Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture?
Abstract
:1. Introduction
Anaerobic Soil Disinfestation (ASD)
2. Data Collection and Analysis
3. Trends and Gaps in Application of ASD
3.1. Geographical Projection
3.2. Application of ASD to Control Pathogens, Weeds, and Effect on Crop Yield
3.3. C Source Dependency of ASD
3.4. ASD against Nematodes
3.5. Effect of ASD on Weed Control and Yield
3.6. Mechanism of ASD
4. Challenges and Potentials of ASD as a Game Changer in the Tropics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butler, D.M.; Rosskopf, E.N.; Kokalis-Burelle, N.; Albano, J.P.; Muramoto, J.; Shennan, C. Exploring Warm-season Cover Crops as Carbon Sources for Anaerobic Soil Disinfestation (ASD). Plant. Soil. 2012, 355, 149–165. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Rekanovic, E.; Hrustic, J.; Grahovac, M.; Tanovic, B. Methods for Management of Soil-borne Plant Pathogens. Pestic. Fitomed. 2017, 32, 9–24. [Google Scholar] [CrossRef]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for Management of Soil-borne Diseases in Crop Production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Duncan, J.M.; Kennedy, D.M. The Effect of Waterlogging on Phytophthora Root Rot of Red Raspberry. Plant Pathol. 1989, 38, 161–168. [Google Scholar] [CrossRef]
- Meisner, A.; de Boer, W. Strategies to Maintain Natural Biocontrol of Soil-borne Crop Diseases during Severe Drought and Rainfall Events. Front. Microbiol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Punja, Z.; Collyer, D.; Scott, C.; Lung, S.; Holmes, J.; Sutton, D. Pathogens and Molds Affecting Production and Quality of Cannabis sativa L. Front. Plant. Sci. 2019, 10, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, H. The Taxonomy and Biology of Phytophthora and Pythium. JBMOA 2018, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Ah-Fong, A.; Lopez, L.; Judelson, H. Transcriptomic and Proteomic Analysis Reveals Wall-associated and Glucan-degrading Proteins with Potential Roles in Phytophthora infestans Sexual Spore Development. PLoS ONE 2018, 13, 198186. [Google Scholar] [CrossRef]
- Prova, A.; Akanda, A.M.; Islam, S.; Hossain, M.M. Characterization of Sclerotinia sclerotiorum, an Emerging Fungal Pathogen Causing Blight in Hyacinth Bean (Lablab purpureus). Plant Pathol. J. 2018, 34, 367–380. [Google Scholar] [CrossRef]
- Taylor, A.; Coventry, E.; Handy, C.; West, J.S.; Young, C.S.; Clarkson, J.P. Inoculum Potential of Sclerotinia sclerotiorum Sclerotia Depends on Isolate and Host Plant. Plant Pathol. 2018, 67, 1286–1295. [Google Scholar] [CrossRef] [Green Version]
- Cheung, N.; Tian, L.; Liu, X.; Li, X. The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Xu, Y.; Hoy, R.; Zhang, J.; Qin, L.; Li, X. The Notorious Soil-borne Pathogenic Fungus Sclerotinia sclerotiorum: An Update on Genes Studied with Mutant Analysis. Pathogens 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, S. Longevity of the Verticillium Wilt Fungus in the Laboratory and Field. Phytopathology 1955, 45, 180–181. [Google Scholar]
- Ben-Yephet, Y.; Genizi, A.; Siti, E. Sclerotial Survival and Apothecial Production by Sclerotinia sclerotiorum Following Outbreaks of Lettuce Drop. Phytopathology 1993, 83, 509–513. [Google Scholar] [CrossRef]
- Babadoost, M.; Pavon, C. Survival of Oospores of Phytophthora capsici in Soil. Plant Dis. 2013, 97, 1478–1483. [Google Scholar] [CrossRef] [Green Version]
