Recent Progress in Shigella and Burkholderia pseudomallei Vaccines
Abstract
1. Introduction
1.1. Pathogens and Diseases Incidence
1.2. Pathogenesis and Life Cycle
1.3. Vaccines and Animal Models
2. Shigella Vaccines
2.1. Inactivated Whole-Cells and Live-Attenuated Vaccines (LAVs)
2.2. Subunit and Glycoconjugate Vaccines
2.3. Outer Membrane Vesicles (OMVs)
2.4. Reverse Vaccinology
2.5. Others (Non-Pathogenic Bacteria as Vectors)
3. Burkholderia pseudomallei Vaccines
3.1. Inactivated Whole-Cells and Live Attenuated Vaccines (LAVs)
3.2. Subunit and Glycoconjugate Vaccines
3.3. Outer Membrane Vesicles (OMVs)
3.4. Reverse Vaccinology and Nanovaccines
3.5. Others (DNA Vaccines and Viral Vector-Based Vaccines)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiersinga, W.J.; Virk, H.S.; Torres, A.G.; Currie, B.J.; Dance, D.A.B.; Limmathurotsakul, D. Melioidosis. Nat. Rev. Dis. Prim. 2018, 4, 1–22. [Google Scholar] [CrossRef]
- Cheng, A.C.; Dance, D.A.B.; Currie, B.J. Bioterrorism, Glanders and melioidosis. Euro Surveill. 2005, 10, 11–12. [Google Scholar] [CrossRef]
- Schnupf, P.; Sansonetti, P.J. Shigella pathogenesis: New insights through advanced methodologies. Microbiol. Spectr. 2019, 7, 1–24. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, (CDC). CDC Yellow Book 2020: Health Information for International Travel. In CDC Yellow Book 2020: Health Information for International Travel; Brunette, G.W., Nemhauser, J.B., Eds.; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Limmathurotsakul, D.; Golding, N.; Dance, D.A.B.; Messina, J.P.; Pigott, D.M.; Moyes, C.L.; Rolim, D.B.; Bertherat, E.; Day, N.P.J.; Peacock, S.J.; et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 2016, 1, 15008. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Riddle, M.S.; Platts-Mills, J.A.; Pavlinac, P.; Zaidi, A.K.M. Shigellosis. Lancet 2018, 391, 801–812. [Google Scholar] [CrossRef]
- Teparrukkul, P.; Kongkasame, W.; Chitsaeng, S.; Wongsuwan, G.; Wuthiekanun, V.; Peacock, S.J.; Limmathurotsakul, D. Gastrointestinal tract involvement in melioidosis. Trans. R. Soc. Trop. Med. Hyg. 2017, 111, 185–187. [Google Scholar] [CrossRef]
- Khosravi, Y.; Dieye, Y.; Poh, B.H.; Ng, C.G.; Loke, M.F.; Goh, K.L.; Vadivelu, J. Culturable bacterial microbiota of the stomach of Helicobacter pylori positive and negative gastric disease patients. Sci. World J. 2014, 2014, 610421. [Google Scholar] [CrossRef]
- Baker, A.L.; Pearson, T.; Sahl, J.W.; Hepp, C.; Price, E.P.; Sarovich, D.S.; Mayo, M.; Tuanyok, A.; Currie, B.J.; Keim, P.; et al. Burkholderia pseudomallei distribution in Australasia is linked to paleogeographic and anthropogenic history. PLoS ONE 2018, 13, e0206845. [Google Scholar] [CrossRef] [PubMed]
- Sarovich, D.S.; Garin, B.; De Smet, B.; Kaestli, M.; Mayo, M.; Vandamme, P.; Jacobs, J.; Lompo, P.; Tahita, M.C.; Tinto, H.; et al. Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa. mSphere 2016, 1, e00089-15. [Google Scholar] [CrossRef] [PubMed]
- Rachlin, A.; Mayo, M.; Webb, J.R.; Kleinecke, M.; Rigas, V.; Harrington, G.; Currie, B.J.; Kaestli, M. Whole-genome sequencing of Burkholderia pseudomallei from an urban melioidosis hot spot reveals a fine-scale population structure and localised spatial clustering in the environment. Sci. Rep. 2020, 10, 5443. [Google Scholar] [CrossRef] [PubMed]
- Willcocks, S.J.; Denman, C.C.; Atkins, H.S.; Wren, B.W. Intracellular replication of the well-armed pathogen Burkholderia pseudomallei. Curr. Opin. Microbiol. 2016, 29, 94–103. [Google Scholar] [CrossRef]
- Sanchez-Villamil, J.I.; Tapia, D.; Borlee, G.I.; Borlee, B.R.; Walker, D.H.; Torres, A.G. Burkholderia pseudomallei as an Enteric Pathogen: Identification of virulence Factors Mediating Gastrointestinal Infection. Infect. Immun. 2020, 89, 1–16. [Google Scholar] [CrossRef]
- Stone, J.K.; DeShazer, D.; Brett, P.J.; Burtnick, M.N. Melioidosis: Molecular aspects of pathogenesis. Expert Rev. Anti. Infect. Ther. 2014, 12, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Sitthidet, C.; Korbsrisate, S.; Layton, A.N.; Field, T.R.; Stevens, M.P.; Stevens, J.M. Identification of motifs of Burkholderia pseudomallei BimA required for intracellular motility, actin binding, and actin polymerization. J. Bacteriol. 2011, 193, 1901–1910. [Google Scholar] [CrossRef] [PubMed]
- De Souza Santos, M.; Orth, K. The Role of the Type III Secretion System in the Intracellular Lifestyle of Enteric Pathogens. Microbiol. Spectr. 2019, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lennings, J.; West, T.E.; Schwarz, S. The Burkholderia Type VI secretion system 5: Composition, regulation and role in virulence. Front. Microbiol. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Limmathurotsakul, D.; Funnell, S.G.P.; Torres, A.G.; Morici, L.A.; Brett, P.J.; Dunachie, S.; Atkins, T.; Altmann, D.M.; Bancroft, G.; Peacock, S.J. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg. Infect. Dis. 2015, 21, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Van de Verg, L.L.; Mallett, C.P.; Collins, H.H.; Larsen, T.; Hammack, C.; Hale, T.L. Antibody and cytokine responses in a mouse pulmonary model of Shigella flexneri serotype 2a infection. Infect. Immun. 1995, 63, 1947–1954. [Google Scholar] [CrossRef]
- Walker, R.I. Considerations for development of whole cell bacterial vaccines to prevent diarrheal diseases in children in developing countries. Vaccine 2005, 23, 3369–3385. [Google Scholar] [CrossRef]
