This review discusses how scientists are trying to combat typhoid fever, why it is
so challenging to do so, which approaches show promise, and what we know about the pathogenesis
of S. Typhi chronic infection.

Keywords: Salmonella Typhi; typhoidal Salmonellae; virulence; typhoid fever; vaccines; healthy
carriers; chronic infections

1. Introduction

Over 2600 Salmonella enterica serovars have been identified and classified based on their surface
antigens, Lipopolysaccharide (LPS) O antigen and flagellar H antigen [1]. Salmonella enterica
serovars are split into two groups based on disease outcomes in humans: typhoidal Salmonella
and nontyphoidal Salmonella (NTS) [2–5]. Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi
are typhoidal Salmonellae causing life-threatening systemic infectious diseases in humans, typhoid
fever and paratyphoid fever, respectively. Paratyphoid fever, however, often shows milder symptoms
than that of S. Typhi infection [6,7]. On the other hand, S. Enteritidis and S. Typhimurium are the
most common NTS responsible for self-limiting gastroenteritis in healthy people. In addition, while
typhoidal Salmonellae are human-restricted, NTS are broad host-range serovars infecting both humans
and animals [8–11].

S. Typhi is acquired through the ingestion of contaminated food and water, followed by invasion
into the intestinal mucosa and its systemic spread to the liver, spleen, bone marrow, and in some cases
gallbladder (Figure 1a). Symptoms and signs of typhoid include fever, headache, weight loss, lethargy,
stupor, malaise, leukopenia, thrombocytopenia, gastrointestinal bleeding, and in some instances,
neurological complications [12–15]. While some are characteristic of typhoid fever, most of these
symptoms are also seen among patients suffering from other infectious diseases, indicating the need
for appropriate methods to diagnose typhoid, such as culture, PCR and/or antibody-based detections
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of S. Typhi bacteria [16,17]. S. Typhi is estimated to affect at least 26.9 million people per year, of whom
1% die, even with appropriate antibiotic treatment [7]. Following recovery, the proportion of acute
typhoid cases that become temporary carriers is estimated to be over 10%; further, a significant
proportion of those individuals infected (2–6%) establish a chronic carriage state, during which they
excrete S. Typhi for months and in a few cases for years [18–20] (Figure 1a). Prolonged or persistent
infection of S. Typhi in macrophages and the gallbladder is known to be a key feature among these
healthy chronic carriers [19,21] (Figure 1a). While lacking symptoms themselves, healthy carriers shed
S. Typhi in their stool, which passes on the bacterium through the contamination of food and water
sources. This is best exemplified by “Typhoid Mary,” or Mary Mallon, who caused a minimum of
seven outbreaks of typhoid fever in her job as a cook during the 19th century (Figure 1a).
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Figure 1. A cartoon depicting S. Typhi infection, disease development, transition from acute to
chronic/persistent infection, and transmission. (a) Notable virulence factors (e.g., typhoid toxin and
Vi capsular polysaccharide (ViCPS) of S. Typhi in disease development and transition from acute to
chronic are discussed in Section 3. (b) A summary of prevention and therapeutic strategies against
typhoid fever (details are discussed in Section 4).

Therefore, to combat and contain S. Typhi, we would need to implement effective prevention and
treatment strategies to control both acutely and chronically infected individuals. Two licensed vaccines
that are commercially available are approximately 55% efficacious (Figure 1b). Although antibiotics
are the primary treatment options for typhoid fevers, multidrug-resistant (MDR) and extensively
drug-resistant (XDR) S. Typhi strains are spreading globally at an alarming rate (Figure 1b). As such,
combating S. Typhi infections is a priority of the World Health Organization (WHO) and the Bill &
Melinda Gates Foundation. This review discusses why eradicating typhoid fever is so challenging,
advances in our understanding of the pathogenesis of chronic S. Typhi infections, and recent advances
and emerging strategies in vaccine and therapeutic development against typhoid fever.

2. Why Is Eradicating Typhoid Fever So Challenging?

2.1. Epidemic of MDR and XDR S. Typhi

Since the 1970s, the emergence of MDR S. Typhi strains has continued to be the major barrier
preventing successful control of typhoid fever in endemic areas [22–24]. The number of S. Typhi strains
with resistance to ampicillin, trimethoprim-sulfamethoxazole (TMP-SMZ), and chloramphenicol has
dramatically increased in the last two decades. For instance, from 1998 to 2010, there was an average
of 14 typhoid fever diagnoses per year at a hospital in Malawi, of which 6.8% were MDR; in 2014, the
number of typhoid patients increased to 782, and 97% of isolates were tested as MDR. Similarly, in Asia,
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the burden of MDR typhoid has been reported in many outbreaks, mostly in Pakistan, Vietnam, Nepal,
and India [25–28]. Notably, the rapid spread of H58 S. Typhi haplotype has been linked to several MDR
epidemics in sub-Saharan Africa and south/southeast Asia [29–31], which acquired IncHI1 plasmids
carrying antibiotic resistance genes. Due to the high prevalence of MDR S. Typhi, second-line antibiotics
such as fluoroquinolones became the treatment of choice after conventional drugs were compromised.
Sequentially, resistance to nalidixic acid and third-generation cephalosporins emerged, followed by
chromosomal mutations in gyrA/gnrS, and acquisition of a plasmid that carries an extended-spectrum
β-lactamase (ESBL) gene [31]. Recent epidemiological studies revealed a large proportion of H58 S.
Typhi strains isolated in Pakistani patients since 2016 are XDR [31]. The XDR isolates were resistant
to chloramphenicol, ampicillin, TMP-SMZ, fluoroquinolones, and third-generation cephalosporins,
leaving very limited treatment options to these patients. Alarmingly, a recent study showed that
XDR S. Typhi underwent rapid clonal expansion and sickened over 30 people endemically as well
as international travelers [31]. It is undoubtedly an urgent need for scientists to develop better
strategies to mitigate the possible XDR S. Typhi outbreaks in the future, including vaccines and novel
treatment regimens.