- Basyony, A.G.; Abo-Zaid, G.A. Biocontrol of the Root-knot Nematode, Meloidogyne incognita, Using an Eco-friendly Formulation from Bacillus subtilis, lab. and Greenhouse Studies. Egypt. J. Biol. Pest Control. 2018, 28, 1–13. [Google Scholar] [CrossRef]
- Hancock, T.L.C.; Costello, A.M.; Lidstrom, M.E.; Oremland, R.S. Strain IMB-1, A Novel Bacterium for the Removal of Methyl Bromide in Fumigated Agricultural Soils. Appl. Environ. Microbiol. 1998, 64, 2899–2905. [Google Scholar] [CrossRef] [Green Version]
- Barry, K.H.; Koutros, S.; Lubin, J.H.; Coble, J.B.; Barone-Adesi, F.; Beane Freeman, L.E.; Sandler, D.P.; Hoppin, J.A.; Ma, X.; Zheng, T.; et al. Methyl Bromide Exposure and Cancer Risk in the Agricultural Health Study. Cancer Causes Control 2012, 23, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, U.; Augé, R.M.; Butler, D.M.A. Meta-analysis of the Impact of Anaerobic Soil Disinfestation on Pest Suppression and Yield of Horticultural Crops. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef]
- Mao, L.; Jiang, H.; Zhang, L.; Zhang, Y.; Sial, M.U.; Yu, H.; Cao, A. Replacing Methyl Bromide with a Combination of 1,3-dichloropropene and Metam Sodium for Cucumber Production in China. PLoS ONE 2017, 12, 188137. [Google Scholar] [CrossRef] [Green Version]
- Gemmill, A.; Gunier, R.B.; Bradman, A.; Eskenazi, B.; Harley, K.G. Residential Proximity to Methyl Bromide use and Birth Outcomes in an Agricultural Population in California. Environ. Health Perspect. 2013, 121, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.B. Methyl Bromide: Effective Pest Management Tool and Environmental Threat. J. Nematol. 1996, 28, 586–589. [Google Scholar] [PubMed]
- Theis, J.A.; Fery, R.L. Host Plant Resistance as an Alternative to Methyl Bromide for Managing Meloidogyne incognita in Pepper. J. Nematol. 2002, 34, 374–377. [Google Scholar] [PubMed]
- Velders, G.J.M.; Andersen, S.O.; Daniel, J.S.; Fahey, D.W.; McFarland, M. The Importance of the Montreal Protocol in Protecting Climate. Proc. Natl. Acad. Sci. USA 2007, 104, 4814–4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, F.N. Development of Alternatives Strategies for Management of Soil-borne Pathogens Currently Controlled with Methyl Bromide. Annu. Rev. Phytopathol. 2003, 41, 325–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sande, D.; Mullen, J.; Wetzstein, M.; Houston, J. Environmental Impacts from Pesticide Use: A Case Study of Soil Fumigation in Florida Tomato Production. IJERPH 2011, 8, 4649–4661. [Google Scholar] [CrossRef] [PubMed]
- Desaeger, J.; Dickson, D.W.; Locascio, S.J. Methyl Bromide Alternatives for Control of Root-knot Nematode (Meloidogyne spp.) in Tomato Production in Florida. J. Nematol. 2017, 49, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.Y.; Cha, B.; Kim, J.C. Recent Trends in Studies on Botanical Fungicides in Agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Strauss, S.L.; Kluepfel, D.A. Anaerobic Soil Disinfestation: A chemical-independent approach to Pre-plant Control of Plant Pathogens. J. Integr. Agric. 2015, 14, 2309–2318. [Google Scholar] [CrossRef]
