Increasing Evapotranspiration on Extensive Green Roofs by Changing Substrate Depths, Construction, and Additional Irrigation
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area And Measurement Stations—Runoff and Lysimeters
2.2. Experimental Setup
2.2.1. Retention
2.2.2. Measuring ETa with Small-Scale Lysimeters
2.3. Study Area and Measurement Stations—Heat Reduction with Irrigated EGRs
3. Results
3.1. Retention of Extensive Green Roofs
3.2. ETa in the Growing Season
3.3. Effect of Irrigation
3.4. ET After Defined Irrigation Experiments in 2018
3.5. Correlation of ET with Water Content of Growing Media
3.6. Reduction of ETa After Active Irrigation
3.7. Reduction of Surface Temperature by Irrigation on a Real EGR
4. Discussion
5. Conclusions
- (1)
- Older EGRs (more than 10 years old) with a substrate depth of 10 cm can reduce the average annual runoff by up to 70%.
- (2)
- In the vegetation period, EGRs can reduce the runoff by up to 90%. The potential ET (ETP) is higher than the ETa.
- (3)
- EGRs with a lower substrate depth need a shorter irrigation interval if the maximum ETa is required.
- (4)
- EGRs with retention modules, damming, and capillary rise can lead to a high ETa over a long period of time.
- (5)
- In dry summers, irrigated EGRs can reduce the temperature of the waterproof membrane between the building and the green roof by up to 5 °C and on the vegetation layer by up to 10 °C, in comparison with a non-irrigated EGR.
- (6)
- Measuring the runoff coefficient with a small-scale lysimeter is not recommended. The “flowerpot effect” [22] on these small experimental fields is too high.
- (7)
- Measuring the runoff of EGRs requires an experimental field larger than 50 m2 to be built.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kravčík, M.; Pokorný, J.; Kohutiar, J.; Kováč, M.; Tóth, E. Water for the Recovery of the Climate-A New Water Paradigm; Publisher Municipalia: 2007. Available online: http://www.waterparadigm.org/ (accessed on 1 June 2019).
- Horton, R.E. Rainfall interception. Mon. Weather Rev. 1919, 47, 603–623. [Google Scholar] [CrossRef]
- Penman, H.L. Vegetation and Hydrology, Technical Communications 53, Com-monwealth Bureau of Soils; Commonwealth Agricultural Bureaux: Harpenden, UK, 1963; p. 124. [Google Scholar]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determinethe effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Lund, J.W. Direct Heat Utilization of Geothermal Resources Worldwide. In Power Stations Using Locally Available Energy Sources; Bd., 9; Bronicki, L.Y., Ed.; Springer: New York, NY, USA, 2018; pp. 297–325. [Google Scholar]
- Oberndorfer, E.; Lundholm, J.; Brass, B.; Coffmann, R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.; Rowe, B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Akther, M.; He, J.; Chu, A.; Huang, J.; Duin, B. A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones. Sustainability 2018, 10, 2864. [Google Scholar] [CrossRef]
- Lösken, G.; Ansel, W.; Backhaus, T.; Bartel, Y.C.; Bornholdt, H.; Bott, P.; Henze, M.; Hokema, J.; Köhler, M.; Krupka, B.W.; et al. Dachbegrünungsrichtlinien—Richtlinien für Planung, Bau und Instandhaltung von Dachbegrünungen—Ausgabe 2018; FLL, Ed.; FLL: Bonn, Germany, 2018. [Google Scholar]
- Heusinger, J.; Sailor, D.; Weber, S. Modeling the reduction of urban excess heat by green roofs with respect to different irrigation scenarios. Build. Environ. 2018, 131, 174–183. [Google Scholar] [CrossRef]
