Multi-Dimensional Analysis of Soil Parameters Affecting Bearing Capacity and Settlement Behaviour for Building Foundations
Abstract
1. Introduction
- (i)
- determine bearing capacity, settlements, and eleven complementary soil parameters from experimental programs;
- (ii)
- quantify parameter–response associations using correlation analysis with significance testing;
- (iii)
- assess differences between CL and CH using independent-samples t-tests; and
- (iv)
- develop predictive models for bearing capacity and settlement based on routinely measured variables.
2. Study Area
3. Analytical Estimation of Bearing Capacity and Settlement
3.1. Statistical Analysis Framework
- (1)
- Classical deterministic analyses reveal the direct effects of soil properties on foundation design.
- (2)
- Statistical models quantify the relative importance and predictive strength of soil parameters, highlighting dominant variables such as SPT-N, water content, and unit weight.
- (3)
3.2. Methodological Reliability and Limitations
3.3. Results and Statistical Evaluation
3.4. Methodology
- (i)
- Data acquisition and classification;
- (ii)
- Determination of soil strength and deformation parameters;
- (iii)
- Estimation of bearing capacity and settlement using analytical formulations;
- (iv)
- Statistical evaluation through descriptive statistics, comparison test, correlation and regression analyses.
3.5. Data Acquisition and Laboratory Testing
3.6. Bearing Capacity Analysis
3.7. Settlement Analysis; Consolidation Analysis Results
3.8. Comparing the Bearing Capacity Parameters of CL and CH Soil Samples
4. Discussion
- 0.00–0.25 Very weak relationship
- 0.26–0.49 Weak relationship
- 0.50–0.69 Moderate relationship
- 0.70–0.89 High relationship
- 0.90–1.00 Very high relationship
5. Conclusions
- In CH type soil, as the SPT-N30 value increased, the settlement increased with a significance level of Sig.0.028. As the plastic limit increased, the settlement increased with a significance level of Sig. 0.006. It was observed that there are differences between the parameters of CL type soil and CH type soil, ranging from 1.67% to 30.89%.
- The average bearing capacity of CL type soil is 3.19, while that of CH type soil is 3.31, and the bearing capacity of CH type soil is approximately 3.76% more.
- The average settlement of CL type soil is 2.77, while that of CH type soil is 3.00, and the settlement of CH type soil is approximately 8.30% more.
- The average internal friction angle of CL type soil is 5.33, while that of CH type soil is 5.02, and the angle of internal friction of CL type soil is approximately 6.17% more.
- The average cohesion coefficient of CL type soil is 46.96, while that of CH type soil is 57.13, and the cohesion coefficient of CH type soil is approximately 21.65% more.
- The average SPT-N30 value for the CL soil is 13.91, while that for the CH soil is 11.80, meaning the SPT-N30 value for the CL soil is approximately 17.88% higher.
- The average unit weight of the CL soil is 1.79, while that for the CH soil is approximately 1.67% higher.
- The average water content of CL type soil is 21.89, while the water content of CH type soil is 24.17, and the water content of CH type soil is about 10.41% higher, the average amount of soil passing through the No. 10 sieve in CL type soil is 8.35, while the amount of soil passing through the No. 10 sieve in CH type soil is 10.93, while the amount of soil passing through the No. 10 sieve in CH type soil is about 30.89% higher, the average amount of soil passing through the No. 200 sieve in CL type soil is 73.48, while the amount of soil passing through the No. 200 sieve in CH type soil is 82.87, the average liquid limit in CL type soil is 41.00, while the amount of liquid limit in CH type soil is 52.43, while the liquid limit in CH type soil is about 30.89% higher, 12.87% higher, and the average plastic limit in CL type soil is 18.98, while the amount of plastic limit in CH type soil is 22.53, while the CH type the plastic limit of the soil was 18.98, while the plastic limit of the CH type soil was 22.53, and the plastic limit was found to be approximately 30.89% higher in the CH type soil. It was observed that the plastic limit of the type soil was approximately 18.70% higher.
- It is observed that as the groundwater level and the amount of settlement increase, the bearing capacity of the soil decreases, and both have a very significant relationship.
- It was found that the amount of soil passing through the number 10 sieve significantly reduces the bearing capacity for the CL type soil (Sig. 0.04), while in the CH type soil, the bearing capacity increases significantly with increasing unit weight (Sig. 0.024) and water content (Sig. 0.00).
- It was found that the bearing capacity decreases significantly in the CL type soil (Sig. 0.000), while in the CH type soil, the settlement increases significantly with increasing SPT-N30 number (Sig. 0.028), and the settlement increases significantly with increasing plastic limit (Sig. 0.006).
6. Summary of Findings and Recommendations
6.1. Accordingly, in CL Soil Type
6.2. Accordingly, in CH Soil Type
Funding
Data Availability Statement
Conflicts of Interest
References
- Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 1st ed.; John Wiley & Sons: New York, NY, USA, 1943. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Vickers, B. Laboratory Work in Soil Mechanics (No. Monograph). 1983. Available online: https://trid.trb.org/View/205995 (accessed on 23 April 2025).
- Coduto, D.P. Foundation Design: Principles and Practices, 2nd ed.; Prentice Hall: Saddle River, NJ, USA, 2000. [Google Scholar]
- Bowles, J.E.; Guo, Y. Foundation Analysis and Design; McGraw-Hill: New York, NY, USA, 1996; Volume 5, p. 127. [Google Scholar]
- Skempton, A.W. The Bearing Capacity of Clays. In Selected Papers on Soil Mechanics; Emerald Publishing: Leeds, UK, 1984. [Google Scholar] [CrossRef]
- Meyerhof, G. The Ultimate Bearing Capacity of Foundations; Geotechnique: Penrith, Australia, 1951. [Google Scholar] [CrossRef]
- Meyerhof, G.G. Some Recent Research on the Bearing Capacity of Foundations. Can. Geotech. J. 1963, 1, 16–26. [Google Scholar] [CrossRef]
- Kulhawy, F.H.; Mayne, P.W. Manual on Estimating Soil Properties for Foundation Design. EL-6800, Project 1493-6; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 1990.