2.2. Animal Models for Studying S. Typhi Pathogenesis

Both S. Typhi bacteria and some of its virulence factors (e.g., typhoid toxin) are adapted to
humans. As a result, there is currently no optimal animal model that faithfully recapitulates most of
the pathogenesis of S. Typhi infection. Despite these difficulties, several animal models, although each
has its own limitations, allow us to study specific aspects of typhoid illnesses and S. Typhi infection.

2.2.1. Animal Models for Acute Typhoid

Besides humans, only higher primates such as chimpanzees are permissive of S. Typhi
infection [32] (Figure 2a). Although chimpanzees experimentally support S. Typhi replication
and share many genes with humans, S. Typhi-infected chimpanzees did not recapitulate typhoid
symptoms, indicating that important host factors present in humans are missing in this animal
model. One such host factor essential for the pathogenesis of S. Typhi is a glycan, notably
N-acetylneuraminic acid (Neu5Ac) (Figure 2b,c). Neu5Ac is the host cell receptor for typhoid
toxin, a distinct A2B5 toxin or exotoxin of S. Typhi that is secreted by intracellular S. Typhi during
infection [33] (Figures 2b and 3b). Unlike humans that exclusively express Neu5Ac, chimpanzees
primarily express sialic acid N-glycolylneuraminic acid (Neu5Gc), which does not allow toxin binding
to occur [34,35] (Figure 2b). This is because nonhuman animals have a functional enzyme termed
cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), which converts Neu5Ac to
Neu5Gc (Figure 2c), thereby preventing toxin binding [34]. Consistent with observations that humans
lack CMAH, while nonhuman animals contain it, humans are susceptible to typhoid fever disease,
while other nonhuman primates, such as chimpanzees, are resistant to typhoid fever disease, despite
their permissiveness for bacterial replication [32,35]. Mice do not, however, support S. Typhi replication,
but naturally express the glycan receptor for typhoid toxin, Neu5Ac, despite the presence of CMAH.
This is presumably due to its low expression in mice, indicating that mice administered with purified
typhoid toxin serve as a surrogate model allowing for the study of the in vivo function of typhoid toxin
that is thought to contribute to the acute symptomatology in typhoid patients [33,35,36]. In line with
this notion, convalescent typhoid patients are shown to have high titers of anti-typhoid toxin antibodies
in their sera [16,37,38]. Moreover, primary human immune cells express the specific glycan receptor
for typhoid toxin [36]. CMAH knockout (KO) mice that exclusively express Neu5Ac, like humans,
are also available [35,39], which is useful for pre-clinical testing of new, prospective preventative and
therapeutic strategies against typhoid toxin-mediated symptoms and pathogenesis.
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NOD/SCID/γCnull (NSG) humanized mice infected with S. Typhi strain Ty2 have been shown to
support rapid S. Typhi growth and cause death in infected mice, and therefore also serve as an acute
typhoid model [40]. Another acute typhoid model is a mouse carrying a mutation of nramp1/slc11a1
that causes a typhoid fever-like illness and rapid death when infected by S. Typhimurium [41].
Nramp1/Slc11a1 is a divalent transition metal transporter (e.g., iron and manganese) involved in
iron metabolism and host resistance to certain pathogens including S. Typhimurium [42]. In the case
of S. Typhimurium infection, a homozygous mutant Nramp1D169 (refers as Nramp- hereafter) is up to
~1000-fold more susceptible to bacterial infection [43,44]. This, in turn, allows us to understand the
mechanisms that are shared between S. Typhimurium and S. Typhi. It is important, however, to note
that we need to take caution when translating findings observed in S. Typhimurium to that of S. Typhi,
as S. Typhimurium and S. Typhi are similar yet significantly different [2].