- Kaminski, R.W.; Wu, M.; Turbyfill, K.R.; Clarkson, K.; Tai, B.; Bourgeois, A.L.; Van De Verg, L.L.; Walker, R.I.; Oaks, E.V. Development and preclinical evaluation of a trivalent, formalin-inactivated Shigella whole-cell vaccine. Clin. Vaccine Immunol. 2014, 21, 366–382. [Google Scholar] [CrossRef]
- Chakraborty, S.; Harro, C.; DeNearing, B.; Bream, J.; Bauers, N.; Dally, L.; Flores, J.; Van De Verg, L.; Sack, D.A.; Walker, R. Evaluation of the safety, tolerability, and immunogenicity of an oral, inactivated whole-cell Shigella flexneri 2a vaccine in healthy adult subjects. Clin. Vaccine Immunol. 2016, 23, 315–325. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.-H.; Kim, H.; Rho, S.; Shin, Y.K.; Song, M.; Walker, R.; Czerkinsky, C.; Kim, D.W.; Kim, J.-O. Cross-Protective Shigella Whole-Cell Vaccine with a Truncated O-Polysaccharide Chain. Front. Microbiol. 2018, 9, 2609. [Google Scholar] [CrossRef] [PubMed]
- Hartman, A.B.; Venkatesan, M.M. Construction of a stable attenuated Shigella sonnei DeltavirG vaccine strain, WRSS1, and protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model. Infect. Immun. 1998, 66, 4572–4576. [Google Scholar] [CrossRef]
- Makino, S.; Sasakawa, C.; Kamata, K.; Kurata, T.; Yoshikawa, M. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 1986, 46, 551–555. [Google Scholar] [CrossRef]
- Frenck, R.W.J.; Baqar, S.; Alexander, W.; Dickey, M.; McNeal, M.; El-Khorazaty, J.; Baughman, H.; Hoeper, A.; Barnoy, S.; Suvarnapunya, A.E.; et al. A Phase I trial to evaluate the safety and immunogenicity of WRSs2 and WRSs3; two live oral candidate vaccines against Shigella sonnei. Vaccine 2018, 36, 4880–4889. [Google Scholar] [CrossRef] [PubMed]
- D’Hauteville, H.; Khan, S.; Maskell, D.J.; Kussak, A.; Weintraub, A.; Mathison, J.; Ulevitch, R.J.; Wuscher, N.; Parsot, C.; Sansonetti, P.J. Two msbB genes encoding maximal acylation of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J. Immunol. 2002, 168, 5240–5251. [Google Scholar] [CrossRef]
- Raqib, R.; Sarker, P.; Zaman, K.; Alam, N.H.; Wierzba, T.F.; Maier, N.; Talukder, K.; Baqui, A.H.; Suvarnapunya, A.E.; Qadri, F.; et al. A phase I trial of WRSS1, a Shigella sonnei live oral vaccine in Bangladeshi adults and children. Hum. Vaccin. Immunother. 2019, 15, 1326–1337. [Google Scholar] [CrossRef]
- Punnee, P.; Dilara, I.; Supat, C.; Nattaya, R.; Patchariya, K.; Jaranit, K.; Chatporn, K.; Viravarn, L.; Jittima, D.; Venkatesan, M.M.; et al. Clinical Trial of an Oral Live Shigella sonnei Vaccine Candidate, WRSS1, in Thai Adults. Clin. Vaccine Immunol. 2021, 23, 564–575. [Google Scholar]
- Coster, T.S.; Hoge, C.W.; VanDeVerg, L.L.; Hartman, A.B.; Oaks, E.V.; Venkatesan, M.M.; Cohen, D.; Robin, G.; Fontaine-Thompson, A.; Sansonetti, P.J.; et al. Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC. Infect. Immun. 1999, 67, 3437–3443. [Google Scholar] [CrossRef]
- McKenzie, R.; Venkatesan, M.M.; Wolf, M.K.; Islam, D.; Grahek, S.; Jones, A.M.; Bloom, A.; Taylor, D.N.; Hale, T.L.; Bourgeois, A.L. Safety and immunogenicity of WRSd1, a live attenuated Shigella dysenteriae type 1 vaccine candidate. Vaccine 2008, 26, 3291–3296. [Google Scholar] [CrossRef] [PubMed]
- Mitobe, J.; Sinha, R.; Mitra, S.; Nag, D.; Saito, N.; Shimuta, K.; Koizumi, N.; Koley, H. An attenuated Shigella mutant lacking the RNA-binding protein Hfq provides cross-protection against Shigella strains of broad serotype. PLoS Negl. Trop. Dis. 2017, 11, e0005728. [Google Scholar] [CrossRef]
- Harutyunyan, S.; Neuhauser, I.; Mayer, A.; Aichinger, M.; Szijártó, V.; Nagy, G.; Nagy, E.; Girardi, P.; Malinoski, F.J.; Henics, T. Characterization of shigetec, a novel live attenuated combined vaccine against shigellae and etec. Vaccines 2020, 8, 689. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Simon, J.K.; Pasetti, M.; Sztein, M.B.; Wooden, S.L.; Livio, S.; Nataro, J.P.; Blackwelder, W.C.; Barry, E.M.; Picking, W.; et al. Safety and Immunogenicity of CVD 1208S, a Live, Oral ∆guaBA ∆sen ∆set Shigella flexneri 2a Vaccine Grown on Animal-Free Media. Hum. Vaccin. 2007, 3, 268–275. [Google Scholar] [CrossRef]
- Noriega, F.R.; Losonsky, G.; Lauderbaugh, C.; Liao, F.M.; Wang, J.Y.; Levine, M.M. Engineered ∆guaB-A ∆virG Shigella flexneri 2a strain CVD 1205: Construction, safety, immunogenicity, and potential efficacy as a mucosal vaccine. Infect. Immun. 1996, 64, 3055–3061. [Google Scholar] [CrossRef]
- Tesfa-Selase, F.; Drabble, W.T. Regulation of the gua operon of Escherichia coli by the DnaA protein. Mol. Gen. Genet. MGG 1992, 231, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Toapanta, F.R.; Bernal, P.J.; Kotloff, K.L.; Levine, M.M.; Sztein, M.B. T cell mediated immunity induced by the live-attenuated Shigella flexneri 2a vaccine candidate CVD 1208S in humans. J. Transl. Med. 2018, 16, 61. [Google Scholar] [CrossRef]
- DeLaine, B.C.; Wu, T.; Grassel, C.L.; Shimanovich, A.; Pasetti, M.F.; Levine, M.M.; Barry, E.M. Characterization of a multicomponent live, attenuated Shigella flexneri vaccine. Pathog. Dis. 2016, 74. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hartman, A.B.; Powell, C.J.; Schultz, C.L.; Oaks, E.V.; Eckels, K.H. Small-animal model to measure efficacy and immunogenicity of Shigella vaccine strains. Infect. Immun. 1991, 59, 4075–4083. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, P.H.Q.S.; Bolick, D.T.; Ledwaba, S.E.; Kolling, G.L.; Costa, D.V.S.; Oriá, R.B.; Lima, A.Â.M.; Barry, E.M.; Guerrant, R.L. A bivalent vaccine confers immunogenicity and protection against Shigella flexneri and enterotoxigenic Escherichia coli infections in mice. NPJ Vaccines 2020, 5, 30. [Google Scholar] [CrossRef]