- Kaliakin, V. Soil Mechanics: Calculations, Principles, and Methods; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Peck, R.B.; Hanson, W.E.; Thornburn, T.H. Foundation Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1974. [Google Scholar]
- Das, M.B. Principle of Geotechnical Engineering, 7th ed.; Cengage Learning: Stamford, CT, USA, 2010. [Google Scholar]
- Briaud, J.L. Geotechnical Engin: Unsaturated and Saturated Soils; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Das, B.M.; Sivakugan, N. Fundamentals of Geotechnical Engineering; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Prandtl, L. Bemerkungen über die Entstehung der Turbulenz. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Und Mech. 1921, 1, 431–436. [Google Scholar] [CrossRef]
- Kumbasar, V.; Kip, F. Zemin Mekaniği Problemleri; Çağlayan Kitabevi: Istanbul, Turkey, 1999. [Google Scholar]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics SI Version Soil Mechanics in Engineering Practice, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Brinch Hansen, J. A Revised and Extended Formula for Bearing Capacity; Bulletin of the Danish Geotechnical Institute: Copenhagen, Denmark, 1970. [Google Scholar]
- Vesic, A.S. Analysis of Ultimate Loads of Shallow Foundations. ASCE J. Soil Mech. Found. Div. 1973, 99, 45–73. [Google Scholar] [CrossRef]
- Uzuner, B.A. Temel Zemin Mekaniği; Derya Kitabevi: Trabzon, Turkey, 2007. [Google Scholar]
- Burland, J.B.; Burbidge, M.C.; Wilson, E.J.; Terzaghi. Settlement of foundations on sand and gravel. Proc. Inst. Civ. Eng. 1985, 78, 1325–1381. [Google Scholar] [CrossRef]
- Mohanty, R.; Das, S.K. Settlement of shallow foundations on cohesionless soils based on SPT value using multi-objective feature selection. Geotech. Geol. Eng. 2018, 36, 3499–3509. [Google Scholar] [CrossRef]
- Scott, R.F. New method of consolidation–coefficient evaluation. J. Soil Mech. Found. Div. 1961, 87, 29–39. [Google Scholar] [CrossRef]
- Muntohar, A.S. Reliability of the Method for Determination of Coefficient of Consolidation (cv). In Proceedings of the 13rd Annual Scientific Meeting Denpasar, Bali, Indonesia, 5–6 November 2009; Volume 5, p. 2. [Google Scholar]
- Mesri, G.; Feng, T.W. Constant rate of strain consolidation testing of soft clays and fibrous peats. Can. Geotech. J. 2019, 56, 1526–1533. [Google Scholar] [CrossRef]
- Manou, D.; Manakou, M.; Alexoudi, M.; Anastasiadis, A.; Pitilakis, K. Microzonation Study of Düzce, Turkey. In Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor Izzat M. Idriss, San Diego, CA, USA, 24–29 May 2010. [Google Scholar]
- Holtz, R.D.; Kovacs, W.D.; Sheahan, T.C. An Introduction to Geotechnical Engineering; Prentice-hall: Englewood Cliffs, NJ, USA, 1981; Volume 733. [Google Scholar]
- Güner, A.B.S.; Özgan, E. Statistical Analysis of Soil Parameters Affecting the Bearing Capacity and Settlement Behaviour of Gravel Soils. Appl. Sci. 2025, 15, 5271. [Google Scholar] [CrossRef]
- TS EN ISO 17892-9; Geoteknik Araştırma Deney—Zeminler Için Laboratuvar Deneyleri. Available online: https://www.scribd.com/doc/58389693/TS-1900-12018 (accessed on 15 December 2025).
- Düzce Haritası. Available online: https://www.harita.gen.tr/81-duzce-haritasi/ (accessed on 15 December 2025).
- Rourke, T.D.; Goh, S.H.; Menkiti, C.O.; Mair, R.J. Highway tunnel performance during the 1999 Duzce earthquake. In Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE), Istanbul, Turkey, 27–31 August 2001; A.A. Balkema Publishers: Leiden, The Netherlands, 2002; Volume 2, pp. 1365–1368, ISBN 975-7180-06-8. [Google Scholar]
- Karadeniz, E.; Sunbul, F. Land Use and Land Cover Change in Duzce Region Following the Major Earthquake: Implications for ANN and Markov Chain Analysis. Environ. Earth Sci. 2023, 82, 243. [Google Scholar] [CrossRef]
- Emre, Ö. vd. (MTA), Varol, B. vd. (A.Ü.). 17 Ağustos 1999 Depremi Sonrası Düzce (Bolu) İlçesi Alternatif Yerleşim Alanlarının Jeolojik İncelemesi. TÜBİTAK (MTA Genel Müdürlüğü ve A.Ü. Ortak Araştırma Projesi). 1999. Available online: https://kutuphane.tbmm.gov.tr/cgi-bin/koha/opac-detail.pl?biblionumber=263787&shelfbrowse_itemnumber=253416 (accessed on 15 December 2025).
- Özmen, B. Düzce-Bolu Bölgesi’nin Jeolojisi, Diri Fayları ve Hasar Yapan Depremleri s:1–14, 12 Kasım 1999 Düzce Depremi Raporu; Özmen, B., Bağcı, G., Eds.; Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi: Ankara, Turkey, 2000.
- Yousefi-Bavil, K.; Koçkar, M.K.; Akgün, H. Development of a three-dimensional basin model to evaluate the site effects in the tectonically active near-fault region of Gölyaka basin, Düzce, Turkey. Nat. Hazards 2022, 114, 941–969. [Google Scholar] [CrossRef]
- Hasal, M.E.; Iyisan, R.; Yamanaka, H. Basin edge effect on seismic ground response: A parametric study for Duzce basin case, Turkey. Arab. J. Sci. Eng. 2018, 43, 2069–2081. [Google Scholar] [CrossRef]
- Lettis, W.; Barka, A. Geologic characterization of fault rupture hazard, Gumusova—Gerede Motorway. In Report Prepared for the Astaldi-Bayindir Joint Venture Turkey; Astaldi: Bolu, Turkey, 2000. [Google Scholar]
- Şengör, A.M.C.; Yılmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Ulutaş, E.; Coruk, Ö.; Karakaş, A. Local Geology Effects on Soil Amplification and Predominant Period in Düzce Basin, NW Turkey. Kocaeli J. Sci. Eng. 2000, 4, 160–170. [Google Scholar] [CrossRef]
- Kocbay, A.; Orhan, T.; Culshaw, M.G.; Reeves, H.J.; Jefferson, I.; Spink, T.W. Geotechnical properties and the liquefaction potential of the soils around Efteni Lake (Düzce, Turkey). In Engineering Geology for Tomorrow’s Cities; Engineering Geology Special Publications; Geological Society: London, UK, 2009; Volume 22. [Google Scholar]
- Yousefi-Bavil, K.; Koçkar, M.K.; Akgün, H. Development of A 3-D Topographical Basin Structure Based on Seismic and Geotechnical Data: Case Study at a High Seismicity Area of Gölyaka, Düzce, Turkey. In Proceedings of the 16th European Conference on Earthquake Engineering (16ECEE), Thessaloniki, Greece, 18–21 June 2018. [Google Scholar]
- Şimşek, O.; Dalgiç, S. Düzce Ovası killerinin konsolidasyon özellikleri ve jeolojik evrim ile ilişkisi. Geol. Bull. Turk 1997, 40, 29–38. [Google Scholar]
- Khanbabazadeh, H.; Hasal, M.E.; Iyisan, R. 2D seismic response of the Duzce Basin, Turkey. Soil Dyn. Earthq. Eng. 2019, 125, 105754. [Google Scholar] [CrossRef]