2.2.2. Animal Models for Chronic/Persistent Typhoid

Several animal models have been established for studying chronic Salmonella infection.
Nramp1+/+ (Nramp1G169) and Nramp1+/− (NrampG169/D169) mice are ~1000-fold more resistant to S.
Typhimurium infection, compared to the Nramp1−/− counterpart, and therefore serves as a chronic
Salmonella infection model [45,46]. In this model with a lithogenic gallstone-inducing diet, Gunn and
his colleagues demonstrated that gallstone biofilms facilitate gallbladder colonization and shedding of
Salmonella [47]. Another chronic/persistent S. Typhi infection model is Rag2−/−γC−/− humanized
mice engrafted with human fetal liver hematopoietic stem and progenitor cells, where an important
role of typhoid toxin in the transition of S. Typhi infection from acute to chronic has been identified [48].
The detailed underlying mechanism remains to be defined, but the in vivo binding preference of
typhoid toxin—secreted by intracellular S. Typhi during infection—to immune cells suggests that an
altered innate and adaptive immune response is likely responsible for this outcome [33,36].

2.2.3. Human Infection Studies

Animal models are imperfect, which is particularly the case for human-restricted pathogens.
To overcome the limitations that a model system presents, internationally concerted efforts are also
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centered on carrying out controlled human infection studies to advance our understanding of S.
Typhi pathogenesis, to evaluate new conjugate vaccines, and to reveal useful biomarkers for acute or
chronic typhoid [49–52]. Despite the many advantages, it is important to note that ethical concerns
are a major limitation of human volunteer studies. More specifically, most human infection studies
comply with stringent regulations, which limits infection doses and treatment/challenge period and
intensity, thus limiting the scope of clinical studies [50]. In contrast, in the case of natural S. Typhi
infections in endemic regions, patients often experience the full development of infection and disease
and repeated infections, many of which would not be able to be investigated in human volunteers.
Nonetheless, studies using various mouse and cell culture models, along with information obtained
from human infection studies, have provided valuable insight into the pathogenic mechanism of S.
Typhi, although much remains to be understood. Specifically, the mechanisms underlying chronic
typhoid are one of the least understood research areas in S. Typhi infection.

2.3. Other Important Factors

To contain and eradicate S. Typhi infections, it is also important to improve and monitor water,
sanitation, and hygiene (WASH) in endemic regions [53]. The importance of environmental factors in
typhoid spread is evident from recent comprehensive analysis of the spatial and temporal distribution
of typhoid infections in Dhaka Metropolitan Area of Bangladesh over the period 2005–2009 [54].
For instance, rainfall had a strong correlation with the occurrence of typhoid, with increasing S. Typhi
transmission during the monsoon months [54]. Separately, temperature and river level were also
correlated with an increase in typhoid incidence. Moreover, a statistically significant inverse correlation
was found between typhoid incidence and distance to major waterbodies, but counterintuitively no
difference between urban and rural environments. These indicate that water and sanitation upgrade
would reduce the transmission of S. Typhi and emergence of new typhoid carriers, thus restricting the
spread of disease.

Moreover, a major obstacle in testing new, improved vaccines and therapies is a lack of known
immunological correlates of protection in humans, which may be the consequence of issues discussed
in Section 2.2, including a lack of animal models and ethical issues associated with human infection
studies. For instance, simply analyzing the induction/alteration of certain immune responses may
not be fruitful, as immunity generated by infection is not always protective (e.g., “cytokine storm”
elicited by LPS), and in fact, relapses and reinfections can occur in individuals who show the elevation
of certain immune responses [55,56]. Thus, further investigations are needed toward identifying
immunological correlates of protection in humans, although new details have emerged about the
complex adaptive host responses against S. Typhi in recent years [55]. Comprehensive analysis and
discussion on current knowledge regarding the role of cell-mediated and humoral immunity following
natural S. Typhi and S. Partyphi infections, experimental challenge, and immunization in humans can
be found in a review paper by Sztein et al. [55].

3. Pathogenesis of Chronic S. Typhi Infection

3.1. Difference between Typhoid Salmonella and NTS

S. Typhi and S. Typhimurium share ~89% of their genomes [57,58]. S. Typhi has several virulence
factors that are unique to S. Typhi and absent in NTS S. Typhimurium [57,58] (Figure 3a). Notably,
Salmonella pathogenicity island 7 (SPI-7) contains the viaB locus that encodes genes involved in the
synthesis and export of the Vi capsular polysaccharide (ViCPS) [2,59] (Figure 3a). One important
function of ViCPS in S. Typhi virulence is inhibiting the Toll-like receptor 4 and 5-associated immune
surveillance mechanism, as ViCPS hinders the surface exposure of lipopolysaccharide (TLR4 ligand)
and flagellin (TLR5 ligand) in S. Typhi. As a result, the induction of host innate immune responses
is prevented [59,60]. Another notable virulence factor of S. Typhi that is absent in S. Typhimurium
is typhoid toxin [10,11] (Figure 3a,b). This toxin plays a multifaceted role that is pivotal in S. Typhi
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pathogenesis (see Section 3.2.3 typhoid toxin). Of note, several NTS strains, including S. Javiana, encode
typhoid toxin homologs, which are 99% identical to its S. Typhi counterpart ([61] and manuscript
in preparation). This 1% amino acid sequence variation is situated in the receptor binding PltB
subunit and PltA subunit. This variation, in turn, results in no to little toxicity on cells expressing
typhoid toxin’s high-affinity glycan receptors at the systemic site [36]. On the other hand, this
sequence variation enables this toxin homolog to preferentially bind glycan receptors abundantly
expressed on small intestinal epithelial cells (manuscript in preparation). These results are in line
with the observations that NTS are restricted to the small intestine in healthy people, while typhoidal
Salmonellae disseminate systemically.
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Figure 3. A summary of notable difference between typhoidal Salmonella and nontyphoidal Salmonella
(NTS). (a) Different from S. Typhimurium, S. Typhi is human-specific and causes a life-threatening
disease, typhoid fever. (b) Structure and function of typhoid toxin.