- Oberhelman, R.A.; Kopecko, D.J.; Salazar-Lindo, E.; Gotuzzo, E.; Buysse, J.M.; Venkatesan, M.M.; Yi, A.; Fernandez-Prada, C.; Guzman, M.; León-Barúa, R. Prospective study of systemic and mucosal immune responses in dysenteric patients to specific Shigella invasion plasmid antigens and lipopolysaccharides. Infect. Immun. 1991, 59, 2341–2350. [Google Scholar] [CrossRef]
- Turbyfill, K.R.; Hartman, A.B.; Oaks, E.V. Isolation and Characterization of a Shigella flexneri Invasin Complex Subunit Vaccine. Infect. Immun. 2000, 68, 6624. [Google Scholar] [CrossRef]
- Tribble, D.; Kaminski, R.; Cantrell, J.; Nelson, M.; Porter, C.; Baqar, S.; Williams, C.; Arora, R.; Saunders, J.; Ananthakrishnan, M.; et al. Safety and immunogenicity of a Shigella flexneri 2a Invaplex 50 intranasal vaccine in adult volunteers. Vaccine 2010, 28, 6076–6085. [Google Scholar] [CrossRef] [PubMed]
- Turbyfill, K.R.; Clarkson, K.A.; Vortherms, A.R.; Oaks, E.V.; Kaminski, R.W. Assembly, Biochemical Characterization, Immunogenicity, Adjuvanticity, and Efficacy of Shigella Artificial Invaplex. mSphere 2018, 3, e00583-17. [Google Scholar] [CrossRef] [PubMed]
- Jneid, B.; Rouaix, A.; Féraudet-Tarisse, C.; Simon, S. SipD and IpaD induce a cross-protection against Shigella and Salmonella infections. PLoS Negl. Trop. Dis. 2020, 14, e0008326. [Google Scholar] [CrossRef]
- Chitradevi, S.T.S.; Kaur, G.; Sivaramakrishna, U.; Singh, D.; Bansal, A. Development of recombinant vaccine candidate molecule against Shigella infection. Vaccine 2016, 34, 5376–5383. [Google Scholar] [CrossRef]
- Fourie, K.R.; Wilson, H.L. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines 2020, 8, 773. [Google Scholar] [CrossRef]
- León, Y.; Zapata, L.; Molina, R.E.; Okanovič, G.; Gómez, L.A.; Daza-Castro, C.; Flores-Concha, M.; Reyes, J.L.; Oñate, A.A. Intranasal Immunization of Mice with Multiepitope Chimeric Vaccine Candidate Based on Conserved Autotransporters SigA, Pic and Sap, Confers Protection against Shigella flexneri. Vaccines 2020, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Perez, F.; Wahid, R.; Faherty, C.S.; Kolappaswamy, K.; Rodriguez, L.; Santiago, A.; Murphy, E.; Cross, A.; Sztein, M.B.; Nataro, J.P. Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc. Natl. Acad. Sci. USA 2011, 108, 12881–12886. [Google Scholar] [CrossRef] [PubMed]
- Danese, P.N.; Pratt, L.A.; Dove, S.L.; Kolter, R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 2000, 37, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Pore, D.; Chakrabarti, M.K. Outer membrane protein A (OmpA) from Shigella flexneri 2a: A promising subunit vaccine candidate. Vaccine 2013, 31, 3644–3650. [Google Scholar] [CrossRef]
- Pore, D.; Mahata, N.; Pal, A.; Chakrabarti, M.K. Outer membrane protein A (OmpA) of Shigella flexneri 2a, induces protective immune response in a mouse model. PLoS ONE 2011, 6, e22663. [Google Scholar] [CrossRef]
- Padh, H.; Yagnik, B.; Sharma, D.; Desai, P. EpiMix Based Novel Vaccine Candidate for Shigella: Evidence of Prophylactic Immunity in Balb/c Mice. Int. J. Pept. Res. Ther. 2021, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Jarząb, A.; Witkowska, D.; Ziomek, E.; Setner, B.; Czajkowska, A.; Dorot, M.; Szewczuk, Z.; Gamian, A. Cyclic OmpC peptidic epitope conjugated to tetanus toxoid as a potential vaccine candidate against shigellosis. Vaccine 2018, 36, 4641–4649. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Green, M.S.; Biock, C.; Rouach, T.; Ofek, I. Serum antibodies to lipopolysaccharide and natural immunity to shigellosis in an israeli military population. J. Infect. Dis. 1988, 157, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Block, C.; Green, M.S.; Lowell, G.; Ofek, I. Immunoglobulin M, A, and G antibody response to lipopolysaccharide O antigen in symptomatic and asymptomatic Shigella infections. J. Clin. Microbiol. 1989, 27, 162–167. [Google Scholar] [CrossRef]
- Feldman, M.F.; Wacker, M.; Hernandez, M.; Hitchen, P.G.; Marolda, C.L.; Kowarik, M.; Morris, H.R.; Dell, A.; Valvano, M.A.; Aebi, M. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 2005, 102, 3016–3021. [Google Scholar] [CrossRef]
- Wacker, M.; Linton, D.; Hitchen, P.G.; Nita-Lazar, M.; Haslam, S.M.; North, S.J.; Panico, M.; Morris, H.R.; Dell, A.; Wren, B.W.; et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 2002, 298, 1790–1793. [Google Scholar] [CrossRef]
- Passwell, J.H.; Ashkenzi, S.; Banet-Levi, Y.; Ramon-Saraf, R.; Farzam, N.; Lerner-Geva, L.; Even-Nir, H.; Yerushalmi, B.; Chu, C.; Shiloach, J.; et al. Age-related efficacy of Shigella O-specific-polysaccharide conjugates in 1 to 4 year-old Israeli children. Vaccine 2010, 28, 2231. [Google Scholar] [CrossRef]
- Riddle, M.S.; Kaminski, R.W.; Di Paolo, C.; Porter, C.K.; Gutierrez, R.L.; Clarkson, K.A.; Weerts, H.E.; Duplessis, C.; Castellano, A.; Alaimo, C.; et al. Safety and Immunogenicity of a Candidate Bioconjugate Vaccine against Shigella flexneri 2a Administered to Healthy Adults: A Single-Blind, Randomized Phase I Study. Clin. Vaccine Immunol. 2016, 23, 908–917. [Google Scholar] [CrossRef]