- Kaya, T.; Tank, S.B.; Tunçer, M.K.; Rokoityansky, I.I.; Tolak, E.; Savchenko, T. Asperity along the North Anatolian Fault imaged by magnetotellurics at Düzce, Turkey. Earth Planets Space 2009, 61, 871–884. [Google Scholar] [CrossRef]
- Tigli, C.S.; Ates, A.; Aydemir, A. Geophysical investigations on the gravity and aeromagnetic anomalies of the region between Sapanca and Duzce, along the North Anatolian Fault, Turkey. Phys. Earth Planet. Inter. 2012, 212, 19–31. [Google Scholar] [CrossRef]
- Tank, S.B. Fault zone conductors in Northwest Turkey inferred from audio frequency magnetotellurics. Earth Planets Space 2012, 64, 729–742. [Google Scholar] [CrossRef]
- Karabulut, H.; Schmittbuhl, J.; Lengline, O.; Bouchen, M. Seismicity distribution and locking depth along the Main Marmara Fault, Turkey. Geochem. Geophys. Geosyst 2016, 17, 954–965. [Google Scholar]
- Martínez-Garzón, P.; Becker, D.; Jara, J.; Chen, X.; Kwiatek, G.; Bohnhoff, M. The 2022 M W 6.0 Gölyaka–Düzce earthquake: An example of a medium-sized earthquake in a fault zone early in its seismic cycle. Solid Earth 2023, 14, 1103–1121. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Tüysüz, O.; Imren, C.; Sakınç, M.; Eyidoğan, H.; Görür, N.; Le Pichon, X.; Rangin, C. The North Anatolian fault: A new look. Annu. Rev. Earth Planet. Sci. 2005, 33, 37–112. [Google Scholar] [CrossRef]
- Bouin, M.P.; Bouchon, M.; Karabulut, H.; Aktar, M. Rupture process of the 1999 November 12 Düzce (Turkey) earthquake deduced from strong motion and Global Positioning System measurements. Geophys. J. Int. 2004, 159, 207–211. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Askan, A.; Yakut, A. Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey). Pure Appl. Geophys. 2017, 174, 3589–3607. [Google Scholar] [CrossRef]
- Eren, V.G. A Case Study: Site-Specific Seismic Response Analysis for Base-Isolated Building in Düzce. Master’s Thesis, Izmir Institute of Technology, Urla, Turkey, 2020. [Google Scholar]
- Ambraseys, N.N.; Finkel, C.F. Long-term seismicity of Istanbul and of the Marmara Sea region. Terra Nova 1991, 3, 527–539. [Google Scholar] [CrossRef]
- Ambraseys, N.N. The little-known earthquakes of 1866 and 1916 in Anatolia (Turkey). J. Seismol. 1997, 1, 289–299. [Google Scholar] [CrossRef]
- Akyu, H.S.; Hartleb, R.; Barka, A.; Altunel, E.; Sunal, G.; Meyer, B.; Armijo, R. Surface rupture and slip distribution of the 12 November 1999 Duzce earthquake (M 7.1), North Anatolian fault, Bolu, Turkey. Bull. Seismol. Soc. Am. 2002, 92, 61–66. [Google Scholar] [CrossRef]
- Utkucu, M.; Nalban, S.S.; McCloskey, J.; Steacy, S.; Alptekin, Ö. Slip distribution and stress changes associated with the 1999 November 12, Düzce (Turkey) earthquake (Mw = 7.1). Geophys. J. Int. 2003, 153, 229–241. [Google Scholar] [CrossRef]
- Kaniraj, S.R. Design Aids in Soil Mechanics and Foundation Engineering; Tata McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Herrero, O.R. Universal compression index equation; Closure. ASCE J. Geotech. Eng. 1983, 109, 755–761. [Google Scholar] [CrossRef]
- Kovačević, M.S.; Jurić-Kaćunić, D.; Librić, L.; Ivoš, G. Engineering soil classification according to EN ISO 14688-2:2018. Gradevinar 2018, 70, 873–879. [Google Scholar] [CrossRef]
- Adeniji, M.A. Investigating the Influence of Soil Properties on Foundation Settlement and Bearing Capacity. Ph.D. Thesis, Department of Civil Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria, 2024. [Google Scholar]
- Kayser, M.; Gajan, S. Application of probabilistic methods to characterize soil variability and their effects on bearing capacity and settlement of shallow foundations: State of the art. Int. J. Geotech. Eng. 2014, 8, 352–364. [Google Scholar] [CrossRef]
- Azzouz, A.S.; Krizek, R.J.; Corotis, R.B. Regression analysis of soil compressibility. Soils Found. 1976, 16, 19–29. [Google Scholar] [CrossRef]
- Ambraseys, N.N.; Finkel, C. The Seismicity of Turkey and Adjacent Areas: A Historical Review, 1500–1800; Eren: Beyoğlu, İstanbul, 1995. [Google Scholar]
- Barka, A. Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bull. Seismol. Soc. Am. 1996, 86, 1238–1254. [Google Scholar] [CrossRef]
- Barka, A.A.; Kadinsky-Cade, K. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Şaroğlu, F.; Emre, Ö.; Kuşçu, İ. Türkiye Diri Fay Haritası; MTA Genel Müd.: Ankara, Turkey, 1992. [Google Scholar]
- Şengör, A.M.C.; Görür, N.; Şaroğlu, F. Strike Slip Faulting and Related Basin Formations in Zones of Tectonic Escape: Turkey as a Case Study; Biddle, K.T., Christie Blick, N., Eds.; Strike-Slip Faulting and Basin Formation; Special Publication; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1985; pp. 227–264. [Google Scholar]
- Gurbuz, C.; Aktar, M.; Eyidogan, H.; Cisternas, A.; Haessler, H.; Barka, A.; Ergin, M.; Türkelli, N.; Polat, O.R.; Üçer, S.B.; et al. The seismotectonics of the Marmara region (Turkey): Results from a microseismic experiment. Tectonophysics 2020, 316, 1–17. [Google Scholar] [CrossRef]
- Pucci, S.; Pantosti, D.; Barchi, M.R.; Palyvos, N. A complex seismogenic shear zone: The Düzce segment of North Anatolian Fault (Turkey). Earth Planet. Sci. Lett. 2007, 262, 185–203. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş.; Elmacı, H.; Çan, T. Active fault database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Şengör, A.C.; Grall, C.; Imren, C.; Le Pichon, X.; Şengör, A.C.; Grall, C.; Imren, C.; Le Pichon, X.; Görür, N.; Henry, P.; et al. The geometry of the North Anatolian transform fault in the Sea of Marmara and its temporal evolution: Implications for the development of intracontinental transform faults. Can. J. Earth Sci. 2014, 51, 222–242. [Google Scholar] [CrossRef]
- Ayhan, M.E.; Koçyiğit, A. Displacements and Kinematics of the February 1, 1944 Gerede Earthquake (North Anatolian Fault System, Turkey): Geodetic and Geological Constraints. Turk. J. Earth Sci. 2010, 19, 285–311. [Google Scholar] [CrossRef]
- Barka, A.; Akyu, H.S.; Altunel, E.; Sunal, G.; Çakir, Z.; Dikbas, A.; Yerli, B.; Armijo, R.; Meyer, B.; de Chabalier, J.B.; et al. The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian fault. Bull. Seismol. Soc. Am. 2002, 92, 43–60. [Google Scholar] [CrossRef]
- Nagaraj, T.; Murty, B.R.S. Prediction of the preconsolidation pressure and recompression index of soils. Geotech. Test. J. 1985, 8, 199–202. [Google Scholar] [CrossRef]
- SPSS Statistics, version 22 ed; IBM: Armonk, NY, USA, 2020.