Another notable feature of the S. Typhi genome is the presence of more than 200 pseudogenes
(approximately 4% of its genes), which is thought to contribute to its narrow host specificity [57].
In S. Typhimurium, which is able to infect both humans and animals, approximately 0.9% of genes
are pseudogenes [58]. Some of the pseudogenes found in S. Typhi are effectors that are secreted
through the type III secretion system (T3SS). The T3SS is an essential virulence determinant in
both S. Typhi and S. Typhimurium virulence, comprising the needle-like multiprotein apparatus,
effectors, and chaperones [62]. The regulation and function of the T3SS Salmonella pathogenicity 1
(SPI-1) and SPI-2 are well characterized; they exert pivotal roles in invasion and survival/replication
during S. Typhimurium infection, respectively [62–71]. Although the T3SS is common between S.
Typhi and S. Typhimurium, significant variations between typhoidal Salmonella and NTS exist. For
instance, unlike in S. Typhimurium infection, the importance of SPI-2 in S. Typhi pathogenesis is
unclear, although a few SPI-2 effectors appear to be important during competitive growth in human
macrophages [72,73]. Moreover, half of Salmonella T3SS effectors (of ~40 effectors) are pseudogenes
or absent in S. Typhi [57,74]. In some cases, an effector(s) is expressed but loss-of-function by a
mechanism different from pseudogenization. The smaller functional effector repertoire in S. Typhi is
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likely associated with its human-restricted lifestyle. For instance, GtgE is an effector with protease
activity that is absent in S. Typhi, but present in S. Typhimurium. Intracellular S. Typhimurium in
the Salmonella-containing vacuole (SCV) within mouse macrophages translocates GtgE into the host
cell cytoplasm through a T3SS, where GtgE cleaves host cell Rab32 to create the cellular environment
favorable for S. Typhimurium to grow in mouse macrophages [75]. Consistently, mice lacking Rab32
are permissive, although not fully, to S. Typhi infection [75]. The expression of gtgE in S. Typhi
overcomes host cell restriction and enables colonization of mice, thus broadening host specificity.
However, additional factors should contribute to host restriction, because the virulence of S. Typhi
expressing GtgE did not match that of S. Typhimurium. Further, SptP, a SPI-1 effector possessing
GTPase-activating protein (GAP) and tyrosine phosphatase domains, is a loss-of-function effector in
S. Typhi. In S. Typhimurium, however, SptP plays an important role in mediating recovery of the host
cytoskeleton post-infection [76]. Despite these functional differences, S. Typhi SptP is 94% identical to
its S. Typhimurium counterpart. The 6% sequence variation is mostly situated within its chaperone
SicP binding domain. As a result, its binding to SicP is hindered, causing SptP instability, preventing
SptP translocation from bacteria into the host cytoplasm, and therefore restricting the intracellular
activity of SptP [77]. In summary, the acquisition of new virulence factors and the smaller functional
effector repertoire observed in S. Typhi appear to be consistent with its distinct lifestyle (i.e., systemic
dissemination) and narrow host usage.

3.2. S. Typhi Pathogenesis with Emphasis on Chronic/Persistent Infection

3.2.1. Importance of Understanding S. Typhi Persistence

Upon infection of S. Typhi, the host activates its innate and adaptive immune responses to
clear the foreign invaders. However, many successful pathogens such as S. Typhi have evolved
numerous strategies to survive the host immune response and persist for months and years. These
chronic carriers, often asymptomatic, play a pivotal role in the continued disease transmission of this
human-restricted pathogen, despite implemented public health interventions. Through the presence
of undiagnosed carriers, S. Typhi continues to circulate in endemic areas. Therefore, scientists also
direct their attention to searching for biomarkers and developing appropriate detection methods to
identify chronic carriers [78–81]. Consistently, the WHO has identified this particular research area of
S. Typhi infections as a priority to support further improvement in typhoid control [53].

The establishment of chronic/persistent S. Typhi infection is a complex process that involves
multiple bacterial and host factors. Although the detailed in vivo molecular mechanisms have yet to
be understood, both ViCPS and typhoid toxin play a vital role in this process. ViCPS, for instance,
prevents the TLR4 and TLR5-associated host surveillance mechanism, while typhoid toxin targets
immune cells, subsequently depleting or altering host innate and adaptive immune responses. This
evidence suggests that they are import in organ/tissue penetration and the transmission of S. Typhi.