- Talaat, K.R.; Alaimo, C.; Martin, P.; Bourgeois, A.L.; Dreyer, A.M.; Kaminski, R.W.; Porter, C.K.; Chakraborty, S.; Clarkson, K.A.; Brubaker, J.; et al. Human challenge study with a Shigella bioconjugate vaccine: Analyses of clinical efficacy and correlate of protection. EBioMedicine 2021, 66, 103310. [Google Scholar] [CrossRef]
- Hatz, C.F.R.; Bally, B.; Rohrer, S.; Steffen, R.; Kramme, S.; Siegrist, C.-A.; Wacker, M.; Alaimo, C.; Fonck, V.G. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: A single blind, partially randomized Phase I study. Vaccine 2015, 33, 4594–4601. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Atsmon, J.; Artaud, C.; Meron-Sudai, S.; Gougeon, M.-L.; Bialik, A.; Goren, S.; Asato, V.; Ariel-Cohen, O.; Reizis, A.; et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: A phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. Lancet Infect. Dis. 2021, 21, 546–558. [Google Scholar] [CrossRef]
- Narayana, P.V.S.L.S.S.; Dutta, J.R. Glycoconjugation of Shigella flexneri type 2a O-polysaccharide with CRM(197) as a potential vaccine candidate for shigellosis. Biologicals 2021, 72, 1–9. [Google Scholar] [CrossRef]
- Laird, R.M.; Ma, Z.; Dorabawila, N.; Pequegnat, B.; Omari, E.; Liu, Y.; Maue, A.C.; Poole, S.T.; Maciel, M.; Satish, K.; et al. Evaluation of a conjugate vaccine platform against enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni and Shigella. Vaccine 2018, 36, 6695–6702. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.T. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update. Front. Microbiol. 2017, 8, 1053. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakrabarti, M.K.; Koley, H. Multi-serotype outer membrane vesicles of Shigellae confer passive protection to the neonatal mice against shigellosis. Vaccine 2013, 31, 3163–3173. [Google Scholar] [CrossRef] [PubMed]
- Camacho, A.I.; De Souza, J.; Sánchez-Gómez, S.; Pardo-Ros, M.; Irache, J.M.; Gamazo, C. Mucosal immunization with Shigella flexneri outer membrane vesicles induced protection in mice. Vaccine 2011, 29, 8222–8229. [Google Scholar] [CrossRef]
- Pastor, Y.; Camacho, A.; Gil, A.G.; Ramos, R.; de Ceráin, A.L.; Peñuelas, I.; Irache, J.M.; Gamazo, C. Effective protection of mice against Shigella flexneri with a new self-adjuvant multicomponent vaccine. J. Med. Microbiol. 2017, 66, 946–958. [Google Scholar] [CrossRef]
- Tian, H.; Li, B.; Xu, T.; Yu, H.; Chen, J.; Yu, H.; Li, S.; Zeng, L.; Huang, X.; Liu, Q. Outer membrane vesicles derived from Salmonella Typhimurium can deliver Shigella flexneri 2a O-polysaccharide antigen to prevent Shigella flexneri 2a infection in mice. Appl. Environ. Microbiol. 2021, 87, e0096821. [Google Scholar] [CrossRef]
- Micoli, F.; Alfini, R.; Di Benedetto, R.; Necchi, F.; Schiavo, F.; Mancini, F.; Carducci, M.; Palmieri, E.; Balocchi, C.; Gasperini, G.; et al. GMMA Is a Versatile Platform to Design Effective Multivalent Combination Vaccines. Vaccines 2020, 8, 540. [Google Scholar] [CrossRef]
- Berlanda Scorza, F.; Colucci, A.M.; Maggiore, L.; Sanzone, S.; Rossi, O.; Ferlenghi, I.; Pesce, I.; Caboni, M.; Norais, N.; Di Cioccio, V.; et al. High yield production process for Shigella outer membrane particles. PLoS ONE 2012, 7, e35616. [Google Scholar] [CrossRef]
- Gerke, C.; Colucci, A.M.; Giannelli, C.; Sanzone, S.; Vitali, C.G.; Sollai, L.; Rossi, O.; Martin, L.B.; Auerbach, J.; Di Cioccio, V.; et al. Production of a Shigella sonnei Vaccine Based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB. PLoS ONE 2015, 10, e0134478. [Google Scholar] [CrossRef]
- Launay, O.; Lewis, D.J.M.; Anemona, A.; Loulergue, P.; Leahy, J.; Sciré, A.S.; Maugard, A.; Marchetti, E.; Zancan, S.; Huo, Z.; et al. Safety Profile and Immunologic Responses of a Novel Vaccine Against Shigella sonnei Administered Intramuscularly, Intradermally and Intranasally: Results from Two Parallel Randomized Phase 1 Clinical Studies in Healthy Adult Volunteers in Europe. EBioMedicine 2017, 22, 164–172. [Google Scholar] [CrossRef]
- Raso, M.M.; Gasperini, G.; Alfini, R.; Schiavo, F.; Aruta, M.G.; Carducci, M.; Forgione, M.C.; Martini, S.; Cescutti, P.; Necchi, F.; et al. GMMA and Glycoconjugate Approaches Compared in Mice for the Development of a Vaccine against Shigella flexneri Serotype. Vaccines 2020, 8, 160. [Google Scholar] [CrossRef]
- Mora, M.; Veggi, D.; Santini, L.; Pizza, M.; Rappuoli, R. Reverse vaccinology. Drug Discov. Today 2003, 8, 459–464. [Google Scholar] [CrossRef]
- Hajialibeigi, A.; Amani, J.; Latif Mousavi Gargari, S. Identification and evaluation of novel vaccine candidates against Shigella flexneri through reverse vaccinology approach. Appl. Microbiol. Biotechnol. 2021, 105, 1159–1173. [Google Scholar] [CrossRef]
- Leow, C.Y.; Kazi, A.; Ismail, C.M.K.H.; Chuah, C.; Lim, B.H.; Leow, C.H.; Singh, K.K.B. Reverse vaccinology approach for the identification and characterization of outer membrane proteins of Shigella flexneri as potential cellular-and antibody-dependent vaccine candidates. Clin. Exp. Vaccine Res. 2020, 9, 15–25. [Google Scholar] [CrossRef] [PubMed]