- Örnek, M.; Laman, M.; Demir, A.; Yildiz, A. Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found. 2012, 52, 69–80. [Google Scholar] [CrossRef]
- Meyerhof, G.G. Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay. Can. Geotech. J. 1974, 11, 223–229. [Google Scholar] [CrossRef]
- Omar, M.; Shanableh, A.; Hamad, K.; Tahmaz, A.; Arab, M.G.; Al-Sadoon, Z. Nomographs for predicting allowable bearing capacity and elastic settlement of shallow foundation on granular soil. Arab. J. Geosci. 2019, 12, 485. [Google Scholar] [CrossRef]
- Roy, M. Practice in Geotechnical and Foundation Engineering. In Geotechnical and Foundation Engineering Practice in Industrial Projects; Springer Nature: Singapore, 2024; pp. 295–303. [Google Scholar]
- Darga, K.N. Evaluation of coefficient of consolidation in CH soils. Jordan J. Civ. Eng. 2016, 4, 10. [Google Scholar]
- Sivrikaya, O.; Togrol, E. Relations between SPT-N and qu. In Proceedings of the 5th International Congress on Advances in Civil Engineering, Istanbul, Turkey, 25–27 September 2002; pp. 943–952. [Google Scholar]
- Burmister, D.M. Identification and Classification of Soil: An Appraisal and Statement of Principles; ASTM STP 113; American Society for Testing and Materials: Philadelphia, PA, USA, 1951. [Google Scholar]
- ASTM D2435/D2435M; Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. ASTM International: West Conshohocken, PA, USA, 2025.
- TS 1900 EN ISO 17892-5; İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri—Bölüm 2-Mekanik Özelliklerin Tayini Konsolidasyon Özelliklerinin Tayini. Türk Standartları Enstitüsü: Ankara, Turkey, 2006.
- TS 1500:2000; İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması. Türk Standartları Enstitüsü: Ankara, Turkey, 2000.
- Unified Soil Classification System (USCS). Available online: https://dot.ca.gov/-/media/dot-media/programs/maintenance/documents/office-of-concrete-pavement/pavement-foundations/uscs-a11y.pdf (accessed on 15 December 2025).
- ASTM D4767; Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. ASTM International: West Conshohocken, PA, USA, 1988.
- ASTM D2850; Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. ASTM International: West Conshohocken, PA, USA, 1970.
- TS EN ISO 17892-9; Geoteknik araştırma deney—Zeminler için laboratuvar deneyleri—Bölüm 9: Üç eksenli sıkıştırma deneyi. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.










| Descriptive Statistics | |||||||
|---|---|---|---|---|---|---|---|
| N | Range | Min. | Max. | Mean | Std. Deviation | Variance | |
| Bearing capacity (kgf/cm2) | 55 | 3.71 | 1.96 | 5.67 | 3.1947 | 0.78281 | 0.613 |
| Settlement (cm) | 55 | 4.95 | 0.88 | 5.83 | 2.7748 | 1.17785 | 1.387 |
| Excavation elevation (m) | 55 | 2.50 | 1.50 | 4.00 | 2.1000 | 0.78410 | 0.615 |
| Groundwater level (m) | 55 | 7.00 | 2.00 | 9.00 | 4.3455 | 1.69113 | 2.860 |
| SPT-N30 | 55 | 47.00 | 6.00 | 53.00 | 13.9182 | 9.25940 | 85.736 |
| Unit volume weight (gr/cm3) | 55 | 0. 60 | 1.43 | 2.03 | 1.7912 | 0.15344 | 0.024 |
| Water content (%) | 55 | 63,18 | 5.46 | 68.64 | 21.8984 | 9.42917 | 88.909 |
| No. 10 passing (%) | 55 | 14,80 | 1.20 | 16.00 | 8.3567 | 4.31883 | 18.652 |
| No. 200 passing (%) | 55 | 80.00 | 18.00 | 98.00 | 73.4881 | 19.60561 | 384.380 |
| Liquid limit (%) | 55 | 31.00 | 18.00 | 49.00 | 41.0037 | 6.25375 | 39.109 |
| Plastic limit (%) | 55 | 16.00 | 8.00 | 24.00 | 18.9855 | 3.24893 | 10.556 |
| Internal friction angle (ø) | 55 | 9.60 | 1.00 | 10.60 | 5.3336 | 2.72672 | 7.435 |
| Cohesion (kPa) | 55 | 52.39 | 20.37 | 72.76 | 46.9680 | 13.23200 | 175.086 |
| Descriptive Statistics | |||||||
|---|---|---|---|---|---|---|---|
| N | Range | Min. | Max. | Mean | Std. Deviation | Variance | |
| Bearing capacity (kgf/cm2) | 70 | 5.09 | 1.61 | 6.70 | 3.3134 | 0.97092 | 0.943 |
| Settlement (cm) | 70 | 4.64 | 1.13 | 5.77 | 3.0049 | 1.01605 | 1.032 |
| Excavation elevation (m) | 70 | 2.00 | 1.50 | 3.50 | 1.8429 | 0.66780 | 0.446 |
| Groundwater level (m) | 70 | 7.50 | 1.50 | 9.00 | 3.6884 | 1.47221 | 2.167 |
| SPT-N30 | 70 | 39.00 | 3.00 | 42.00 | 11.8030 | 8.28342 | 68.615 |
| Unit volume weight (gr/cm3) | 70 | 0.63 | 1.42 | 2.05 | 1.8273 | 0.11471 | 0.013 |
| Water content (%) | 70 | 30.60 | 9.10 | 39.70 | 24.1753 | 6.25190 | 39.086 |
| No. 10 passing (%) | 70 | 91.80 | 2.20 | 94.00 | 10.9306 | 10.63046 | 113.007 |
| No. 200 passing (%) | 70 | 80.00 | 18.00 | 98.00 | 82.8731 | 14.68066 | 215.522 |
| Liquid limit (%) | 70 | 40.50 | 18.00 | 58.50 | 52.4379 | 6.04358 | 36.525 |
| Plastic limit (%) | 70 | 15.00 | 13.00 | 28.00 | 22.5385 | 2.62091 | 6.869 |
| Internal friction angle (ø) | 70 | 10.40 | 1.00 | 11.40 | 5.0221 | 1.76055 | 3.100 |
| Cohesion (kPa) | 70 | 55.78 | 26.52 | 82.30 | 57.1375 | 10.97775 | 120.511 |