3.2.2. ViCPS

ViCPS is expressed on the surface of virulent S. Typhi (Figure 3a). At the molecular level, genes
responsible for the synthesis and transport of ViCPS to the bacterial cell surface are encoded by ten
genes clustered and located on the viaB locus within the SPI-7 [59]. Among the ten genes, tviB,
tviC, tviD, and tviE encode enzymes involved in the biosynthesis of Vi polysaccharide in sequential
order, resulting in a linear polymer of α-1,4-linked N-acetylgalactosaminuronate [82]. While tviA is a
transcriptional regulator for this operon, the other five genes, vexA, vexB, vexC, vexD, and vexE, are
responsible for transport of ViCPS. The expression of ViCPS is regulated over the course of S. Typhi
human infection, which appears to be correlated with the establishment of chronic/persistent infection
of S. Typhi; clinical studies showed that S. Typhi chronic carriers contained high anti-Vi antibody titers
in their sera [83,84]. Among the multiple roles that ViCPS has, one of the most crucial is assisting
S. Typhi’s prolonged presence by concealing pathogen-associated molecular patterns (PAMPs), such as
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LPS and flagellin, from host immunosurveillance mechanisms [59]. ViCPS appears to effectively trick
the host surveillance by multi-level regulations. For instance, TviA, a transcriptional regulator, not only
controls the expression of genes involved in Vi capsular polysaccharide biosynthesis, but also inhibits
flagellin translocation across the S. Typhi membrane [85], which appears to be favorable for S. Typhi in
avoiding the TLR5-mediated host surveillance mechanism. Moreover, human clinical data support
observations that ViCPS protects S. Typhi from being destroyed by host bactericidal activities [59,86,87].
Likewise, Vi-negative S. Typhi has been shown to be extremely human serum sensitive, as more than
99% of Vi-negative S. Typhi cells, for example, were rapidly lysed after exposure to human serum [88].

3.2.3. Typhoid Toxin

Typhoid toxin plays a significant role during both acute and chronic infections [10,33,48,89].
This toxin displays a unique A2B5 stoichiometry, consisting of two enzymatic “A” subunits,
CdtB (nuclease) and PltA (mono adenosine diphosphate (ADP)-ribosyltransferase), linked to a
homopentamer of PltB (receptor-binding “B” subunit; Figure 3a,b) [33]. CdtB is a DNAse I-like
nuclease that induces DNA damage and host cell cycle arrest and/or cell death [33,90,91]. If this
intoxication process is not intercepted, cell death can result. PltA, on the other hand, is a mono
ADP-ribosyltransferase for an unknown host target(s) [33,91]. The expression and membrane
trafficking mechanisms of typhoid toxin are distinct. Typhoid toxin genes are expressed exclusively
by intracellular S. Typhi located in the SCV within S. Typhi-infected host cells [91]. After expression,
this toxin is encased in vesicles and trafficked out from the SCV to the extracellular environment;
this process is triggered by the interaction of PltB with a Neu5Ac-bearing receptor(s) on the SCV
membrane [92]. During this exocytic trafficking pathway, typhoid holotoxin does not have access to
the host cell cytoplasm, indicating that the endocytosis of the secreted toxin to host cells is required for
CdtB and PltA to carry out their functions [33,35,36,91].

The second-stage trafficking pathway, therefore, is the glycan (Neu5Ac) receptor-mediated
endocytosis of the secreted holotoxin from outside cells into the host cell cytoplasm [33]. Typhoid
toxin can endocytose both infected and uninfected neighboring host cells [91,92]. PltB is the
receptor-binding subunit, which recognizes the specific trisaccharide consensus, N-acetylneuraminic
acid (Neu5Ac)–galactose (Gal)–N-acetylglucosamine (GlcNAc) [33,35,36]. Although this consensus
can be displayed by various types of glycoproteins and glycolipids on host cell membranes (both
plasma and vesicle), PltB preferentially binds the trisaccharide consensus displayed by multiantennary
N-linked glycoproteins (providing multiple Neu5Acs), as opposed to linear N-linked glycans
displaying a single Neu5Ac, resulting in a high-affinity multivalent interaction between the PltB
homopentamer and the glycan receptor [36]. Using this high-affinity binding, PltB plays an essential
role in the exocytic and endocytic pathways of typhoid toxin [33,35,36,92]. In live mice, after
administration of typhoid toxin to a systemic site to mimic its secretion during S. Typhi infection,
the toxin targets immune cells and endothelial cells of arterioles in the brain, as they express
the high-affinity multivalent N-linked glycan receptors for typhoid toxin [36]. Presumably, this
in vivo tropism of typhoid toxin to immune cells (in particular, immune cells in the vicinity of
S. Typhi-harboring macrophages, a primary reservoir of S. Typhi during infection) results in altered
innate and adaptive immune responses, thereby creating an in vivo environment favorable for organ
penetration and maintenance of S. Typhi, which then promotes chronic/persistent infection of S. Typhi.
This result conforms to observations that innate and adaptive immune responses are essential for the
host to control S. Typhi infection [93,94].