- Ghosh, S.K. Application of Synthetic Chemicals in Agriculture and their Toxic Effect on the Environment. Bull. Env. Pharmacol. Life Sci. 2015, 4, 1–6. [Google Scholar]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine Pesticides, their Toxic Effects on Living Organisms and their Fate in the Environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, T.; Rani, R.; Manhas, R.K. Biocontrol and Plant Growth Promoting Potential of Phylogenetically New Streptomyces sp. MR14 of Rhizospheric Origin. AMB. Expr. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runia, W.T.; Molendijk, L.P.G. Physical Methods for Soil Disinfestation in Intensive Agriculture: Old Methods and New Approaches. Acta. Hortic. 2010, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Weerakoon, D.M.N.; Reardon, C.L.; Paulitz, T.C.; Izzo, A.D.; Mazzola, M. Long-term Suppression of Pythium abappressorium Induced by Brassica juncea Seed Meal Amendment is Biologically Mediated. Soil Biol. Biochem. 2012, 51, 44–52. [Google Scholar] [CrossRef]
- Newitt, J.; Prudence, S.; Hutchings, M.; Worsley, S. Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens 2019, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, J.; Liu, S.; Ashraf, U.; Zhao, B.; Qiu, S. Mixed-cropping Systems of Different Rice Cultivars Have Grain Yield and Quality Advantages over Mono-cropping Systems. J. Sci. Food. Agric. 2019, 99, 3326–3334. [Google Scholar] [CrossRef]
- Vitorino, L.C.; Silva, F.; Cruvinel, B.G.; Bessa, L.A.; Rosa, M.; Souchie, E.L.; Silva, F.G. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants 2020, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Ploeg, A. Biofumigation to Manage Plant-parasitic Nematodes. In Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 2, pp. 239–248. [Google Scholar]
- Chandrashekara, K.N.; Manivannan, S.; Chandrashekara, C.; Chakravarthi, M. Biological Control of Plant Diseases. In Ecofriendly Innovative Approaches in Plant Disease Management; Vaibhav, K.S., Yogendra, S., Akhilesh, S., Eds.; International Book Distributors: New Delhi, India, 2012; pp. 147–166. [Google Scholar]
- Capstaff, N.M.; Miller, A.J. Improving the Yield and Nutritional Quality of Forage Crops. Front. Plant Sci. 2018, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Michel, V.; Cara-García, M.D. Bio-fumigation: Practical Information, Advantages and Disadvantages. Best4soil Facts Sheet 2020. Available online: https://www.best4soil.eu/assets/factsheets/11.pdf (accessed on 2 May 2020).
- Momma, N. Biological Soil Disinfestation (BSD) of Soil-borne Pathogens and its Possible Mechanisms. JARQ 2008, 42, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Momma, N.; Kobara, Y.; Uematsu, S.; Kita, N.; Shinmura, A. Development of Biological Soil Disinfestations in Japan. Appl. Microbiol. Biotechnol. 2013, 97, 3801–3809. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of Soil-borne Plant Pathogens by Incorporating Fresh Organic Amendments Followed by Trapping. Phytopathology 2000, 90, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shennan, C.; Muramoto, J.; Lamers, J.; Mazzola, M.; Rosskopf, E.N.; Kokalis-Burelle, N.; Momma, N.; Butler, D.M.; Kobara, Y. Anaerobic Soil Disinfestation for Soil Borne Disease Control in Strawberry and Vegetable Systems: Current Knowledge and Future Directions. Acta Hortic. 2014, 1044, 165–175. [Google Scholar] [CrossRef]
- Messiha, N.A.S.; van Diepeningen, A.D.; Wenneker, M.; van Beuningen, A.R.; Janse, J.D.; Coenen, T.G.C.; Termorshuizen, A.J.; Van Bruggen, A.H.C.; Blok, W.J. Biological Soil Disinfestation (BSD), a New Control Method for Potato Brown Rot, Caused by Ralstonia solanacearum race 3 biovar 2. Eur. J. Plant Pathol. 2007, 117, 403–415. [Google Scholar] [CrossRef] [Green Version]