| Bearing Capacity | Settlement | Excavation Elevation | Groundwater Level | SPT-N30 | Unit Vol. Weight | Water Content | No10% Pass | No 200% Pass | Liquid Limit | Plastic Limit | Internal Friction Angle | Cohesion | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bearing Capacity | Correlation | 1 | −0.459 ** | −0.049 | −0.365 ** | −0.205 | 0.106 | −0.013 | −0.488 ** | 0.218 | 0.073 | 0.123 | 0.027 | 0.092 |
| Sig. | 0.000 | 0.725 | 0.006 | 0.134 | 0.441 | 0.928 | 0.004 | 0.110 | 0.599 | 0.379 | 0.848 | 0.514 | ||
| Settlement | Correlation | −0.459 ** | 1 | 0.047 | 0.177 | 0.007 | 0.128 | 0.009 | 0.009 | −0.059 | 0.072 | 0.018 | 0.066 | 0.126 |
| Sig. | 0.000 | 0.733 | 0.196 | 0.959 | 0.350 | 0.946 | 0.962 | 0.667 | 0.605 | 0.900 | 0.638 | 0.367 | ||
| Excavation Elevation | Correlation | −0.049 | 0.047 | 1 | 0.026 | 0.280 * | 0.105 | 0.076 | 0.104 | −0.058 | −0.132 | −0.118 | 0.323 * | −0.370 ** |
| Sig. | 0.725 | 0.733 | 0.851 | 0.038 | 0.445 | 0.579 | 0.565 | 0.673 | 0.341 | 0.400 | 0.018 | 0.006 | ||
| Groundwater level | Correlation | −0.365 ** | 0.177 | 0.026 | 1 | 0.620 ** | −0.042 | −0.091 | −0.128 | −0.676 ** | −0.310 * | −0.423 ** | 0.185 | −0.081 |
| Sig. | 0.006 | 0.196 | 0.851 | 0.000 | 0.759 | 0.508 | 0.479 | 0.000 | 0.023 | 0.002 | 0.185 | 0.565 | ||
| SPT-N30 | Correlation | −0.205 | 0.007 | 0.280 * | 0.620 ** | 1 | 0.068 | 0.092 | 0.100 | −0.548 ** | −0.216 | −0.163 | 0.297* | −0.232 |
| Sig. | 0.134 | 0.959 | 0.038 | 0.000 | 0.622 | 0.505 | 0.579 | 0.000 | 0.116 | 0.243 | 0.031 | 0.094 | ||
| Unit Vol. Weight | Correlation | 0.106 | 0.128 | 0.105 | −0.042 | 0.068 | 1 | 0.370 ** | −0.592 ** | 0.049 | 0.086 | 0.393 ** | 0.724** | −0.510 ** |
| Sig. | 0.441 | 0.350 | 0.445 | 0.759 | 0.622 | 0.005 | 0.000 | 0.720 | 0.536 | 0.004 | 0.000 | 0.000 | ||
| Water Content | Correlation | −0.013 | 0.009 | 0.076 | −0.091 | 0.092 | 0.370 ** | 1 | −0.039 | −0.050 | −0.207 | 0.234 | 0.279* | −0.298 * |
| Sig. | 0.928 | 0.946 | 0.579 | 0.508 | 0.505 | 0.005 | 0.829 | 0.716 | 0.133 | 0.091 | 0.043 | 0.030 | ||
| No. 10 % Passing | Correlation | −0.488 ** | 0.009 | 0.104 | −0.128 | 0.100 | −0.592 ** | −0.039 | 1 | 0.032 | −0.026 | −0.177 | −0.661** | 0.436 * |
| Sig. | 0.004 | 0.962 | 0.565 | 0.479 | 0.579 | 0.000 | 0.829 | 0.860 | 0.887 | 0.325 | 0.000 | 0.011 | ||
| No. 200 % Passing | Correlation | 0.218 | −0.059 | −0.058 | −0.676 ** | −0.548 ** | 0.049 | −0.050 | 0.032 | 1 | 0.536 ** | 0.495 ** | −0.263 | 0.325 * |
| Sig. | 0.110 | 0.667 | 0.673 | 0.000 | 0.000 | 0.720 | 0.716 | 0.860 | 0.000 | 0.000 | 0.057 | 0.017 | ||
| Liquid Limit % | Correlation | 0.073 | 0.072 | −0.132 | −0.310 * | −0.216 | 0.086 | −0.207 | −0.026 | 0.536 ** | 1 | 0.731 ** | −0.084 | 0.174 |
| Sig. | 0.599 | 0.605 | 0.341 | 0.023 | 0.116 | 0.536 | 0.133 | 0.887 | 0.000 | 0.000 | 0.549 | 0.212 | ||
| Plastic Limit% | Correlation | 0.123 | 0.018 | −0.118 | −0.423 ** | −0.163 | 0.393 ** | .234 | −0.177 | 0.495 ** | 0.731 ** | 1 | 0.123 | −0.004 |
| Sig. | 0.379 | 0.900 | 0.400 | 0.002 | 0.243 | 0.004 | 0.091 | 0.325 | 0.000 | 0.000 | 0.379 | 0.979 | ||
| Internal Friction Angle | Correlation | 0.027 | 0.066 | 0.323 * | 0.185 | 0.297 * | 0.724 ** | 0.279 * | −0.661 ** | −0.263 | −0.084 | 0.123 | 1 | −0.768 ** |
| Sig. | 0.848 | 0.638 | 0.018 | 0.185 | 0.031 | 0.000 | 0.043 | 0.000 | 0.057 | 0.549 | 0.379 | 0.000 | ||
| Cohesion | Correlation | 0.092 | 0.126 | −0.370 ** | −0.081 | −0.232 | −0.510 ** | −0.298 * | 0.436 * | 0.325 * | 0.174 | −0.004 | −0.768 ** | 1 |
| Sig. | 0.514 | 0.367 | 0.006 | 0.565 | 0.094 | 0.000 | 0.030 | 0.011 | 0.017 | 0.212 | 0.979 | 0.000 | ||
| Bearing Capacity | Settlement | Excavation Elevation | Groundwater Level | SPT-N30 | Unit Vol. Weight | Water Content | No10% Pass | No 200% Pass | Liquid Limit | Plastic Limit | Internal Friction Angle | Cohesion | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bearing Capacity | Correlation | 1 | −0.247 * | 0.226 | −0.221 | −0.122 | 0.269 * | 0.434 ** | −0.015 | 0.086 | 0.160 | −0.191 | −0.095 | 0.035 |
| Sig. | 0.039 | 0.059 | 0.066 | 0.316 | 0.024 | 0.000 | 0.903 | 0.481 | 0.187 | 0.113 | 0.433 | 0.771 | ||
| Settlement | Correlation | −0.247 * | 1 | 0.012 | −0.056 | 0.262 * | −0.085 | −0.203 | 0.163 | 0.083 | 0.077 | 0.324 ** | 0.011 | 0.139 |
| Sig. | 0.039 | 0.919 | 0.646 | 0.028 | 0.486 | 0.092 | 0.177 | 0.494 | 0.526 | 0.006 | 0.925 | 0.252 | ||
| Excavation Elevation | Correlation | 0.226 | 0.012 | 1 | −0.033 | 0.076 | −0.005 | 0.042 | −0.036 | 0.153 | −0.142 | −0.201 | 0.048 | −0.059 |
| Sig. | 0.059 | 0.919 | 0.786 | 0.530 | 0.967 | 0.727 | 0.770 | 0.207 | 0.241 | 0.096 | 0.694 | 0.626 | ||