- Wong Gwendolyn, K.L.; Jim, C.Y. Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landsc. Urban Plan. 2015, 143, 173–182. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Zhou, D.M.; Liu, Y.X.; Hu, S.S.; Hu, D.Y.; Neto, S.; Zhang, Y. Assessing the hydrological behaviour of large-scale potential green roofs retrofitting scenarios in Beijing. Urban For. Urban Green. 2019, 40, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Azeñas, V.; Cuxart, J.; Picos, R.; Medrano, H.; Simó, G.; López-Grifol, A.; Gulías, J. Thermal regulation capacity of a green roof system in the mediterranean region: The effects of vegetation and irrigation level. Energy Build. 2018, 164, 226–238. [Google Scholar] [CrossRef]
- Xu, G.P.; Xue, X.Z.; Wang, P.; Yang, Z.S.; Yuan, W.Y.; Liu, X.F.; Lou, C.J. A lysimeter study for the effects of different canopy sizes on evapotranspiration and crop coefficient of summer maize. Agric. Water Manag. 2018, 208, 1–6. [Google Scholar] [CrossRef]
- Johannessen, B.; Muthanna, T.; Braskerud, B. Detention and Retention Behavior of Four Extensive Green Roofs in Three Nordic Climate Zones. Water 2018, 10, 671. [Google Scholar] [CrossRef]
- Johannessen, B.G.; Hanslin, H.M.; Muthanna, T. Merete Green roof performance potential in cold and wet regions. Ecol. Eng. 2017, 106, 436–447. [Google Scholar] [CrossRef]
- Viola, F.; Hellies, M.; Deidda, R. Retention performance of green roofs in representative climates worldwide. J. Hydrol. 2017, 553, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Cipolla, S.S.; Altobelli, M.; Maglionico, M. Decentralized Water Management: Rainwater Harvesting, Greywater Reuse and Green Roofs within the GST4Water Project. Proceedings 2018, 2, 673. [Google Scholar] [CrossRef]
- CLIMATE-DATA.ORG. Klima Neubrandenburg. Online Verfügbar Unter. Available online: https://de.climate-data.org/europa/deutschland/mecklenburg-vorpommern/neubrandenburg-9287/ (accessed on 13 May 2019).
- Köhler, M.; Malorny, W. Wärmeschutz durch extensive Gründächer. In Europäischer Sanierungskalender 2009; Venzmer, H., Ed.; Beuth: Berlin, Germany, 2009; pp. 195–212. ISBN 978-3-410-16871-3. [Google Scholar]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Glob. Ecol. Biogeogr. 2011, 20, 1–18. [Google Scholar] [CrossRef]
Name | Study Period | Area (m2) | Soil Depth (cm) | Type of Substrate | Location |
---|---|---|---|---|---|
Gravel roof | 2014–2017 | 103.58 | 10 cm | Washed stones (2–6 cm) | 53°33′23.0″N 13°14′39.9″E |
1. Ext. Green roof (KFU) | 2014–2017 | 150.59 | 10 cm | Crushed expanded slate | 53°33′17.1″N 13°14′41.4″E |
2. Ext. Green roof (KFO) | 2014–2017 | 206.165 | 10 cm | Crushed expanded clay, expanded slate, lava, pumice | 53°33′17.5″N 13°14′41.4″E |
3. Ext. Green roof (KFZ) | 2014–2015 | 112.12 | 8 cm (Soil) + 2 cm (Drainage) | Recycled bricks, sand | 53°33′22.9″N 13°14′42.9″E |
Name of Lysimeter | Fleece | FKD25 | Fleece | Soil | Vegetation | Ø | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Height (cm) | Max. Water Capacity (kg) | Height (cm) | Max. Water Capacity (kg) | Height (cm) | Max. Water Capacity (kg) | Height (cm) | Max. Water Capacity (kg) | Height (cm) | Max. Water Capacity (kg) | Height (cm) | Max. Water Capacity (kg) | |
USB1_O | 0.28 | 0.58 | 2.5 | 1.28 | 0.1 | 0 | 6 | 21.6 | 2.5 | 8.88 | 24.95 | |
USB2_O | 0.28 | 0.58 | 2.5 | 1.28 | 0.1 | 0 | 12 | 43.2 | 2.5 | 14.88 | 47.55 | |
Retention module | ||||||||||||
USB3_O | 0.28 | 0.58 | 8.5 | 0.38 | 0.1 | 0 | 12 | 43.2 | 2.5 | 20.88 | 46.65 | |