- Katase, M.; Kubo, C.; Ushio, S.; Ootsuka, E.; Takeuchi, T.; Mizukubo, T. Nematicidal Activity of Volatile Fatty Acids Generated from Wheat Bran in Reductive Soil Disinfestation. Jpn. J. Nematol. 2009, 39, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Mowlick, S.; Yasukawa, H.; Inoue, T.; Takehara, T.; Kaku, N.; Ueki, K.; Ueki, A. Suppression of Spinach Wilt Disease by Biological Soil Disinfestation Incorporated with Brassica juncea Plants in Association with Changes in Soil Bacterial Communities. Crop Prot. 2013, 54, 185–193. [Google Scholar] [CrossRef] [Green Version]
- McCarty, D.G.; Eichler Inwood, S.E.; Ownley, B.H.; Sams, C.E.; Wszelaki, A.L.; Butler, D.M. Field Evaluation of Carbon Sources for Anaerobic Soil Disinfestation in Tomato and Bell Pepper Production in Tennessee. Hort. Sci. 2014, 49, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Hewavitharana, S.S.; Ruddell, D.; Mazzola, M. Carbon Source-dependent Antifungal and Nematicidal Volatiles Derived during Anaerobic Soil Disinfestation. Eur. J. Plant Pathol. 2014, 140, 39–52. [Google Scholar] [CrossRef]
- Muramoto, J.; Shennan, C.; Baird, G.; Zavatta, M.; Koike, S.T.; Bolda, M.P.; Daugovish, O.; Dara, S.K.; Klonsky, K.; Mazzola, M. Optimizing Anaerobic Soil Disinfestation for California Strawberries. Acta Hortic. 2014, 215–220. [Google Scholar] [CrossRef]
- Korthals, G.W.; Thoden, T.C.; van den Berg, W.; Visser, J.H.M. Long-term Effects of Eight Soil Health Treatments to Control Plant-parasitic Nematodes and Verticillium dahliae in Agro-ecosystems. Appl. Soil Ecol. 2014, 76, 112–123. [Google Scholar] [CrossRef]
- Hewavitharana, S.S.; Mazzola, M. Carbon Source-dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology 2016, 106, 1015–1028. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Pérez, P.; Rosskopf, E.; De Santiago, A.; del Carmen Rodríguez-Molina, M. Anaerobic Soil Disinfestation Reduces Survival and Infectivity of Phytophthora nicotianae Chlamydospores in Pepper. Sci. Hortic. 2017, 215, 38–48. [Google Scholar] [CrossRef]
- Mahalingam, T.; Rajapakse, C.S.K.; Somachandra, K.P.; Attanayake, R.N. Carbon Source Dependent-anaerobic Soil Disinfestation (ASD) Mitigates the Sclerotial Germination of Sclerotinia sclerotiorum. Trop. Plant Pathol. 2020, 45, 13–24. [Google Scholar] [CrossRef]
- Núñez-Zofío, M.; Garbisu, C.; Larregla, S. Application of Organic Amendments Followed by Plastic Mulching for the Control of Phytophthora Root Rot of Pepper in Northern Spain. Acta Hortic. 2010, 353–360. [Google Scholar] [CrossRef]
- Rosskopf, E.N.; Serrano-Pérez, P.; Hong, J.; Shrestha, U.; Rodríguez-Molina, M.d.C.; Martin, K.; Kokalis-Burelle, N.; Shennan, C.; Muramoto, J.; Butler, D. Anaerobic Soil Disinfestation and Soil-borne Pest Management. In Soil Biology; Springer: Cham, Switzerland, 2015; pp. 277–305. [Google Scholar]
- Browne, G.; Ott, N.; Poret-Peterson, A.; Gouran, H.; Lampinen, B. Efficacy of Anaerobic Soil Disinfestation for Control of Prunus Replant Disease. Plant Dis. 2018, 102, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Huang, X.; Zhang, J.; Zhu, T.; Meng, L.; Cai, Z. Effects of Water Regime, Crop Residues, and Application Rates on Control of Fusarium oxysporum f. sp. cubense. J. Environ Sci. 2015, 31, 30–37. [Google Scholar] [CrossRef]
- Gandariasbeitia, M.; Ojinaga, M.; Orbegozo, E.; Ortíz-Barredo, A.; Núñez-Zofío, M.; Mendarte, S.; Larregla, S. Winter Bio-disinfestation with Brassica Green Manure is a Promising Management Strategy for Phytophthora capsici Control of Protected Pepper Crops in Humid Temperate Climate Regions of Northern Spain. Span. J. Agric. Res. 2019, 17, 1–11. [Google Scholar] [CrossRef]