3.2.4. Gallbladder Infection

Gallbladder infection of S. Typhi is a key feature of chronic typhoid [19]. S. Typhi forms
bile-mediated biofilms on human gallstones [47]. Consistently, biofilm formation on gallstones during
persistent S. Typhimurium infection in a Nramp1+/+ mouse fed a lithogenic diet resulted in enhanced
fecal shedding and enhanced colonization of gallbladder tissue and bile. Unlike NTS S. Typhimurium,
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S. Typhi seems to exploit this rather harsh environment during persistent infection. In S. Typhi, T3SS
SPI-1 associated genes were upregulated upon exposure to bile, resulting in a significant increase in
epithelial cell invasion [95]. In S. Typhimurium, the opposite consequences, downregulation of SPI-1
genes and a repressed invasion into epithelial cells, were observed [95]. Unfortunately, at present,
gallbladder removal is the only effective treatment for chronic typhoid carriage. Our understanding of
chronic S. Typhi infection is incomplete, and much remains to be understood. Bridging this knowledge
gap is vital to moving forward to the next level in combating S. Typhi infection.

4. Vaccines and Therapeutics against S. Typhi Infection

4.1. Typhoid Vaccines

4.1.1. Typhoid Vaccines

Vaccination is one of the most efficient strategies to combat infectious diseases. Two typhoid
fever vaccines are currently commercially available: the live oral vaccine Ty21a and the Vi
polysaccharide vaccine (ViCPS or Vi) [96–98]. Ty21a is a mutant strain of S. Typhi Ty2 that is
unable to survive in host cells due to mutations primarily in galE and ViCPS [97–99]. galE encodes
for the enzyme uridine-diphosphate-galactose-4-epimerase (UDP-Gal-4-epimerase). In the absence
of UDP-Gal-4-epimerase, galactose accumulates in the bacterial cell, ultimately making Ty21a an
attenuated vaccine strain of S. Typhi [97–99]. Moreover, recent genome sequencing of the vaccine
strain Ty21a revealed a total of 679 single nucleotide polymorphisms (SNPs) [100]. This vaccine is
approved for use in individuals ages five and older, and it induces both cell-mediated and humoral
immune responses against S. Typhi [96–98]. Moreover, the Ty21a vaccine-induced antibodies are
able to cross-react against S. Paratyphi A and B, thereby indirectly indicating that the Ty21a vaccine
may provide some protection against paratyphoid fever [6,97,101]. Nonetheless, efficient vaccines
against S. Paratyphi are not currently available, although experimental paratyphoid vaccines are under
investigation [97,101].

The ViCPS vaccine is based on the purified capsular polysaccharide, S. Typhi Vi antigen [96].
S. Typhi and S. Paratyphi C express ViCPS, but S. Paratyphi A and B do not. S. Paratyphi A is the
primary cause of paratyphoid fever in endemic areas, which indirectly indicates that the potential
cross-protection of ViCPS against paratyphoid fever in endemic areas is very limited. This vaccine
induces a T-cell independent humoral immune response [96]. Its safe use for children as young as two
years old underscores the importance of this vaccine, as children are at higher risk of S. Typhi infection
in endemic areas [9,96]. Systemic review and meta-analysis of randomized controlled clinical trials
revealed that the cumulative efficacy for the Ty21a vaccine is 51% and 55% for the ViCPS vaccine [102].
Based on the above, it is tempting to speculate that the primary reasons for this modest vaccine
efficacy, among many, are likely associated with the poor ability of the Ty21a vaccine eliciting anti-Vi
antibody titers, while most S. Typhi during natural infection expresses ViCPS on its surface. In the
case of the ViCPS vaccine, it induces T-cell independent immune responses, thus resulting in a lack
of prolonged protection. This can be improved by covalently conjugating ViCPS to carrier proteins,
which enables the ViCPS conjugate vaccines to induce a T-cell dependent humoral immune response
even in young children.

Accordingly, current international efforts on typhoid vaccine development are centered on
designing more efficacious vaccines that can also protect children under age two. Moving towards
this goal, several conjugate subunit vaccines combining ViCPS with another protein antigen (typically
inactive forms of bacterial exotoxins) have been developed and are under active investigation. Among
them, ViCPS conjugated with tetanus toxoid (Vi-TT or Typbar-TCV) appears to be the most promising
and has already been approved for private use in India and Nepal, and has been recently prequalified
by the WHO [53,103]. Tetanus toxoid is a recombinant inactive form of tetanus toxin produced
by Clostridium tetani [104]. The Vi-TT vaccine was able to stimulate strong immune responses in
children, even those who were younger than two years old [103]. The first field estimate comparing the
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(sero)efficacy of ViCPS and Vi-TT showed that the risk of serologically defined typhoid infection
was lower in participants randomized to Vi-TT than those receiving ViCPS in individuals ages
two and older [103]. Importantly, the Vi-TT vaccine likely protects against typhoid in infants aged
6–23 months old, because similar levels of protective antibodies in infants after Vi-TT vaccination
were observed when compared to that of individuals ages 2–45 [103]. In addition, infants younger
than six months old can be protected through maternal immunization. Other studies have recently
tested the efficacy of Vi-rEPA, another promising ViCPS conjugate vaccine, where ViCPS combined
with a recombinant Exoprotein A from Pseudomonas aeruginosa [105]. There is evidence that Vi-rEPA
may have the potential to be effective in children younger than two years old; a study on Vietnamese
children showed that Vi-rEPA was immunogenic in children aged two to five, with an effectiveness
rate at 91.5% [106]. Moreover, Vi-DT is also a promising ViCPS conjugate vaccine that is under active
investigation [104]. Vi-DT is made up of ViCPS conjugated to recombinant diphtheria toxoid, an
inactive form of diphtheria toxin produced by Corynebacterium diphtheriae [104]. Also, Vi-CRM197

