Passive Climate Adaptation of Heritage Arcades: Field Evidence on the Geometry–Radiation–Thermal Comfort Chain and Orientation Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data Collection
2.3. Sky View Factor (SVF): Acquisition and Computation
2.4. Metrics and Statistical Analysis
2.5. Data Quality Control and Uncertainty
3. Results
3.1. Overall Cooling Effect of Arcades
3.2. Orientation Differences and Interaction Effects
3.3. SVF Marginal Effects and Mechanism
3.4. Net Effect and the Daytime–Nighttime Climate Resilience Index (DCRI)
3.5. Threshold Effects (WBGT)
4. Discussion
4.1. Dual Value and Study Context: Heritage and Adaptation
4.2. Mechanism Chain: Geometry (SVF) → Radiation (MRT) → Thermal Stress (UTCI)
4.3. Directionality and Interaction: Why E–W Gains Are Larger
4.4. Dialogue with Prior Work and Contributions
4.5. Robustness and Sensitivity
4.6. Limitations and External Validity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ANOVA | analysis of variance. |
| Arcade/Open | paired measurement zones under the arcade and at open street center, respectively. |
| CI | confidence interval (95% unless otherwise stated). |
| DCRI | Daytime–Nighttime Climate Resilience Index (degree-hours, normalized by 12 h; units: °C·h/12 h). UTCI-based day–night cooling index (day–night cooling robustness index) |
| E–W/N–S | east–west/north–south street orientation. |
| MRT | mean radiant temperature (°C). |
| RH | relative humidity (%). |
| SEM | standard error of the mean. |
| SVF | sky view factor (dimensionless). |
| Ta | air temperature (°C). |
| Tg | black-globe temperature (°C). |
| UTCI | Universal Thermal Climate Index (°C). |
| WBGT | wet-bulb globe temperature (°C). |
| Va | wind speed (m·s−1). |
References
- Atawneh, R.; Alqadi, S. Climate change adaptation in cities: Enhancement of pedestrian thermal comfort using afforestation and greening buildings. Urban Clim. 2025, 61, 102421. [Google Scholar] [CrossRef]
- Huang, X.; Song, J.; Wang, C.; Chan, P.W. Realistic representation of city street-level human thermal stress via a new urban climate–human coupling system. Renew. Sustain. Energy Rev. 2022, 169, 112919. [Google Scholar] [CrossRef]
- Tipaldo, J.F.; Balk, D.; Hunter, L.M. A framework for ageing and health vulnerabilities in a changing climate. Nat. Clim. Change 2024, 14, 1125–1135. [Google Scholar] [CrossRef]
- Azargoshasbi, F.; Minet, L. Modeling climate change impacts on urban population exposure to heat stress dynamics in Vancouver and Victoria, Canada. Sustain. Cities Soc. 2025, 135, 106992. [Google Scholar] [CrossRef]
- Jiang, T.; Krayenhoff, E.S.; Voogt, J.A.; Warland, J.; Demuzere, M.; Moede, C. Dynamically downscaled projection of urban outdoor thermal stress and indoor space cooling during future extreme heat. Urban Clim. 2023, 51, 101648. [Google Scholar] [CrossRef]
- Vahmani, P.; Jones, A.D.; Patricola, C.M. Interacting implications of climate change, population dynamics, and urban heat mitigation for future exposure to heat extremes. Environ. Res. Lett. 2019, 14, 084051. [Google Scholar] [CrossRef]
- Wu, H.; Jin, R.; Liu, M.; Nie, Z.; Zhao, H.; Yao, L.; Zhao, L. Investigating the potential of street trees in mitigating pedestrian thermal stress during heatwaves conditions: An empirical study in Guangzhou. Build. Environ. 2024, 265, 111955. [Google Scholar] [CrossRef]
- Pearlmutter, D.; Berliner, P.; Shaviv, E. Integrated modeling of pedestrian energy exchange and thermal comfort in urban street canyons. Build. Environ. 2007, 42, 2396–2409. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, G.; Shi, Y.; Li, J.; Zhang, Y. The characteristics of dynamic and non-uniform thermal radiation experienced by pedestrians in a street canyon. Build. Environ. 2022, 222, 109361. [Google Scholar] [CrossRef]
- He, M.; Liu, H.; Fang, Z.; He, B.; Li, B. High-temperature and thermal radiation affecting human thermal comfort and physiological responses: An experimental study. J. Build. Eng. 2024, 86, 108815. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Castel’Branco, R.; Ricardo da Costa, A. From maximum urban porosity to city’s disaggregation: Evidence from the Portuguese case. Cities 2024, 148, 104836. [Google Scholar] [CrossRef]