- Ueki, A.; Kaku, N.; Ueki, K. Role of Anaerobic Bacteria in Biological Soil Disinfestation for Elimination of Soil-borne Plant Pathogens in Agriculture. Appl. Microbiol. Biotechnol. 2018, 102, 6309–6318. [Google Scholar] [CrossRef]
- Yang, J.; Hsiang, T.; Bhadauria, V.; Chen, X.-L.; Li, G. Plant Fungal Pathogenesis. BioMed Res. Int. 2017, 1–2. [Google Scholar] [CrossRef]
- Butler, D.M.; Ownley, B.H.; Dee, M.E.; Eichler Inwood, S.E.; McCarty, D.G.; Shrestha, U.; Kokalis-Burelle, N.; Rosskopf, E.N. Low Carbon Amendment Rates During Anaerobic Soil Disinfestation (ASD) at Moderate Soil Temperatures Do Not Decrease Viability of Sclerotinia Sclerotiorum Sclerotia or Fusarium Root Rot of Common Bean. Acta Hortic. 2014, 203–208. [Google Scholar] [CrossRef]
- Guo, H.; Di Gioia, F.; Zhao, X.; Ozores-Hampton, M.; Swisher, M.E.; Hong, J.; Kokalis-Burelle, N.; DeLong, A.N.; Rosskopf, E.N. Optimizing Anaerobic Soil Disinfestation for Fresh Market Tomato Production: Nematode and Weed Control, Yield, and Fruit Quality. Sci. Hortic. 2017, 218, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Poret-Peterson, A.T.; Albu, S.; McClean, A.E.; Kluepfel, D.A. Shifts in Soil Bacterial Communities as a Function of Carbon Source Used During Anaerobic Soil Disinfestation. Front. Environ. Sci. 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Shennan, C.; Muramoto, J.; Koike, S.; Baird, G.; Fennimore, S.; Samtani, J.; Bolda, M.; Dara, S.; Daugovish, O.; Lazarovits, G.; et al. Anaerobic Soil Disinfestation is an Alternative to Soil Fumigation for Control of Some Soil-borne Pathogens in Strawberry Production. Plant Pathol. 2017, 67, 51–66. [Google Scholar] [CrossRef]
- Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; Vander Gheynst, J.S.; Simmons, C.W. Assessment of Tomato and Wine Processing Solid Wastes as Soil Amendments for Biosolarization. Waste Manag. 2016, 48, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momma, N.; Momma, M.; Kobara, Y. Biological Soil Disinfestation Using Ethanol: Effect on Fusarium oxysporum f. sp. lycopersici and Soil Microorganisms. J. Gen. Plant Pathol. 2010, 76, 336–344. [Google Scholar] [CrossRef]
- Hewavitharana, S.S.; Klarer, E.; Reed, A.J.; Leisso, R.; Poirier, B.; Honaas, L.; Rudell, D.R.; Mazzola, M. Temporal Dynamics of the Soil Metabolome and Microbiome During Simulated Anaerobic Soil Disinfestation. Front. Microbiol. 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Collange, B.; Navarrete, M.; Peyre, G.; Mateille, T.; Tchamitchian, M. Root-knot Nematode (Meloidogyne) Management in Vegetable Crop Production: The Challenge of an Agronomic System Analysis. Crop Protection 2011, 30, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.M.; Kokalis-Burelle, N.; Muramoto, J.; Shennan, C.; McCollum, T.G.; Rosskopf, E.N. Impact of Anaerobic Soil Disinfestation Combined with Soil Solarization on Plant-parasitic Nematodes and Introduced Inoculum of Soil-borne Plant Pathogens in Raised-bed Vegetable Production. Crop Prot. 2012, 39, 33–40. [Google Scholar] [CrossRef]
- Testen, A.L.; Miller, S.A. Carbon Source and Soil Origin Shape Soil Microbiomes and Tomato Soil-borne Pathogen Populations during Anaerobic Soil Disinfestation. Phytobiomes J. 2018, 2, 138–150. [Google Scholar] [CrossRef]
- Mazzola, M.; Hewavitharana, S.S.; Strauss, S.L.; Shennan, C.; Muramoto, J. Anaerobic Soil Disinfestation and Brassica Seed Meal Amendment Alter Soil Microbiology and System Resistance. Int. J. Fruit Sci. 2016, 16, 47–58. [Google Scholar] [CrossRef]