(CRM197 is a non-toxic, genetically-detoxified mutant of diphtheria toxin) has been developed and
subjected to multinational clinical trials that took place in Philippines, Pakistan, and India, which has
shown less promising results in certain populations, although further investigations are required for
this conjugate vaccine [107]. This less promising result (less promising in one group while promising
in another group) is likely associated with genetic, nutritional, or other environmental factors, which
led to the different levels of immunogenicity and seroconversion rates after booster doses [108].

Lastly, given the evidence supporting the use and efficacy of conjugated vaccine candidates and
the crucial pathogenic function that typhoid toxin plays during S. Typhi infection, it is conceivable
that a ViCPS vaccine conjugated with a recombinant typhoid toxoid would provide similar efficacy in
individuals of various ages including infants. Further, it is likely that the prospective Vi-typhoid toxoid
provides additional protection against S. Typhi infection, compared to other conjugate vaccines, which
includes reducing typhoid symptoms and inhibiting the establishment of chronic S. Typhi infection.
Other anticipated benefits of the Vi-typhoid toxoid vaccine include potential cross-protection against
paratyphoid, as both S. Typhi and S. Paratyphi A express typhoid toxin.

4.1.2. Progress on Paratyphoid Vaccine Development

S. Paratyphi A and B cause paratyphoid fever in humans, although S. Paratyphi A is the most
common serovar [14]. S. Paratyphi infections are estimated to affect at least 5.4 million people globally,
which has been increasing in recent years, particularly in Asia [14]. There is no licensed paratyphoid
vaccine, although several promising paratyphoid vaccines are under investigations. Similar to typhoid
vaccines, paratyphoid vaccines in development are based on either whole cell live-attenuated strains
or subunit vaccines based on repeating units of the LPS O-antigen conjugated to different bacterial
protein carriers. For instance, CVD1902 has been developed as a live-attenuated, oral vaccine candidate
for S. Paratyphi A, which has two independently attenuating mutations in guaBA and clpX [109].
The CVD1902 vaccine candidate has been shown to be safe and immunogenic in preclinical phase I
trials [109]. Three subunit vaccines have been developed; S. Paratyphi-specific O-antigen of LPS, O:2,
is conjugated to tetanus toxoid (O:2-TT), diphtheria toxin (O:2-DT), or CRM197 (O:2-CRM197). The
O:2-TT subunit vaccine was found, in phase 1 and phase 2 trials, to be safe and immunogenic after one
dose, although a booster antibody response was not evident after a second dose [110]. Both O:2-DT
and O:2-CRM197 were shown to be immunogenic, but clinical testing of these vaccine candidates has
not yet commenced [111,112].

4.2. Limitations of Currently Available Typhoid Vaccines

Although the vaccines against typhoid have been shown to be effective, there are still some
limitations. These vaccines do not provide 100% protection against S. Typhi infection. Moreover,
they do not protect against paratyphoid, although some cross-protection is anticipated. Also, the
current vaccines do not protect against virulence factors secreted by bacteria, such as typhoid toxin.
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This is because typhoid toxin is exclusively produced by intracellular S. Typhi, while the Ty21a vaccine
strain is unable to produce antigens that are exclusively expressed by intracellular S. Typhi, due
to its attenuation [36]. By considering the anticipated function of typhoid toxin during acute and
chronic typhoid in people—supported by animal experiments and human blood and tissue testing—a
conjugate vaccine combining ViCPS and typhoid toxoid is expected to result in an increased efficacy
against (para) typhoid.

4.3. Typhoid Treatment Strategies Alternative to Antibiotics

In addition to improved vaccines, therapeutics alternative to antibiotics are urgently needed to
overcome the escalating global spread of MDR/XDR S. Typhi. Ideally, effective treatment strategies
would target both the bacteria and secreted virulence factors (e.g., typhoid toxin).

4.3.1. Strategies Targeting the Bacteria

One approach is boosting host immune responses to clear the infection, whose limitations include
side effects due to increased immune responses and a lack of specificity against pathogens. However,
targeted immunotherapy such as pathogen-specific monoclonal antibody (mAb) therapeutics is able to
overcome some of these limitations. MAbs provide high specificity for their targets, which results in a
minimal cross-reactivity to the host tissues and a low chance of disturbance to other resident beneficial
microbes [113]. Such microbial specificity prevents the selection for drug-resistant microbes among
non-targeted microbes, and makes the mAb therapy superior to current broad-spectrum antibiotics.
In fact, this therapeutic strategy, serum therapy or passive immunity, was used to treat several
infectious diseases during the pre-antibiotic era, including diphtheria and streptococcal infection [114].
Nowadays, mAbs have predominantly been utilized in the field of neoplastic and inflammatory
diseases. Despite the benefits, there is only one mAb (Palivizumab) licensed for use against an
infectious disease [115], while many are in various stages of development. In typhoid, it is conceivable
that anti-ViCPS antibody in conjunction with mAbs against other abundant yet specific outer membrane
proteins of S. Typhi would serve as mAb therapeutics targeting S. Typhi. Similarly, in S. Typhimurium,
monoclonal antibodies targeting the O-antigen of LPS and porins have been successfully demonstrated
to partially protect the mice from S. Typhimurium infection [116–118]. Another promising approach is
using a virus, namely bacteriophage, to fight against bacteria. For instance, Vi bacteriophages had been
used to treat typhoid patients in Canada, which was effective for some typhoid cases [119]. Moreover,
a recent study showed the potential of therapeutic bacteriophages that can lyse XDR S. Typhi isolated
from the Democratic Republic of the Congo [120]. A major limitation of these strategies, however, is
the potential for bacteria to evolve, and thus become ineffective.