- González Couret, D.; Collado Baldoquin, N.; de la Paz Pérez, G.A.; Rueda Guzmán, L.A. Urban variables for adaptation to global warming in a hot–humid climate: Cuban cities as a case study. Urban Clim. 2023, 51, 101633. [Google Scholar] [CrossRef]
- Sharma, A.K. Energy efficiency and thermal comfort in heritage buildings. In Encyclopedia of Renewable and Sustainable Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 58–62. [Google Scholar]
- Chang, B.; Hasanah, A.; Caesarina, H.M. Cultural ecology of heritage building adaptation in tropical cities. IOP Conf. Ser. Earth Environ. Sci. 2021, 780, 012058. [Google Scholar] [CrossRef]
- Abd Elraouf, R.; Elmokadem, A.; Megahed, N.; Abo Eleinen, O.; Eltarabily, S. The impact of urban geometry on outdoor thermal comfort in a hot–humid climate. Build. Environ. 2022, 225, 109632. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Street canyon design and improvement potential for urban open spaces: The influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustain. Cities Soc. 2017, 33, 85–101. [Google Scholar] [CrossRef]
- Deng, J.-Y.; Wong, N.H. Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain. Cities Soc. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Lai, B.; Fu, J.-M.; Guo, C.-K.; Zhang, D.-Y.; Wu, Z.-G. Street geometry factors influencing outdoor pedestrian thermal comfort in a historic district. Buildings 2025, 15, 613. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Ali-Toudert, F.; Mayer, H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41, 94–108. [Google Scholar] [CrossRef]
- Li, G.; Ren, Z.; Zhan, C. Sky view factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Build. Environ. 2020, 169, 106587. [Google Scholar] [CrossRef]
- Wang, L.; Hou, C.; Zhang, Y.; He, J. Measuring solar radiation and spatio-temporal distribution in different street network direction through solar trajectories and street view images. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104058. [Google Scholar] [CrossRef]
- Bröde, P.; Błażejczyk, K.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kuklane, K.; Kampmann, B. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Ind. Health 2013, 51, 16–24. [Google Scholar]
- ISO 7243:2017; Ergonomics of the Thermal Environment—Assessment of heat stress using the Wet Bulb Globe Temperature (WBGT) Index. International Organization for Standardization: Geneva, Switzerland, 2017.
- d’Ambrosio Alfano, F.R.; Malchaire, J.; Palella, B.I.; Riccio, G. WBGT Index Revisited after 60 Years of Use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar] [CrossRef]
- Guo, F.; Luo, M.; Zhang, C.; Cai, J.; Zhang, X.; Zhang, H.; Zhang, H.; Dong, J. The mechanism of street spatial form on thermal comfort from urban morphology and human-centered perspectives: A study based on multi-source data. Buildings 2024, 14, 3253. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Namazi, Y.; Taleghani, M. The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustain. Cities Soc. 2021, 65, 102638. [Google Scholar] [CrossRef]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2015, 124, 55–68. [Google Scholar] [CrossRef]
- ISO 7726:2025; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. International Organization for Standardization: Geneva, Switzerland, 2025.
- Cooper, E.; Grundstein, A.; Rosen, A.; Miles, J.; Ko, J.; Curry, P. An Evaluation of Portable Wet Bulb Globe Temperature Monitor Accuracy. J. Athl. Train. 2017, 52, 1161–1167. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Dell’Isola, M.; Ficco, G.; Palella, B.I.; Riccio, G. Small Globes and Pocket Heat Stress Meters for WBGT and PHS Evaluations. A Critical Analysis under Controlled Conditions. Build. Environ. 2022, 226, 109781. [Google Scholar] [CrossRef]
- UNESCO. Recommendation on the Historic Urban Landscape (36 C/Resolution 41); UNESCO: Paris, France, 2011. [Google Scholar]
- Smith, M.E.; Ortman, S.G.; Lobo, J. Heritage sites, climate change, and urban science. Urban Clim. 2023, 47, 101371. [Google Scholar] [CrossRef]
- Narimani, N.; Karimi, A.; Brown, R.D. Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecol. Inform. 2022, 69, 101671. [Google Scholar] [CrossRef]