- Testen, A.L.; Miller, S.A. Anaerobic Soil Disinfestation to Manage Soil-borne Diseases in Muck Soil Vegetable Production Systems. Plant Dis. 2019, 103, 1757–1762. [Google Scholar] [CrossRef]
- Gómez-Tenorio, M.A.; Lupión-Rodríguez, B.; Boix-Ruiz, A.; Ruiz-Olmos, C.; Marín-Guirao, J.I.; Tello-Marquina, J.C.; Camacho-Ferre, F.; de Cara-García, M. Meloidogyne-infested Tomato Crop Residues are a Suitable Material for Biodisinfestation to Manage Meloidogyne sp. in Greenhouses in Almería (South-east Spain). Acta Hortic. 2018, 217–222. [Google Scholar] [CrossRef]
- Di Gioia, F.; Ozores-Hampton, M.; Hong, J.; Kokalis-Burelle, N.; Albano, J.; Zhao, X.; Black, Z.; Gao, Z.; Wilson, C.; Thomas, J.; et al. The Effects of Anaerobic Soil Disinfestation on Weed and Nematode Control, Fruit Yield, and Quality of Florida Fresh-market Tomato. Hort. Sci. 2016, 51, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C.M. Trends in Glyphosate Herbicide use in The United States and Globally. Environ Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lamers, J.G.; Runia, W.T.; Molendijk, L.P.G.; Bleeker, P.O. Perspectives of Anaerobic Soil Disinfestation. Acta Hortic. 2010, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Fennimore, S.A.; Serohijos, R.; Samtani, J.B.; Ajwa, H.A.; Subbarao, K.V.; Martin, F.N.; Daugovish, O.; Legard, D.; Browne, G.T.; Muramoto, J.; et al. TIF Film, Substrates and Non-fumigant Soil Disinfestation Maintain Fruit Yields. Cal. Ag. 2013, 67, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Karimmojeni, H.; Bazrafshan, A.H.; Majidi, M.M.; Torabian, S.; Rashidi, B. Effect of Maternal Nitrogen and Drought Stress on Seed Dormancy and Germinability of Amaranthus retroflexus. Plant Species Biol. 2013, 29, E1–E8. [Google Scholar] [CrossRef]
- Di Gioia, F.; Ozores-Hampton, M.; Zhao, X.; Thomas, J.; Wilson, P.; Li, Z.; Hong, J.; Albano, J.; Swisher, M.; Rosskopf, E. Anaerobic Soil Disinfestation Impact on Soil Nutrients Dynamics and Nitrous Oxide Emissions in Fresh-market Tomato. Agric. Ecosyst. Environ. 2017, 240, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Mowlick, S.; Inoue, T.; Takehara, T.; Kaku, N.; Ueki, K.; Ueki, A. Changes and Recovery of Soil Bacterial Communities Influenced by Biological Soil Disinfestation as Compared with Chloropicrin-treatment. AMB Express. 2013, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Mu, W.; Zhu, B.; Du, Y.; Liu, F. Antagonistic Activities of Volatiles from Four Strains of Bacillus spp. and Paenibacillus spp. against Soil-borne Plant Pathogens. Agr. Sci. China. 2008, 7, 1104–1114. [Google Scholar] [CrossRef]
- Piechulla, B.; Degenhardt, J. The Emerging Importance of Microbial Volatile Organic Compounds. Plant Cell Environ. 2014, 37, 811–812. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; De Jager, V.; Zühlke, D.; Wolff, C.; Bernhardt, J.; Cankar, K.; Beekwilder, J.; Van Ijcken, W.; Sleutels, F.; De Boer, W.; et al. Fungal Volatile Compounds Induce Production of the Secondary Metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Sharifi, R.; Ryu, C.M. Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement. Plant Pathol. J. 2018, 34, 459–469. [Google Scholar] [CrossRef]