| Groundwater level | Correlation | −0.221 | −0.056 | −0.033 | 1 | 0.326 ** | −0.0270 * | −0.401 ** | 0.193 | −0.228 | −0.266 * | −0.053 | 0.020 | −0.033 |
| Sig. | 0.066 | 0.646 | 0.786 | 0.006 | 0.024 | 0.001 | 0.109 | 0.058 | 0.026 | 0.662 | 0.869 | 0.784 | ||
| SPT-N30 | Correlation | −0.122 | 0.262 * | 0.076 | 0.326 ** | 1 | 0.003 | −0.586 ** | −0.026 | −0.235 | −0.323** | −0.171 | −0.022 | 0.037 |
| Sig. | 0.316 | 0.028 | 0.530 | 0.006 | 0.979 | 0.000 | 0.832 | 0.050 | 0.006 | 0.156 | 0.858 | 0.759 | ||
| Unit Vol. Weight | Correlation | 0.269 * | −0.085 | −0.005 | −0.270 * | 0.003 | 1 | 0.204 | −0.371 ** | 0.012 | 0.172 | −0.003 | 0.153 | −0.046 |
| Sig. | 0.024 | 0.486 | 0.967 | 0.024 | 0.979 | 0.091 | 0.002 | 0.921 | 0.154 | 0.983 | 0.205 | 0.708 | ||
| Water Content | Correlation | 0.434 ** | −0.203 | 0.042 | −0.401 ** | −0.586 ** | 0.204 | 1 | −0.166 | 0.406 ** | 0.254* | 0.109 | −0.160 | 0.049 |
| Sig. | 0.000 | 0.092 | 0.727 | 0.001 | 0.000 | 0.091 | 0.170 | 0.000 | 0.034 | 0.368 | 0.185 | 0.687 | ||
| No. 10 % Passing | Correlation | −0.015 | 0.163 | −0.036 | 0.193 | −0.026 | −0.371** | −0.166 | 1 | −0.311 ** | −0.050 | 0.087 | 0.097 | −0.115 |
| Sig. | 0.903 | 0.177 | 0.770 | 0.109 | 0.832 | 0.002 | 0.170 | 0.009 | 0.681 | 0.472 | 0.425 | 0.344 | ||
| No. 200 % Passing | Correlation | 0.086 | 0.083 | 0.153 | −0.228 | −0.235 | 0.012 | 0.406 ** | −0.311 ** | 1 | 0.288* | 0.250 * | −0.195 | 0.135 |
| Sig. | 0.481 | 0.494 | 0.207 | 0.058 | 0.050 | 0.921 | 0.000 | 0.009 | 0.016 | 0.037 | 0.106 | 0.265 | ||
| Liquid Limit % | Correlation | 0.160 | 0.077 | −0.142 | −0.266 * | −0.323 ** | 0.172 | 0.254 * | −0.050 | 0.288 * | 1 | 0.394 ** | −0.030 | 0.026 |
| Sig. | 0.187 | 0.526 | 0.241 | 0.026 | 0.006 | 0.154 | 0.034 | 0.681 | 0.016 | 0.001 | 0.803 | 0.832 | ||
| Plastic Limit% | Correlation | −0.191 | 0.324 ** | −0.201 | −0.053 | −0.171 | −0.003 | 0.109 | 0.087 | 0.250 * | 0.394 ** | 1 | −0.142 | 0.144 |
| Sig. | 0.113 | 0.006 | 0.096 | 0.662 | 0.156 | 0.983 | 0.368 | 0.472 | 0.037 | 0.001 | 0.242 | 0.233 | ||
| Internal Friction Angle | Correlation | −0.095 | 0.011 | 0.048 | 0.020 | −0.022 | 0.153 | −0.160 | 0.097 | −0.195 | −0.030 | −0.142 | 1 | −0.037 |
| Sig. | 0.433 | 0.925 | 0.694 | 0.869 | 0.858 | 0.205 | 0.185 | 0.425 | 0.106 | 0.803 | 0.242 | 0.760 | ||
| Cohesion | Correlation | 0.035 | 0.139 | −0.059 | −0.033 | 0.037 | −0.046 | 0.049 | −0.115 | 0.135 | 0.026 | 0.144 | −0.037 | 1 |
| Sig. | 0.771 | 0.252 | 0.626 | 0.784 | 0.759 | 0.708 | 0.687 | 0.344 | 0.265 | 0.832 | 0.233 | 0.760 | ||
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
|---|---|---|---|---|---|---|---|---|---|
| R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
| 1 | 0.625 a | 0.391 | 0.115 | 0.75992 | 0.391 | 1.414 | 10 | 22 | 0.238 |
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
|---|---|---|---|---|---|---|---|---|---|
| R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
| 1 | 0.618 a | 0.382 | 0.277 | 0.82575 | 0.382 | 3.639 | 10 | 59 | 0.001 |
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
|---|---|---|---|---|---|---|---|---|---|
| R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
| 1 | 0.645 a | 0.416 | 0.150 | 1.13852 | 0.416 | 1.566 | 10 | 22 | 0.182 |
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | ||||
|---|---|---|---|---|---|---|---|---|---|
| R Square Change | F Change | df1 | df2 | Sig. F Change | |||||
| 1 | 0.483 a | 0.233 | 0.103 | 0.96235 | 0.233 | 1.792 | 10 | 59 | 0.082 |
| Soil Parameters | Comparison of Averages | Soil Type | N | Mean | Std. Deviation | Std. Error Mean | |
|---|---|---|---|---|---|---|---|
| Bearing Capacity | Little | CL | 55 | 3.1947 | 0.78281 | 0.10555 | |
More![]() | CH | 70 | 3.3134 | 0.97092 | 0.11605 | ||
| Settlement | Little | CL | 55 | 2.7748 | 1.17785 | 0.15882 | |
More![]() | CH | 70 | 3.0049 | 1.01605 | 0.12144 | ||
| Angle of Internal Friction | More![]() | CL | 55 | 5.3336 | 2.72672 | 0.37454 | |
Little | CH | 70 | 5.0221 | 1.76055 | 0.21043 | ||
| Cohesion | Little | CL | 55 | 46.9680 | 13.23200 | 1.81755 | |
More![]() | CH | 70 | 57.1375 | 10.97775 | 1.31209 | ||
| SPT-N30 | More![]() | CL | 55 | 13.9182 | 9.25940 | 1.24854 | |
Little | CH | 70 | 11.8030 | 8.28342 | 0.99006 | ||
| Unit Weight | Little | CL | 55 | 1.7912 | 0.15344 | 0.02069 | |
More![]() | CH | 70 | 1.8273 | 0.11471 | 0.01371 | ||
| Water Content | Little | CL | 55 | 21.8984 | 9.42917 | 1.27143 | |
More![]() | CH | 70 | 24.1753 | 6.25190 | 0.74724 | ||
| No. 10 | Little | CL | 55 | 8.3567 | 4.31883 | 0.75181 | |
More![]() | CH | 70 | 10.9306 | 10.63046 | 1.27058 | ||
| No. 200 | Little | CL | 55 | 73.4881 | 19.60561 | 2.64362 | |
More![]() | CH | 70 | 82.8731 | 14.68066 | 1.75467 | ||
| Liquid Limit | Little | CL | 55 | 41.0037 | 6.25375 | 0.85103 | |