USB4_O (3.5 cm insulation) | 0.28 | 0.58 | 8.5 | 10.15 | 0.1 | 0 | 12 | 43.2 | 2.5 | 20.88 | 56.43 | |
USB1-3_K | 0.1 | 0 | 16 | 57.6 | 2.5 | 16.1 | 60.1 | |||||
Gravel | ||||||||||||
USB4_K | 10 | 80 | 10 | 80 |
Year | Rain (Average) | Gravel Roof | 1. Green Roof (KFU) | 2. Green Roof (KFO) | 3. Green Roof (KFZ) | ||||
---|---|---|---|---|---|---|---|---|---|
Precipitation Depth (mm) | Runoff (mm) | Runoff Coefficient | Runoff (mm) | Runoff Coefficient | Runoff (mm) | Runoff Coefficient | Runoff (mm) | Runoff Coefficient | |
2014 | 579.23 | 444.01 | 0.77 | 133.82 | 0.23 | 140.08 | 0.24 | 206.88 | 0.36 |
2015 | 505.37 | 403.79 | 0.8 | 231.53 | 0.46 | 187.76 | 0.37 | 220.13 | 0.44 |
2016 | 505.86 | 426.16 | 0.84 | 235.6 | 0.46 | 163.16 | 0.32 | ||
2017 | 590.46 | 521.37 | 0.88 | 173.81 | 0.29 | 138.1 | 0.23 | ||
Ø | 545.23 | 448.83 | 0.82 | 193.69 | 0.35 | 157.27 | 0.29 | 213.5 | 0.4 |
Year | Rain (Average) | Gravel Roof | 1. Green Roof | 2. Green Roof | 3. Green Roof | ||||
---|---|---|---|---|---|---|---|---|---|
Precipitation Depth (mm) | Runoff (mm) | Runoff Coefficient | Runoff (mm) | Runoff Coefficient | Runoff (mm) | Runoff Coefficient | Runoff (mm) | Runoff Coefficient | |
2014 | 391 | 256 | 0.65 | 48 | 0.12 | 48 | 0.12 | 101 | 0.26 |
2015 | 238 | 166 | 0.70 | 39 | 0.16 | 19 | 0.08 | 39 | 0.16 |
2016 | 231 | 155 | 0.67 | 45 | 0.19 | 21 | 0.09 | ||
2017 | 380 | 307 | 0.81 | 74 | 0.19 | 56 | 0.15 | ||
Ø | 310 | 221 | 0.71 | 52 | 0.17 | 36 | 0.11 | 70 | 0.21 |
Area | 1. Irrigation 37.5 L/m2 | 2. Irrigation 37.5 L/m2 (after 8 days) | 3. Irrigation 37.5 L/m2 (after 14 days) | Runoff Coefficient (Average of Three Irrigations) |
---|---|---|---|---|
USB1O | 16.76 | 20.01 | 17.67 | 0.52 |
USB2O | 21.76 | 25.95 | 24.48 | 0.36 |
USB3O | 18.74 | 20.90 | 20.05 | 0.47 |
USB4O | 37.68 | 36.45 | 34.51 | 0.03 |
USB1K | 27.48 | 32.29 | 31.67 | 0.19 |
USB2K | 27.12 | 30.91 | 28.8 | 0.23 |
USB3K | 30.98 | 31.82 | 28.45 | 0.19 |
USB4K | 2.216 | 4.38 | 3.09 | 0.91 |
Year | EGR | EGR with Irrigation | ||||||
---|---|---|---|---|---|---|---|---|
Vegetation (g/m2) | Dried Vegetation (g/m2) | Dried Vegetation (%) | Av. Plant Height (cm) | Vegetation (g/m2) | Dried Vegetation (g/m2) | Dried Vegetation (%) | Av. Plant Height (cm) | |
2017 | 1019 | 267 | 26.2 | 20.20 | 955 | 406 | 42.5 | 60.00 |
2018 | 994 | 204 | 20.5 | 20.20 | 1028 | 387 | 37.6 | 80.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, D.; Köhler, M.; Schmidt, M.; Wolff, F. Increasing Evapotranspiration on Extensive Green Roofs by Changing Substrate Depths, Construction, and Additional Irrigation. Buildings 2019, 9, 173. https://doi.org/10.3390/buildings9070173
Kaiser D, Köhler M, Schmidt M, Wolff F. Increasing Evapotranspiration on Extensive Green Roofs by Changing Substrate Depths, Construction, and Additional Irrigation. Buildings. 2019; 9(7):173. https://doi.org/10.3390/buildings9070173
Chicago/Turabian StyleKaiser, Daniel, Manfred Köhler, Marco Schmidt, and Fiona Wolff. 2019. "Increasing Evapotranspiration on Extensive Green Roofs by Changing Substrate Depths, Construction, and Additional Irrigation" Buildings 9, no. 7: 173. https://doi.org/10.3390/buildings9070173
APA StyleKaiser, D., Köhler, M., Schmidt, M., & Wolff, F. (2019). Increasing Evapotranspiration on Extensive Green Roofs by Changing Substrate Depths, Construction, and Additional Irrigation. Buildings, 9(7), 173. https://doi.org/10.3390/buildings9070173