- Garbeva, P.; Hordijk, C.; Gerards, S.; de Boer, W. Volatile-mediated Interactions between Phylogenetically Different Soil Bacteria. Front. Microbiol. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kanchiswamy, C.N.; Malnoy, M.; Maffei, M.E. Chemical Diversity of Microbial Volatiles and their Potential for Plant Growth and Productivity. Front. Plant Sci. 2015, 6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Schulz-Bohm, K.; Martín-Sánchez, L.; Garbeva, P. Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-kingdom Interactions. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Morita, T.; Tanaka, I.; Ryuda, N.; Ikari, M.; Ueno, D.; Someya, T. Antifungal Spectrum Characterization and Identification of Strong Volatile Organic Compounds Produced by Bacillus pumilus TM-R. Heliyon 2019, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wang, Z.; Qiao, X.; Li, Z.; Li, F.; Chen, M.; Wang, Y.; Huang, Y.; Cui, H. Antifungal Activity of Volatile Organic Compounds from Streptomyces alboflavus TD-1. FEMS Microbiol. Lett. 2013, 341, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Agtmaal, M.; Van Os, G.J.; Hol, W.H.G.; Hundscheid, M.P.J.; Runia, W.T.; Hordijk, C.A.; de Boer, W. Legacy Effects of Anaerobic Soil Disinfestation on Soil Bacterial Community Composition and Production of Pathogen-suppressing Volatiles. Front. Microbiol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016; p. 200. [Google Scholar]
- FAO. How to Feed the World in 2050? Insights from an Expert Meeting at FAO; FAO: Rome, Italy, 2009; p. 35. [Google Scholar]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural Expansion and its Impacts on Tropical Nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between Yield Advances and Yield Plateaus in Historical Crop Production Trends. Nat. Commun. 2013, 4, 1–11. [Google Scholar] [CrossRef]
- McColl, K. Can We Feed the World? BMJ 2008, 336, 1336–1338. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop Losses Due to Diseases and their Implications for Global Food Production Losses and Food Security. Food Sec. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Kumar, S. Plant Disease Management in India: Advances and Challenges. Afr. J. Agric. Res. 2014, 9, 1207–1217. [Google Scholar]
- Phalan, B.; Bertzky, M.; Butchart, S.H.M.; Donald, P.F.; Scharlemann, J.P.W.; Stattersfield, A.J.; Balmford, A. Crop Expansion and Conservation Priorities in Tropical Countries. PLoS ONE 2013, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thottathil, G.P.; Jayasekaran, K.; Othman, A.S. Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture. Trop. Life Sci. Res. 2016, 27, 93–114. [Google Scholar]
- Priyashantha, A.K.H. Effects of Anaerobic Soil Disinfestation on the Survival of a Soil-borne Plant Pathogen, Sclerotinia Sclerotiorum in Sri Lanka. Master’s Thesis, University of Kelaniya, Colomb, Sri Lanka, December 2020. [Google Scholar]
- Bhandari, A.; Sah, L.P.; Devkota, M.; Rajbhandari, B.P. Evaluation of Anaerobic Soil Disinfestations in the Management of Club Root Disease. J. Nep. Agric. Res. 2020, 19, 5–11. [Google Scholar]
- Shi, L.; Wang, J.; Gao, Z.; Zhao, X.; Di Gioia, F.; Guo, H.; Hong, J.; Ozores-Hampton, M.; Rosskopf, E. Economic Analysis of Anaerobic Soil Disinfestation for Open-field Fresh-market Tomato Production in Southwest and North Florida. Hortte 2019, 29, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Yan, D.; Fang, W.; Huang, B.; Wang, X.; Zhang, D.; Zhu, J.; Liu, J.; Ouyang, C.; Li, Y.; et al. Maltose and Totally Impermeable Film Enhanced Suppression of Anaerobic Soil Disinfestation on Soil-borne Pathogens and Increased Strawberry Yield. Sustainability 2020, 12, 5456. [Google Scholar] [CrossRef]