- Schreier, S.F.; Suomi, I.; Bröde, P.; Formayer, H.; Rieder, H.E.; Nadeem, I.; Jendritzky, G.; Batchvarova, E.; Weihs, P. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations. Int. J. Biometeorol. 2013, 57, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Xing, D. Numerical investigation into the influence of occlusions on the radiant temperature fields of globe thermometers in asymmetric radiant indoor environments. Appl. Therm. Eng. 2025, 274, 126594. [Google Scholar] [CrossRef]
- Deevi, B.; Chundeli, F.A. Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India. Urban Clim. 2020, 34, 100718. [Google Scholar] [CrossRef]
- Mokhtar, S.; Reinhart, C. Towards scalable and actionable pedestrian outdoor thermal comfort estimation: A progressive modelling approach. Build. Environ. 2023, 242, 110547. [Google Scholar] [CrossRef]
- Solanki, P.; Amirtham, L.R.; Deb, C. Optimizing sky view factor and vegetation to mitigate urban heat in hot-humid climates. Discov. Cities 2025, 2, 79. [Google Scholar] [CrossRef]
- Rodríguez Algeciras, J.A.; Gómez Consuegra, L.; Matzarakis, A. Spatial–temporal study on the effects of urban street configurations on human thermal comfort in the World Heritage City of Camagüey–Cuba. Build. Environ. 2016, 101, 85–101. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.; Xu, D.; Wang, T.; Wang, B. Analysis of multi-dimensional layers in historic districts based on theory of the historic urban landscape: Taking Shenyang Fangcheng as an example. Land 2024, 13, 1736. [Google Scholar] [CrossRef]








| Source | df | F | p | η_p2 |
|---|---|---|---|---|
| Space | 1 | 120.21 | <0.001 | 0.293 |
| Orientation | 1 | 15.98 | <0.001 | 0.052 |
| Space × Orientation | 1 | 18.90 | <0.001 | 0.061 |
| Residual | 290 | — | — | — |
| Target | Model | n | R2 | Adj_R2 | AIC | BIC | Intercept_B ± SE | Intercept_t | Intercept_p | Space (Open)_B ± SE | Space (Open)_t | Space (Open)_p | Orientation (NS)_B ± SE | Orientation (NS)_t | Orientation (NS)_p | SVF_B ± SE | SVF_t | SVF_p | Delta_R2 | Delta_AIC | Delta_BIC |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| UTCI | A | 182 | 0.313 | 0.306 | 1032 | 1042 | 35.8 ± 0.3 | 106.5 | <0.001 | 5.3 ± 0.6 | 8.22 | <0.001 | −1.6 ± 0.6 | −2.55 | 0.01 | — | — | — | — | — | — |
| UTCI | B | 182 | 0.314 | 0.302 | 1034 | 1047 | 35.6 ± 0.5 | 67.94 | <0.001 | 4.7 ± 1.1 | 4.4 | <0.001 | −1.5 ± 0.6 | −2.51 | 0.01 | 2.5 ± 3.6 | 0.7 | 0.48 | — | — | — |
| UTCI | Delta(B-A) | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | 0.001 | 1.9 | 5.1 |
| MRT | A | 294 | 0.351 | 0.347 | 2206 | 2217 | 34.6 ± 0.7 | 51.78 | <0.001 | 15.5 ± 1.8 | 8.8 | <0.001 | −3.3 ± 1.2 | −2.72 | 0.01 | — | — | — | — | — | — |
| MRT | B | 294 | 0.352 | 0.345 | 2207 | 2222 | 34.1 ± 0.9 | 39.2 | <0.001 | 14.6 ± 2.1 | 6.95 | <0.001 | −3.3 ± 1.2 | −2.69 | 0.01 | 4.1 ± 4.8 | 0.86 | 0.39 | — | — | — |
| MRT | Delta(B-A) | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | 0.001 | 1.92 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Y.; Xu, J.; Liu, T.; Hu, X.; Liu, S.; Xu, H.; Wang, Z. Passive Climate Adaptation of Heritage Arcades: Field Evidence on the Geometry–Radiation–Thermal Comfort Chain and Orientation Effects. Buildings 2026, 16, 201. https://doi.org/10.3390/buildings16010201
Wang Y, Xu J, Liu T, Hu X, Liu S, Xu H, Wang Z. Passive Climate Adaptation of Heritage Arcades: Field Evidence on the Geometry–Radiation–Thermal Comfort Chain and Orientation Effects. Buildings. 2026; 16(1):201. https://doi.org/10.3390/buildings16010201
Chicago/Turabian StyleWang, Yaolong, Jiarui Xu, Tingfeng Liu, Xiao Hu, Shouhan Liu, Hao Xu, and Zefa Wang. 2026. "Passive Climate Adaptation of Heritage Arcades: Field Evidence on the Geometry–Radiation–Thermal Comfort Chain and Orientation Effects" Buildings 16, no. 1: 201. https://doi.org/10.3390/buildings16010201
APA StyleWang, Y., Xu, J., Liu, T., Hu, X., Liu, S., Xu, H., & Wang, Z. (2026). Passive Climate Adaptation of Heritage Arcades: Field Evidence on the Geometry–Radiation–Thermal Comfort Chain and Orientation Effects. Buildings, 16(1), 201. https://doi.org/10.3390/buildings16010201