More![]() | CH | 70 | 52.4379 | 6.04358 | 0.72235 | ||
| Plastic Limit | Little | CL | 55 | 18.9855 | 3.24893 | 0.44627 | |
| More | CH | 70 | 22.5385 | 2.62091 | 0.31326 | ||
| Soil Properties | t-Test for Equality of Means | ||||||
|---|---|---|---|---|---|---|---|
| t | df | Sig. (2-Tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
| Lower | Upper | ||||||
| Bearing capacity | −0.737 | 123 | 0.462 | −0.11866 | 0.16095 | −0.43725 | 0.19993 |
| Settlement | −1.172 | 123 | 0.244 | −0.23010 | 0.19641 | −0.61889 | 0.15869 |
| Internal Friction Angle | 0.768 | 121 | 0.444 | 0.31147 | 0.40562 | −0.49157 | 1.11451 |
| Cohesion | −4.655 | 121 | 0.000 ** | −10.16948 | 2.18471 | −14.49469 | −5.84428 |
| SPT-N30 | 1.345 | 123 | 0.181 | 2.11515 | 1.57220 | −0.99692 | 5.22722 |
| Unit Volume Weight | −1.505 | 123 | 0.135 | −0.03609 | 0.02398 | −0.08357 | 0.01138 |
| Water Content | −1.618 | 123 | 0.108 | −2.27693 | 1.40684 | −5.06169 | 0.50783 |
| No. 10% Passing | −1.337 | 101 | 0.184 | −2.57389 | 1.92506 | −6.39270 | 1.24492 |
| No. 200% Passing | −3.060 | 123 | 0.003 ** | −9.38504 | 3.06666 | −15.45530 | −3.31479 |
| Liquid Limit | −10.289 | 122 | 0.000 ** | −11.43418 | 1.11131 | −13.63412 | −9.23423 |
| Plastic Limit | −6.711 | 121 | 0.000 ** | −3.55299 | 0.52940 | −4.60107 | −2.50491 |
| Parameters | Type of Soil | Correlation and Signification | Excavation Level | Bearing Capacity | Groundwater Level | Settlement | SPT- N30 | Unit Volume Weight | Water Content | No10%Pas | No 200% Pas | Liquid Limit | Plastic Limit | Internal Friction Angle | Cohesion |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bearing capacity | CL | Correlation | −0.049 | 1 | −0.365 ** | −0.459 ** | −0.205 | 0.106 | −0.013 | −0.488 ** | 0.218 | 0.073 | 0.123 | 0.027 | 0.092 |
| Sig. | 0.725 | 0.006 | 0.000 | 0.134 | 0.441 | 0.928 | 0.004 | 0.110 | 0.599 | 0.379 | 0.848 | 0.514 | |||
| CH | Correlation | 0.226 | 1 | −0.221 | −0.247 * | −0.122 | 0.269 * | 0.434 ** | −0.015 | 0.086 | 0.160 | −0.191 | −0.095 | 0.035 | |
| Sig. | 0.059 | 0.066 | 0.039 | 0.316 | 0.024 | 0.000 | 0.903 | 0.481 | 0.187 | 0.113 | 0.433 | 0.771 | |||
| Settlement | CL | Correlation | 0.047 | −0.459 ** | 0.177 | 1 | 0.007 | 0.128 | 0.009 | 0.009 | −0.059 | 0.072 | 0.018 | 0.066 | 0.126 |
| Sig. | 0.733 | 0.000 | 0.196 | 0.959 | 0.350 | 0.946 | 0.962 | 0.667 | 0.605 | 0.900 | 0.638 | 0.367 | |||
| CH | Correlation | 0.012 | −0.247 * | −0.056 | 1 | 0.262 * | −0.085 | −0.203 | 0.163 | 0.083 | 0.077 | 0.324 ** | 0.011 | 0.139 | |
| Sig. | 0.919 | 0.039 | 0.646 | 0.028 | 0.486 | 0.092 | 0.177 | 0.494 | 0.526 | 0.006 | 0.925 | 0.252 |
| Parameters | Type of Soil | Correlation and Signification | Excavation Level | Bearing Capacity | Groundwater Level | Settlement | SPT- N30 | Unit Volume Weight | Water Content | No10%Pas | No 200%Pas | Liquid Limit | Plastic Limit | Internal Friction Angle | Cohesion |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excavation Level | CL | Correlation | 1 | −0.049 | 0.026 | 0.047 | 0.280 * | 0.105 | 0.076 | 0.104 | −0.058 | −0.132 | −0.118 | 0.323 * | −0.370 ** |
| Sig. | 0.725 | 0.851 | 0.733 | 0.038 | 0.445 | 0.579 | 0.565 | 0.673 | 0.341 | 0.400 | 0.018 | 0.006 | |||
| CH | Correlation | 1 | 0.226 | −0.033 | 0.012 | 0.076 | −0.005 | 0.042 | −0.036 | 0.153 | −0.142 | −0.201 | 0.048 | −0.059 | |
| Sig. | 0.059 | 0.786 | 0.919 | 0.530 | 0.967 | 0.727 | 0.770 | 0.207 | 0.241 | 0.096 | 0.694 | 0.626 | |||
| Groundwater level | CL | Correlation | 0.026 | −0.365 ** | 1 | 0.177 | 0.620 ** | −0.042 | −0.091 | −0.128 | −0.676 ** | −0.310* | −0.423 ** | 0.185 | −0.081 |
| Sig. | 0.851 | 0.006 | 0.196 | 0.000 | 0.759 | 0.508 | 0.479 | 0.000 | 0.023 | 0.002 | 0.185 | 0.565 | |||
| CH | Correlation | −0.033 | −0.221 | 1 | −0.056 | 0.326 ** | −0.270* | −0.401 ** | 0.193 | −0.228 | −0.266* | −0.053 | 0.020 | −0.033 | |
| Sig. | 0.786 | 0.066 | 0.646 | 0.006 | 0.024 | 0.001 | 0.109 | 0.058 | 0.026 | 0.662 | 0.869 | 0.784 | |||
| SPT- N30 | CL | Correlation | 0.280 * | −0.205 | 0.620 ** | 0.007 | 1 | 0.068 | 0.092 | 0.100 | −0.548 ** | −0.216 | −0.163 | 0.297 * | −0.232 |
| Sig. | 0.038 | 0.134 | 0.000 | 0.959 | 0.622 | 0.505 | 0.579 | 0.000 | 0.116 | 0.243 | 0.031 | 0.094 | |||
| CH | Correlation | 0.076 | −0.122 | 0.326 ** | 0.262 * | 1 | 0.003 | −0.586 ** | −0.026 | −0.235 | −0.323 ** | −0.171 | −0.022 | 0.037 | |
| Sig. | 0.530 | 0.316 | 0.006 | 0.028 | 0.979 | 0.000 | 0.832 | 0.050 | 0.006 | 0.156 | 0.858 | 0.759 | |||
| Unit volume weight | CL | Correlation | 0.105 | 0.106 | −0.042 | 0.128 | 0.068 | 1 | 0.370 ** | −0.592 ** | 0.049 | 0.086 | 0.393 ** | 0.724 ** | −0.510 ** |
| Sig. | 0.445 | 0.441 | 0.759 | 0.350 | 0.622 | 0.005 | 0.000 | 0.720 | 0.536 | 0.004 | 0.000 | 0.000 | |||