- De Alwis, R.; Liang, L.; Taghavian, O.; Werner, E.; The, H.C.; Nguyen, T.; Thu, H.; Duong, V.T.; Davies, D.H.; Felgner, P.L.; et al. The identification of novel immunogenic antigens as potential Shigella vaccine components. Genome Med. 2021, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Baghal, S.M.L.; Gargari, S.L.M.; Rasooli, I. Production and immunogenicity of recombinant ferric enterobactin protein (FepA). Int. J. Infect. Dis. 2010, 14, e166–e170. [Google Scholar] [CrossRef][Green Version]
- Baseer, S.; Ahmad, S.; Ranaghan, K.E.; Azam, S.S. Towards a peptide-based vaccine against Shigella sonnei: A subtractive reverse vaccinology based approach. Biologicals 2017, 50, 87–99. [Google Scholar] [CrossRef]
- Dharmasena, M.N.; Osorio, M.; Takeda, K.; Stibitz, S.; Kopecko, D.J. Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a. Clin. Vaccine Immunol. 2017, 24, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Germanier, R.; Fiirer, E. Isolation and Characterization of Gal E Mutant Ty 21a of Salmonella typhi: A Candidate Strain for a Live, Oral Typhoid Vaccine. J. Infect. Dis. 1975, 131, 553–558. [Google Scholar] [CrossRef]
- Formal, S.; Baron, L.; Kopecko, D.; Washington, O.; Powell, C.; Life, C. Construction of a potential bivalent vaccine strain: Introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21a typhoid vaccine strain. Infect. Immun. 1981, 34, 746–750. [Google Scholar] [CrossRef]
- Tramont, E.; Chung, R.; Berman, S.; Keren, D.; Kapfer, S.; Formal, S. Safety and antigenicity of typhoid-Shigella sonnei vaccine (strain 5076-1C). J. Infect. Dis. 1984, 149, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chakravarty, S.; Li, M.; Wai, T.T.; Hoffman, S.L.; Sim, B.K.L. Development of a Live Attenuated Bivalent Oral Vaccine Against Shigella sonnei Shigellosis and Typhoid Fever. J. Infect. Dis. 2017, 215, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Dharmasena, M.N.; Osorio, M.; Filipova, S.; Marsh, C.; Stibitz, S.; Kopecko, D.J. Stable expression of Shigella dysenteriae serotype 1 O-antigen genes integrated into the chromosome of live Salmonella oral vaccine vector Ty21a. Pathog. Dis. 2016, 74, ftw098. [Google Scholar] [CrossRef]
- Yagnik, B.; Sharma, D.; Padh, H.; Desai, P. Immunization with r-Lactococcus lactis expressing outer membrane protein A of Shigella dysenteriae type-1: Evaluation of oral and intranasal route of administration. J. Appl. Microbiol. 2017, 122, 493–505. [Google Scholar] [CrossRef]
- Yagnik, B.; Sharma, D.; Padh, H.; Desai, P. Oral immunization with LacVax® OmpA induces protective immune response against Shigella flexneri 2a ATCC 12022 in a murine model. Vaccine 2019, 37, 3097–3105. [Google Scholar] [CrossRef]
- Sagi, S.; Konduru, B.; Parida, M. Heterologous expression of Intimin and IpaB fusion protein in Lactococcus lactis and its mucosal delivery elicit protection against pathogenicity of Escherichia coli O157 and Shigella flexneri in a murine model. Int. Immunopharmacol. 2020, 85, 106617. [Google Scholar] [CrossRef]
- Puangpetch, A.; Anderson, R.; Huang, Y.Y.; Saengsot, R.; Sermswan, R.W.; Wongratanacheewin, S. Comparison of the protective effects of killed Burkholderia pseudomallei and CpG oligodeoxynucleotide against live challenge. Vaccine 2014, 32, 5983–5988. [Google Scholar] [CrossRef]
- Henderson, A.; Propst, K.; Kedl, R.; Dow, S. Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 2011, 29, 5304–5312. [Google Scholar] [CrossRef]
- Sarkar-Tyson, M.; Smither, S.J.; Harding, S.V.; Atkins, T.P.; Titball, R.W. Protective efficacy of heat-inactivated B. thailandensis, B. mallei or B. pseudomallei against experimental melioidosis and glanders. Vaccine 2009, 27, 4447–4451. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Schell, M.A.; Yu, Y.; Ulrich, R.L.; Sarria, S.H.; Nierman, W.C.; DeShazer, D. Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genom. 2005, 6, 1–13. [Google Scholar] [CrossRef]
- Morici, L.; Torres, A.G.; Titball, R.W. Novel multi-component vaccine approaches for Burkholderia pseudomallei. Clin. Exp. Immunol. 2019, 196, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Breitbach, K.; Köhler, J.; Steinmetz, I. Induction of protective immunity against Burkholderia pseudomallei using attenuated mutants with defects in the intracellular life cycle. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, S89–S94. [Google Scholar] [CrossRef]
- Silva, E.B.; Goodyear, A.; Sutherland, M.D.; Podnecky, N.L.; Gonzalez-Juarrero, M.; Schweizer, H.P.; Dow, S.W. Correlates of Immune Protection following Cutaneous Immunization with an Attenuated Burkholderia pseudomallei Vaccine. Infect. Immun. 2013, 81, 4626. [Google Scholar] [CrossRef]
- Amemiya, K.; Dankmeyer, J.L.; Biryukov, S.S.; Treviño, S.R.; Klimko, C.P.; Mou, S.M.; Fetterer, D.P.; Garnes, P.G.; Cote, C.K.; Worsham, P.L.; et al. Deletion of Two Genes in Burkholderia pseudomallei MSHR668 That Target Essential Amino Acids Protect Acutely Infected BALB/c Mice and Promote Long Term Survival. Vaccines 2019, 7, 196. [Google Scholar] [CrossRef]
- Cuccui, J.; Easton, A.; Chu, K.K.; Bancroft, G.J.; Oyston, P.C.F.; Titball, R.W.; Wren, B.W. Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes important in survival and pathogenesis. Infect. Immun. 2007, 75, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Srilunchang, T.; Proungvitaya, T.; Wongratanacheewin, S.; Strugnell, R.; Homchampa, P. Construction and characterization of an unmarked aroC deletion mutant of Burkholderia pseudomallei strain A2. Southeast Asian J. Trop. Med. Public Health 2009, 40, 123–130. [Google Scholar]