C Source | Application Rate of C Sources (t ha−1) | Pathogens Suppressed | Mean Soil Temperature/Range (°C) | Treatment Period | Crop | Field/Greenhouse | Country | Reference |
---|---|---|---|---|---|---|---|---|
Fresh broccoli (Brassica oleracea) | 34,38 | Fusarium oxysporum, Rhizoctonia solani, Verticillium dahliae | 25–32, 29–39 | 15 weeks | N/A | Field, plot | Netherlands | [44] |
Perennial ryegrass (Lolium perenne) | 40 | Fusarium oxysporum, Rhizoctonia solani, Verticillium dahliae | 25–32, 29–39 | 15 weeks | N/A | Field, plot | Netherlands | [44] |
Grass or potato haulms | 30 | Ralstonia solanacearum | N/A | 6 weeks | Potato | Laboratory, field | Netherlands | [46] |
Wheat bran | 2 | Meloidogyne incognita | 35.0 | 24 days | Tomato | Greenhouse, plot | Japan | [47] |
Cereal rye (Secale cereale) | 0.134 | Rhizoctonia solani | 20.8 | 4 weeks | Tomato, bell pepper | Field, plot | USA | [49] |
Mustard (Brassica juncea) seed meal | 4.9 | Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum | 18–24 | 2 weeks | Apple | Growth chamber, pot | USA | [50] |
Grass residues | 40.0 | Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum | 18–24 | 2 weeks | Apple | Growth chamber, pot | USA | [50] |
Rice bran | 20 | Verticillium dahliae | 21–23 | 4 weeks | Strawberries | Field | USA | [50] |
Radish roots | 100 | Fusarium oxysporum | 33.1 | 3 weeks | Spinach | Greenhouse, field | Japan | [48] |
Mixture of fresh rye-grass species | 50 | Verticillium dahliae, Pasteuria penetrans | N/A | 12 weeks | N/A | Field | Netherlands | [48] |
Mustard (Brassica juncea) | 50 | Fusarium oxysporum | 33.1 | 3 weeks | Spinach | Greenhouse, pots, field | Japan | [48] |
Wheat bran | 20 | Fusarium oxysporum | 33.1 | 3 weeks | Spinach | Green house, pots, field | Japan | [48] |
Rice bran | 4.4 | Rhizoctonia solani, Pratylenchus penetrans | 18–24 | 2 weeks | Apple | Growth chamber, pot | USA | [53] |
Fresh orchard grass residues | 20 | Rhizoctonia solani, Pratylenchus penetrans | 18–24 | 2 weeks | Apple | Growth chamber, pot | USA | [53] |
Mustard (Brassica juncea) seed meal | 4.4 | Rhizoctonia solani, Pratylenchus penetrans | 18–24 | 2 weeks | Apple | Growth chamber, pot | USA | [53] |
Rice bran | 20 | Phytophthora nicotianae | 15–35 | 4 weeks | Pepper | Field | Spain | [54] |
Rapeseed cake | 20 | Phytophthora nicotianae | 15–35 | 4 weeks | Pepper | Field, plot | Spain | [54] |
Grape pomace | 40 | Phytophthora nicotianae | 15–35 | 4 weeks | Pepper | Field, plot | Spain | [54] |
Rice bran | 20 | Fusarium oxysporum | 18–24 | 15 days | Strawberry | Growth chamber, pot | USA | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyashantha, A.K.H.; Attanayake, R.N. Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture? Pathogens 2021, 10, 133. https://doi.org/10.3390/pathogens10020133
Priyashantha AKH, Attanayake RN. Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture? Pathogens. 2021; 10(2):133. https://doi.org/10.3390/pathogens10020133
Chicago/Turabian StylePriyashantha, A. K. Hasith, and Renuka N. Attanayake. 2021. "Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture?" Pathogens 10, no. 2: 133. https://doi.org/10.3390/pathogens10020133
APA StylePriyashantha, A. K. H., & Attanayake, R. N. (2021). Can Anaerobic Soil Disinfestation (ASD) be a Game Changer in Tropical Agriculture? Pathogens, 10(2), 133. https://doi.org/10.3390/pathogens10020133