4.3.2. Strategies Mitigating the Action of Secreted Virulence Factors

Bacterial exotoxins play a crucial role in pathogenesis. In S. Typhi, based on animal experimental
results and data from typhoid patients and human tissue samples, typhoid toxin is thought to
play a vital role in symptomatology and chronic infection in humans. The action of typhoid toxin
during infection could be prevented by multiple strategies, and similar strategies can be applied for
targeting other secreted virulence factors based on their mechanism of action. For instance, therapeutic
neutralizing monoclonal antibodies (mAbs) are a promising strategy with many advantages, as mAbs
are highly specific to target toxins with little to no adverse effect on host cells and beneficial microbes.
Shiga-toxin IIB (Stx2B), a bacterial AB toxin or exotoxin secreted by Enterohemorrhagic E. coli (EHEC)
O157:H7, is responsible for organ damage in the hemorrhagic colitis and hemolytic uremic syndrome
(HUS) during EHEC infection. Several mAbs against shiga toxin were shown to be effective in
neutralizing the toxin during the early phase of the infection, with no detectable adverse events in
healthy human volunteers [121,122]. In addition, mAb-mediated anti-toxin strategies are proven
to be highly effective against other AB toxins, including botulinum toxin, ricin toxin, and anthrax
toxin [123–125]. Among typhoid convalescent patients, typhoid toxin CdtB antibodies were abundantly
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detected in their sera [16,37,38]. Our group has recently demonstrated that mice immunized with
typhoid toxoid elicited high titers of anti-CdtB antibodies that effectively protected mice against a
lethal dose challenge of active typhoid toxin [36]. Based on the above, developing mAbs specifically
targeting typhoid toxin seems to be a promising therapeutic for typhoid patients, especially when
antibiotic-resistant strains are a rising concern.

Equally promising strategies against bacterial exotoxins include those that intervene with the
interaction between toxins and their host receptors and/or their cellular trafficking mechanism
(endocytosis or internalization). These would, in turn, result in little or no toxin delivery to the target
place of their action. Most bacterial AB toxins (consisting of an enzymatic “A” subunit(s) and receptor
binding “B” subunits), including typhoid toxin, use a specific type of glycan as their host cell receptor,
suggesting that higher affinity glycans are able to compete over the endogenous host cell receptor
displayed on host cell surface membrane in binding. Likewise, a higher affinity glycan appears to be a
promising therapeutic in intervening with typhoid toxin that has a homopentamer receptor-binding
B subunit PltB with total five binding pockets per toxin [33,35,36]. Similarly, in a study done on
shiga-like toxins, a higher-affinity analog of their carbohydrate receptor—with five arms and two
trisaccharide receptors attached to each—indeed effectively inhibited shiga-like toxin-mediated clinical
symptoms [126]. Moreover, synthetic high-affinity glycoprotein glycans terminated with Neu5Ac have
been shown to effectively compete over natural ligands, thereby inhibiting biological processes such as
axon outgrowth [127]. Small molecule inhibitors that prevent retrograde toxin endocytosis processes
could be used alone or in combination with glycan inhibitors, and would thereby inhibit host cells
from being exposed to these toxins. These membrane trafficking modulators can also be combined
with other modulators to redirect these toxins for degradation (e.g., mAb for extracellular toxins or
another cell trafficking modulators to redirect the toxins to lysosomal or proteasome degradations).
For instance, two small molecules in a chemical library screen were found as transport-inhibitor
candidates that were able to block shiga toxin and cholera toxin transport [128,129]. These studies
support the notion that small cell trafficking inhibitors could be useful in targeting typhoid toxin.

5. Conclusions

The global spread of MDR and XDR S. Typhi poses a great risk to human health. While the
concerted international efforts on typhoid vaccine development significantly improve protection
against typhoid fever, S. Typhi continues to spread and causes outbreaks in many areas. This is, in part,
due to a lack of efficient strategies to take control of S. Typhi-carrying populations who are often
asymptomatic and shed S. Typhi for months and years. Therefore, as an important initial step to
contain and ultimately eradicate S. Typhi, we need to better understand the pathogenic mechanism by
which S. Typhi establishes persistent and chronic infections, as it would offer insight into the rational
design of improved vaccines and new therapies against S. Typhi infection.
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