| CH | Correlation | −0.005 | 0.269 * | −0.270 * | −0.085 | 0.003 | 1 | 0.204 | −0.371 ** | 0.012 | 0.172 | −0.003 | 0.153 | −0.046 | |
| Sig. | 0.967 | 0.024 | 0.024 | 0.486 | 0.979 | 0.091 | 0.002 | 0.921 | 0.154 | 0.983 | 0.205 | 0.708 | |||
| Water content % | CL | Correlation | 0.076 | −0.013 | −0.091 | 0.009 | 0.092 | 0.370 ** | 1 | −0.039 | −0.050 | −0.207 | 0.234 | 0.279 * | −0.298 * |
| Sig. | 0.579 | 0.928 | 0.508 | 0.946 | 0.505 | 0.005 | 0.829 | 0.716 | 0.133 | 0.091 | 0.043 | 0.030 | |||
| CH | Correlation | 0.042 | 0.434 ** | −0.401 ** | −0.203 | −0.586 ** | 0.204 | 1 | −0.166 | 0.406 ** | 0.254 * | 0.109 | −0.160 | 0.049 | |
| Sig. | 0.727 | 0.000 | 0.001 | 0.092 | 0.000 | 0.091 | 0.170 | 0.000 | 0.034 | 0.368 | 0.185 | 0.687 | |||
| No10 %Pas | CL | Correlation | 0.104 | −0.488 ** | −0.128 | 0.009 | 0.100 | −0.592 ** | −0.039 | 1 | 0.032 | −0.026 | −0.177 | −0.661 ** | 0.436 * |
| Sig. | 0.565 | 0.004 | 0.479 | 0.962 | 0.579 | 0.000 | 0.829 | 0.860 | 0.887 | 0.325 | 0.000 | 0.011 | |||
| CH | Correlation | −0.036 | −0.015 | 0.193 | 0.163 | −0.026 | −0.371 ** | −0.166 | 1 | −0.311 ** | −0.050 | 0.087 | 0.097 | −0.115 | |
| Sig. | 0.770 | 0.903 | 0.109 | 0.177 | 0.832 | 0.002 | 0.170 | 0.009 | 0.681 | 0.472 | 0.425 | 0.344 | |||
| No200 % Pas | CL | Correlation | −0.058 | 0.218 | −0.676 ** | −0.059 | −0.548 ** | 0.049 | −0.050 | 0.032 | 1 | 0.536 ** | 0.495 ** | −0.263 | 0.325 * |
| Sig. | 0.673 | 0.110 | 0.000 | 0.667 | 0.000 | 0.720 | 0.716 | 0.860 | 0.000 | 0.000 | 0.057 | 0.017 | |||
| CH | Correlation | 0.153 | 0.086 | −0.228 | 0.083 | −0.235 | 0.012 | 0.406 ** | −0.311 ** | 1 | 0.288 * | 0.250 * | −0.195 | 0.135 | |
| Sig. | 0.207 | 0.481 | 0.058 | 0.494 | 0.050 | 0.921 | 0.000 | 0.009 | 0.016 | 0.037 | 0.106 | 0.265 | |||
| Liquid Limit % | CL | Correlation | −0.132 | 0.073 | −0.310 * | 0.072 | −0.216 | 0.086 | −0.207 | −0.026 | 0.536 ** | 1 | 0.731 ** | −0.084 | 0.174 |
| Sig. | 0.341 | 0.599 | 0.023 | 0.605 | 0.116 | 0.536 | 0.133 | 0.887 | 0.000 | 0.000 | 0.549 | 0.212 | |||
| CH | Correlation | −0.142 | 0.160 | −0.266 * | 0.077 | −0.323 ** | 0.172 | 0.254 * | −0.050 | 0.288 * | 1 | 0.394 ** | −0.030 | 0.026 | |
| Sig. | 0.241 | 0.187 | 0.026 | 0.526 | 0.006 | 0.154 | 0.034 | 0.681 | 0.016 | 0.001 | 0.803 | 0.832 | |||
| Plastic Limit % | CL | Correlation | −0.118 | 0.123 | −0.423 ** | 0.018 | −0.163 | 0.393 ** | 0.234 | −0.177 | 0.495 ** | 0.731 ** | 1 | 0.123 | −0.0004 |
| Sig. | 0.400 | 0.379 | 0.002 | 0.900 | 0.243 | 0.004 | 0.091 | 0.325 | 0.000 | 0.000 | 0.379 | 0.979 | |||
| CH | Correlation | −0.201 | −0.191 | −0.053 | 0.324 ** | −0.171 | −0.003 | 0.109 | 0.087 | 0.250 * | 0.394 ** | 1 | −0.142 | 0.144 | |
| Sig. | 0.096 | 0.113 | 0.662 | 0.006 | 0.156 | 0.983 | 0.368 | 0.472 | 0.037 | 0.001 | 0.242 | 0.233 | |||
| Internal Friction Angle | CL | Correlation | 0.323 * | 0.027 | 0.185 | 0.066 | 0.297 * | 0.724 ** | 0.279 * | −0.661 ** | −0.263 | −0.084 | 0.123 | 1 | −0.768 ** |
| Sig. | 0.018 | 0.848 | 0.185 | 0.638 | 0.031 | 0.000 | 0.043 | 0.000 | 0.057 | 0.549 | 0.379 | 0.000 | |||
| CH | Correlation | 0.048 | −0.095 | 0.020 | 0.011 | −0.022 | 0.153 | −0.160 | 0.097 | −0.195 | −0.030 | −0.142 | 1 | −0.037 | |
| Sig. | 0.694 | 0.433 | 0.869 | 0.925 | 0.858 | 0.205 | 0.185 | 0.425 | 0.106 | 0.803 | 0.242 | 0.760 | |||
| Cohesion | CL | Correlation | −0.370 ** | 0.092 | −0.081 | 0.126 | −0.232 | −0.510 ** | −0.298 * | 0.436 * | 0.325 * | 0.174 | −0.004 | −0.768 ** | 1 |
| Sig. | 0.006 | 0.514 | 0.565 | 0.367 | 0.094 | 0.000 | 0.030 | 0.011 | 0.017 | 0.212 | 0.979 | 0.000 | |||
| CH | Correlation | −0.059 | 0.035 | −0.033 | 0.139 | 0.037 | −0.046 | 0.049 | −0.115 | 0.135 | 0.026 | 0.144 | −0.037 | 1 | |
| Sig. | 0.626 | 0.771 | 0.784 | 0.252 | 0.759 | 0.708 | 0.687 | 0.344 | 0.265 | 0.832 | 0.233 | 0.760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Güner, A.B.S. Multi-Dimensional Analysis of Soil Parameters Affecting Bearing Capacity and Settlement Behaviour for Building Foundations. Buildings 2026, 16, 135. https://doi.org/10.3390/buildings16010135
Güner ABS. Multi-Dimensional Analysis of Soil Parameters Affecting Bearing Capacity and Settlement Behaviour for Building Foundations. Buildings. 2026; 16(1):135. https://doi.org/10.3390/buildings16010135
Chicago/Turabian StyleGüner, Ayşe Bengü Sünbül. 2026. "Multi-Dimensional Analysis of Soil Parameters Affecting Bearing Capacity and Settlement Behaviour for Building Foundations" Buildings 16, no. 1: 135. https://doi.org/10.3390/buildings16010135
APA StyleGüner, A. B. S. (2026). Multi-Dimensional Analysis of Soil Parameters Affecting Bearing Capacity and Settlement Behaviour for Building Foundations. Buildings, 16(1), 135. https://doi.org/10.3390/buildings16010135