- Atkins, T.; Prior, R.; Mack, R.; Russell, P.; Nelson, M.; Prior, J.; Ellis, J.; Oyston, P.C.F.; Dougan, G.; Titball, R.W. Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J. Med. Microbiol. 2002, 51, 539–547. [Google Scholar] [CrossRef]
- Haque, A.; Chu, K.; Easton, A.; Stevens, M.P.; Galyov, E.E.; Atkins, T.; Titball, R.; Bancroft, G.J. A Live Experimental Vaccine against Burkholderia pseudomallei Elicits CD4+ T Cell–Mediated Immunity, Priming T Cells Specific for 2 Type III Secretion System Proteins. J. Infect. Dis. 2006, 194, 1241–1248. [Google Scholar] [CrossRef]
- Norris, M.H.; Propst, K.L.; Kang, Y.; Dow, S.W.; Schweizer, H.P.; Hoang, T.T. The Burkholderia pseudomallei Δasd mutant exhibits attenuated intracellular infectivity and imparts protection against acute inhalation melioidosis in mice. Infect. Immun. 2011, 79, 4010–4018. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.M.; Dyke, J.S.; Jelesijevic, T.P.; Michel, F.; Lafontaine, E.R.; Hogan, R.J. Antibodies against in vivo-expressed antigens are sufficient to protect against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Infect. Immun. 2017, 85, e00102-17. [Google Scholar] [CrossRef]
- Stevens, M.P.; Haque, A.; Atkins, T.; Hill, J.; Wood, M.W.; Easton, A.; Nelson, M.; Underwood-Fowler, C.; Titball, R.W.; Bancroft, G.J.; et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 2004, 150, 2669–2676. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.M.; Conejero, L.; Spink, N.; Wand, M.E.; Bancroft, G.J.; Titball, R.W. Role of RelA and SpoT in Burkholderia pseudomallei virulence and immunity. Infect. Immun. 2012, 80, 3247–3255. [Google Scholar] [CrossRef]
- Khakhum, N.; Bharaj, P.; Myers, J.N.; Tapia, D.; Kilgore, P.B.; Ross, B.N.; Walker, D.H.; Endsley, J.J.; Torres, A.G. Burkholderia pseudomallei ΔtonB Δhcp1 Live Attenuated Vaccine Strain Elicits Full Protective Immunity against Aerosolized Melioidosis Infection. mSphere 2019, 4, e00570-18. [Google Scholar] [CrossRef] [PubMed]
- Khakhum, N.; Bharaj, P.; Myers, J.N.; Tapia, D.; Walker, D.H.; Endsley, J.J.; Torres, A.G. Evaluation of Burkholderia mallei ΔtonB Δhcp1 (CLH001) as a live attenuated vaccine in murine models of glanders and melioidosis. PLoS Negl. Trop. Dis. 2019, 13, e0007578. [Google Scholar] [CrossRef]
- Khakhum, N.; Bharaj, P.; Walker, D.H.; Torres, A.G.; Endsley, J.J. Antigen-specific antibody and polyfunctional T cells generated by respiratory immunization with protective Burkholderia ΔtonB Δhcp1 live attenuated vaccines. NPJ Vaccines 2021, 6, 1–13. [Google Scholar] [CrossRef]
- Hatcher, C.L.; Mott, T.M.; Muruato, L.A.; Sbrana, E.; Torresa, A.G. Burkholderia mallei CLH001 attenuated vaccine strain is immunogenic and protects against acute respiratory glanders. Infect. Immun. 2016, 84, 2345–2354. [Google Scholar] [CrossRef]
- Harland, D.N.; Chu, K.; Haque, A.; Nelson, M.; Walker, N.J.; Sarkar-Tyson, M.; Atkins, T.P.; Moore, B.; Brown, K.A.; Bancroft, G.; et al. Identification of a LolC homologue in Burkholderia pseudomallei, a novel protective antigen for melioidosis. Infect. Immun. 2007, 75, 4173–4180. [Google Scholar] [CrossRef]
- Hara, Y.; Mohamed, R.; Nathan, S. Immunogenic Burkholderia pseudomallei Outer Membrane Proteins as Potential Candidate Vaccine Targets. PLoS ONE 2009, 4, e6496. [Google Scholar] [CrossRef]
- Su, Y.C.; Wan, K.L.; Mohamed, R.; Nathan, S. Immunization with the recombinant Burkholderia pseudomallei outer membrane protein Omp85 induces protective immunity in mice. Vaccine 2010, 28, 5005–5011. [Google Scholar] [CrossRef] [PubMed]
- Casey, W.T.; Spink, N.; Cia, F.; Collins, C.; Romano, M.; Berisio, R.; Bancroft, G.J.; McClean, S. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 2016, 34, 2616–2621. [Google Scholar] [CrossRef]
- Burtnick, M.N.; Brett, P.J.; Harding, S.V.; Ngugi, S.A.; Ribot, W.J.; Chantratita, N.; Scorpio, A.; Milne, T.S.; Dean, R.E.; Fritz, D.L.; et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect. Immun. 2011, 79, 1512–1525. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, G.C.; Deeraksa, A.; Qazi, O.; Judy, B.M.; Taylor, K.; Propst, K.L.; Duffy, A.J.; Johnson, K.; Kitto, G.B.; Brown, K.A.; et al. Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge. Procedia Vaccinol. 2010, 2, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R. Glycoconjugate vaccines: Principles and mechanisms. Sci. Transl. Med. 2018, 10, eaat4615. [Google Scholar] [CrossRef]
- Garcia-Quintanilla, F.; Iwashkiw, J.; Price, N..; Stratilo, C.; Feldman, M.F. Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front. Microbiol. 2014, 5, 381. [Google Scholar] [CrossRef]
- Scott, A.E.; Ngugi, S.A.; Laws, T.; Corser, D.; Lonsdale, C.; D’Elia, R.; Titball, R.W.; Williamson, E.; Atkins, T.P.; Prior, J. Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. J. Immunol. Res. 2014, 2014, 392170. [Google Scholar] [CrossRef]
- Burtnick, M.N.; Shaffer, T.L.; Ross, B.N.; Muruato, L.A.; Sbrana, E.; DeShazer, D.; Torres, A.G.; Brett, P.J. Development of subunit vaccines that provide high-level protection and sterilizing immunity against acute inhalational melioidosis. Infect. Immun. 2017, 86, e00724-17. [Google Scholar] [CrossRef]
- Scott, A.E.; Christ, W.J.; George, A.J.; Stokes, M.G.M.; Lohman, G.J.S.; Guo, Y.; Jones, M.; Titball, R.W.; Atkins, T.P.; Campbell, A.S.; et al. Protection against Experimental Melioidosis with a Synthetic manno-Heptopyranose Hexasaccharide Glycoconjugate. Bioconjug. Chem. 2016, 27, 1435–1446. [Google Scholar] [CrossRef]
- Scott, A.E.; Burtnick, M.N.; Stokes, M.G.M.; Whelan, A.O.; Williamson, E.D.; Atkins, T.P.; Prior, J.L.; Brett, P.J. Burkholderia pseudomallei capsular polysaccharide conjugates provide protection against acute melioidosis. Infect. Immun. 2014, 82, 3206–3213. [Google Scholar] [CrossRef]
- Nieves, W.; Asakrah, S.; Qazi, O.; Brown, K.A.; Kurtz, J.; Aucoin, D.P.; Mclachlan, J.B.; Roy, C.J.; Morici, L.A. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 2011, 29, 8381–8389. [Google Scholar] [CrossRef]
- Nieves, W.; Petersen, H.; Judy, B.M.; Blumentritt, C.A.; Russell-Lodrigue, K.; Roy, C.J.; Torres, A.G.; Morici, L.A. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. Clin. Vaccine Immunol. 2014, 21, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.M.; Settles, E.W.; Davitt, C.; Gellings, P.; Kikendall, N.; Hoffmann, J.; Wang, Y.; Bitoun, J.; Lodrigue, K.-R.; Sahl, J.W.; et al. Burkholderia pseudomallei OMVs derived from infection mimicking conditions elicit similar protection to a live-attenuated vaccine. NPJ Vaccines 2021, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Petersen, H.; Nieves, W.; Russell-Lodrigue, K.; Roy, C.J.; Morici, L.A. Evaluation of a Burkholderia pseudomallei Outer Membrane Vesicle Vaccine in Nonhuman Primates. Procedia Vaccinol. 2014, 8, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Muruato, L.A.; Tapia, D.; Hatcher, C.L.; Kalita, M.; Brett, P.J.; Gregory, A.E.; Samuel, J.E.; Titball, R.W.; Torres, A.G. Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Burkholderia pseudomallei. Clin. Vaccine Immunol. 2017, 24, e00206-17. [Google Scholar] [CrossRef]
- Hizbullah; Nazir, Z.; Afridi, S.G.; Shah, M.; Shams, S.; Khan, A. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651. Microb. Pathog. 2018, 125, 219–229. [Google Scholar] [CrossRef]
- Tapia, D.; Sanchez-Villamil, J.; Stevenson, H.; Torres, A.G. Multicomponent Gold-Linked Glycoconjugate Vaccine Elicits Antigen-Specific Humoral and Mixed TH1-TH17 Immunity, Correlated with Increased Protection against Burkholderia pseudomallei. mBio 2021, 12, e0122721. [Google Scholar] [CrossRef]
- Xiang, Z.; He, Y. Vaxign: A web-based vaccine target design program for reverse vaccinology. Procedia Vaccinol. 2009, 1, 23–29. [Google Scholar] [CrossRef]
- Gourlay, L.; Peri, C.; Ferrer-Navarro, M.; Conchillo-Solé, Ó.; Gori, A.; Rinchai, D.; Thomas, R.J.; Champion, O.; Michell, S.; Kewcharoenwong, C.; et al. Exploiting the Burkholderia pseudomallei acute phase antigen BPSL2765 for structure-based epitope discovery/design in structural vaccinology. Chem. Biol. 2013, 20, 1147–1156. [Google Scholar] [CrossRef]
- Capelli, R.; Peri, C.; Villa, R.; Nithichanon, A.; Conchillo-Solé, O.; Yero, D.; Gagni, P.; Chiari, M.; Lertmemongkolchai, G.; Cretich, M.; et al. BPSL1626: Reverse and Structural Vaccinology Reveal a Novel Candidate for Vaccine Design against Burkholderia pseudomallei. Antibodies 2018, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hsiao, Y.; Lin, H.; Liu, Y.; Chen, Y. CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect. Immun. 2006, 74, 1699–1705. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lankelma, J.M.; Wagemakers, A.; Birnie, E.; Haak, B.W.; Trentelman, J.J.A.; Weehuizen, T.A.F.; Ersöz, J.; Roelofs, J.J.T.H.; Weehuizen, T.A.F.; Erzös, J.; et al. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application. Virulence 2017, 8, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, E.R.; Chen, Z.; Huertas-Diaz, M.C.; Dyke, J.S.; Jelesijevic, T.P.; Michel, F.; Hogan, R.J.; He, B. The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine X 2019, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
Vaccine Type | Antigens/Mutant | Immunization Route | Pre/Clinical | Status | Ref. |
---|---|---|---|---|---|
Inactivated | S. flexneri 2a (formalin) | Oral | Phase IIa/IIb (Sf2aWC) | W | [21,22] |
S. flexneri 2a ∆wzy (formalin) | I.n. | Preclinical | - | [23] | |
LAVs | S. sonnei Moseley ∆virG | Oral | Phase I (WRSS1) | C | [24,28,29] |
S. sonnei Moseley ∆senA ∆senB ∆virG | Oral | Phase II (WRSs2) | ID | [26] | |
S. sonnei Moseley ∆senA ∆senB ∆virG ∆msbB2 | Oral | Phase I (WRSs3) | C | [26] | |
S. flexneri 2a ∆virG ∆iuc | Oral | Phase I (SC602) | - | [30] | |
S. dysenteriae type 1 ∆virG ∆stxA ∆stxB | Oral | Phase I (WRSd1) | - | [31] | |
S. flexneri 2a ∆guaBA ∆sen ∆seT | Oral | Phase IIa/IIb (CVD 1208S) | T | [34,37] | |
S. flexneri 3a ∆guaBA ∆sen | - | Preclinical (CVD 1213) | - | [38,39] | |
S. flexneri 6 ∆guaBA | - | Preclinical (CVD 1215) | - | [38,39] | |
S. flexneri 2a ∆hfq | Oral | Preclinical | - | [32] | |
S. flexneri 2a ∆rfbF ∆setBA ∆infA ∆ipaBC::infA-3×[LTB-STN12S] | I.n. | Preclinical (ShigETEC) | - | [33] | |
S. flexneri 2a ∆guaBA ∆sen ∆seT::CFA/I-LTA2-LTB | I.n. | Phase I (CVD 1208S-122) | ID | [40] | |
Subunit | Shigella LPS-IpaB-IpaC | I.m. | Phase I (InvaplexNAT) | C | [43] |
Shigella LPS-IpaB-IpaC | I.m. | Phase I (InvaplexAR) | C | [44] | |
Shigella IpaB-GroEL | I.n. | Preclinical | - | [46] | |
S. flexneri 2a OmpA | I.p. | Preclinical | - | [52] | |
Shigella OmpA-OmpC-OVA | I.m. | Preclinical (EpiMix) | - | [53] | |
Shigella SigA-Pic-Sap | I.n | Preclinical (rMESF) | - | [48] | |
Glycoconjugate | S. sonnei and S. flexneri 2a O-SP-rEPA | I.m. | Phase III | C | [60] |
S. flexneri 2a O-EPA | I.m. | Phase IIb (Flexn2a) | C | [61,62] | |
S. dysenteriae O1-EPA | I.m. | Phase I (GVXN SD133) | C | [63] | |
S. flexneri 2a O-SP | I.m. | Phase IIa (SF2a-TT15) | IP | [64] | |
S. flexneri-LPS-CFA/I-HS23/36 | S.c. | - | - | [65] | |
S. flexneri 2a OPS-CRM197 | - | - | - | [66] | |
OMVs | S. flexneri HT-OMV | I.n. | Preclinical | - | [70] |
Salmonella OMV-S. flexneri 2a O-antigen | I.n./I.p. | Preclinical | - | [71] | |
S. sonnei NCGH1790 GMMA | I.n. | Preclinical (1790GAHB) | - | [74,75] | |
S. flexneri 6 GMMA-CRM197 | S.c. | Preclinical | - | [76] | |
Reverse vaccinology | S. flexneri 2a FimG | I.p. | Preclinical | - | [78] |
Shigella FepA | I.p. | Preclinical | - | [81] | |
Others | S. Typhi Ty21a vector S. sonnei O-antigen | I.n. | Preclinical | - | [87] |
S. Typhi Ty21a vector S. dysenteriae type 1 O-antigen | I.p. | Preclinical | - | [88] | |
S. Typhi Ty21a vector S. flexneri O-antigen | I.p. | Preclinical | - | [83] | |
L. lactis vector S. dysenteriae type-1 OmpA | Oral/I.n. | Preclinical (LacVax) | - | [89] | |
L. lactis vector S. flexneri Intimin-IpaB | Oral | Preclinical | - | [90] |
Vaccine Type | Antigens/Mutant | Immunization Route | Animal Model | Protection | Ref. |
---|---|---|---|---|---|
Inactivated | Bpm K96243 (heat-killed) | I.p. | BALB/c mice | 80–100% at day 21 | [93] |
Bpm 576 (heat-killed) | I.p. | BALB/c mice | 100% at day 21 | [93] | |
Bpm A2 (Paraformaldehyde-killed) | I.m. | BALB/c mice | 50–60% at day 30 | [91] | |
Bpm-liposome | I.n. | BALB/c mice | 100% at day 40 | [92] | |
B. mallei | I.n. | BALB/c mice | 70% at day 44 | [93] | |
B. thailandensis | I.n. | BALB/c mice | 60% at day 44 | [93] | |
LAVs | Bpm E8 ∆purN | I.n. | BALB/c mice | 37.5% at day 65 | [96] |
Bpm E8 ∆purM | I.n. | BALB/c mice | 100% at day 17 | [96] | |
Bpm 1026b ∆purM (Bp82) | S.c. | BALB/c, C57BL/6 mice | 60%, 100% at day 60 | [97] | |
Bpm MSHR688 ∆hisF | I.p. | BALB/c mice | 50% at day 60, 100% at day 21 | [98] | |
Bpm K96243 ∆aroB | I.n. | C57BL/6 mice | 0% at day 8 | [99] | |
Bpm A2 ∆aroC | I.p. | C57BL/6 mice | 20–80% up to 5 months | [100] | |
Bpm 2D2 ∆ilvI | I.p. | BALB/c mice | 80–100% at day 32 | [101] | |
Bpm 1026b ∆asd | I.n. | BALB/c mice | 100% at day 16, 0% at day 56 | [103] | |
Bm ATCC 23344 ∆batA | I.t. | BALB/c mice | 71–100% at day 10, 67–85% at day 55 | [104] | |
Bpm 576 ∆bipD | I.p./I.n. | BALB/c mice | 60% at day 75 | [105] | |
Bpm K96243 ∆relA ∆spoT | I.n. | C57BL/6 mice | 100% at day 30, 60% at day 55 | [106] | |
Bpm K96243 ∆tonB ∆hcp1 | I.n. | C57BL/6 mice | 100% at day 27 | [108] | |
Bm ATCC 23344 ∆tonB ∆hcp1 | I.n. | C57BL/6 mice | 87.5% at day 21 | [108] | |
Subunit | Bpm LolC | I.p. | BALB/c mice | 83% at day 42 | [111] |
Bpm PotF | I.p. | BALB/c mice | 50% at day 42 | [111] | |
Bpm Omp3 | I.p. | BALB/c mice | 50% at day 21 | [112] | |
Bpm Omp7 | I.p. | BALB/c mice | 50% at day 21 | [112] | |
Bpm Omp85 | I.p. | BALB/c mice | 70% at day 15 | [113] | |
Bpm OmpW | I.p. | BALB/c, C57BL/6 mice | 75% at day 21 and day 80 | [114] | |
Bpm Hcp | I.p. | BALB/c mice | 33–80% at day 42 | [115] | |
Bm BimA | I.n. | BALB/c mice | 100% at day 21, 20% at day 50 | [116] | |
Bm BopA | I.n. | BALB/c mice | 60% at day 50 | [116] | |
Glycoconjugate | Bpm CPS-LolC | S.c. | BALB/c mice | 70% at day35 | [122] |
Bpm CPS-CRM197-Hcp1 | S.c. | C57BL/6 mice | 100% at day 35 | [120] | |
Bpm CPS-CRM197-TssM | S.c. | C57BL/6 mice | 80% at day 35 | [120] | |
Bpm TetHc-SHCPS | I.p. | BALB/c mice | 66.7% at day 35 | [121] | |
Bpm TetHc-LPS | I.p. | BALB/c mice | 81% at day 29 | [119] | |
Bpm OPS-AcrA | I.p. | BALB/c mice | 40% at day 12 | [118] | |
OMVs | Bpm 1026b OMV | S.c. | BALB/c mice | 60–80% at day 14 | [123,124] |
Bpm OMV-ODN | S.c. | Rhesus macaques | N.A. | [126] | |
Bpm 1026b M9 OMV | S.c. | C57BL/6 mice | 100% at day 30 | [125] | |
Reverse vaccinology | AuNP-FlgL-LPS | S.c. | C57BL/6 mice | 90% at day 35 | [127] |
Combined AuNP- Hemagglutinin-LPS, AuNP-Hcp1-LPS and AuNP-FlgL-LPS | S.c. | C57BL/6 mice | 100% at day 35 | [127] | |
Combined Au-OpcP-LPS and Au-OpcP1-LPS | I.n. | C57BL/6 mice | Up to 90% at day 35 | [129] | |
Others | pcDNA3/CpG-fliC | I.m. | BALB/c mice | 93.9% at day 12 | [133] |
pVAX-hTPA-FliC | I.n. | C57BL/6 mice | 53% at day 14 | [133] | |
PIV5- BatA | I.n. | BALB/c mice | 80% at day 10, 60% at day 35 | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapartegui-González, I.; Bowser, S.; Torres, A.G.; Khakhum, N. Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021, 10, 1353. https://doi.org/10.3390/pathogens10111353
Chapartegui-González I, Bowser S, Torres AG, Khakhum N. Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens. 2021; 10(11):1353. https://doi.org/10.3390/pathogens10111353
Chicago/Turabian StyleChapartegui-González, Itziar, Sarah Bowser, Alfredo G. Torres, and Nittaya Khakhum. 2021. "Recent Progress in Shigella and Burkholderia pseudomallei Vaccines" Pathogens 10, no. 11: 1353. https://doi.org/10.3390/pathogens10111353
APA StyleChapartegui-González, I., Bowser, S., Torres, A. G., & Khakhum, N. (2021). Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens, 10(11), 1353. https://doi.org/10.3390/pathogens10111353