The Effect of Street Orientation on the Temporal Variation in Thermal Environment Within Streets in Different Climate Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Representative Cities and Representative Streets
2.1.1. Representative Cities of 7 Building Climate Zones
2.1.2. Representative Streets in the Seven Cities
2.1.3. Abstract Models for Representative Streets in the Seven Cities
2.2. Meteorological Parameters in Representative Cities
2.3. Envi-Met Modeling and Validation
2.4. The Thermal Perception Standard
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, Z.; Fu, Y.; Dong, Y.; Zhang, P.; He, X. Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Clim. 2022, 43, 101154. [Google Scholar] [CrossRef]
- Zou, J.; Gaur, A.; Wang, L.L.; Laouadi, A.; Lacasse, M. Assessment of future overheating conditions in Canadian cities using a reference year selection method. Build. Environ. 2022, 218, 109102. [Google Scholar] [CrossRef]
- Zou, J.; Wang, L.; Yang, S.; Lacasse, M.; Wang, L.L. Predicting long-term urban overheating and their Mitigations from nature based solutions using Machine learning and field measurements. Energy Build. 2025, 338, 115720. [Google Scholar] [CrossRef]
- Rosso, F.; Golasi, I.; Castaldo, V.L.; Piselli, C.; Pisello, A.L.; Salata, F.; Ferrero, M.; Cotana, F.; de Lieto Vollaro, A. On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renew. Energy 2018, 118, 825–839. [Google Scholar] [CrossRef]
- Deng, J.-Y.; Wong, N.H. Impact of urban canyon geometries on outdoor thermal comfort in central business districts. Sustain. Cities Soc. 2020, 53, 101966. [Google Scholar] [CrossRef]
- Sarria, F.R.; Delgado, M.G.; Palma, R.M.; Amores, T.P.; Ramos, J.S.; Domínguez, S.Á. Modelling Pollutant Dispersion in Urban Canyons to Enhance Air Quality and Urban Planning. Appl. Sci. 2025, 15, 1752. [Google Scholar] [CrossRef]
- Gillerot, L.; Landuyt, D.; De Frenne, P.; Muys, B.; Verheyen, K. Urban tree canopies drive human heat stress mitigation. Urban For. Urban Green. 2024, 92, 128192. [Google Scholar] [CrossRef]
- Yin, Y.; Li, S.; Xing, X.; Zhou, X.; Kang, Y.; Hu, Q.; Li, Y. Cooling Benefits of Urban Tree Canopy: A Systematic Review. Sustainability 2024, 16, 4955. [Google Scholar] [CrossRef]
- Chen, J.; Dong, N.; Liu, Z.; Chen, Y.; Luo, M.; Huang, H. Local temperature impact of urban heat mitigation strategy based on WRF integrating urban canopy parameters and local climate zones. Build. Environ. 2024, 267, 112257. [Google Scholar] [CrossRef]
- Rahman, M.A.; Arndt, S.; Bravo, F.; Cheung, P.K.; van Doorn, N.; Franceschi, E.; del Río, M.; Livesley, S.J.; Moser-Reischl, A.; Pattnaik, N.; et al. More than a canopy cover metric: Influence of canopy quality, water-use strategies and site climate on urban forest cooling potential. Landsc. Urban Plan. 2024, 248, 105089. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Bedra, K.B. Evaluating the improvements of thermal comfort by different natural elements within courtyards in Singapore. Urban Clim. 2022, 45, 101253. [Google Scholar] [CrossRef]
- Elkhayat, K.; Abdelhafez, M.H.H.; Altaf, F.; Sharples, S.; Alshenaifi, M.A.; Alfraidi, S.; Aldersoni, A.; Albaqawy, G.; Ragab, A. Urban geometry as a climate adaptation strategy for enhancing outdoor thermal comfort in a hot desert climate. Front. Arch. Res. 2025, 14, 525–544. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Jiang, L.; Guo, W.; Cao, Q.; Shi, M.; Xiao, A. Comparative review of urban geometric parameters and their uses in outdoor thermal environment studies. J. Urban Manag. 2024, 13, 541–552. [Google Scholar] [CrossRef]
- Wang, L.; Chen, T.; Yu, Y.; Wang, L.; Zang, H.; Cang, Y.; Zhang, Y.; Ma, X. Impacts of Vegetation Ratio, Street Orientation, and Aspect Ratio on Thermal Comfort and Building Carbon Emissions in Cold Zones: A Case Study of Tianjin. Land 2024, 13, 1275. [Google Scholar] [CrossRef]
- Ma, X.; Chau, C.; Lu, S.; Leung, T.; Li, H. Modelling the effects of neighbourhood and street geometry on pedestrian thermal comfort in Hong Kong. Arch. Sci. Rev. 2024, 1–16. [Google Scholar] [CrossRef]
- Yang, T.; Li, G.; Xu, G. Urban street canyon morphology and its effect on climate-responsive outdoor thermal environment in severe cold regions: A case study of Hohhot, China. Int. J. Biometeorol. 2025, 1–13. [Google Scholar] [CrossRef]
- Algeciras, J.A.R.; Tablada, A.; Matzarakis, A. Effect of asymmetrical street canyons on pedestrian thermal comfort in warm-humid climate of Cuba. Theor. Appl. Climatol. 2018, 133, 663–679. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Li, S.; Wu, Q.; Lee, T.; Yoon, S. Quantitative Study on the Effects of Street Geometries and Tree Configurations on the Outdoor Thermal Environment. Energies 2024, 17, 2223. [Google Scholar] [CrossRef]
- Narimani, N.; Karimi, A.; Brown, R.D. Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecol. Informatics 2022, 69, 101671. [Google Scholar] [CrossRef]
- Lai, B.; Fu, J.-M.; Guo, C.-K.; Zhang, D.-Y.; Wu, Z.-G. Street Geometry Factors Influencing Outdoor Pedestrian Thermal Comfort in a Historic District. Buildings 2025, 15, 613. [Google Scholar] [CrossRef]
- Zou, J.; Lu, H.; Shu, C.; Ji, L.; Gaur, A.; Wang, L.L. Multiscale numerical assessment of urban overheating under climate projections: A review. Urban Clim. 2023, 49, 101551. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Y.; Fu, X.; Xu, J. Study on the spatial-temporal pattern and evolution of surface urban heat island in 180 shrinking cities in China. Sustain. Cities Soc. 2022, 84, 104018. [Google Scholar] [CrossRef]
- Abdelhafez, M.H.H.; Altaf, F.; Alshenaifi, M.; Hamdy, O.; Ragab, A. Achieving Effective Thermal Performance of Street Canyons in Various Climatic Zones. Sustainability 2022, 14, 10780. [Google Scholar] [CrossRef]
- Acero, J.A.; Koh, E.J.; Ruefenacht, L.A.; Norford, L.K. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Clim. 2021, 36, 100775. [Google Scholar] [CrossRef]
- Hamdan, D.M.A.; De Oliveira, F.L. The impact of urban design elements on microclimate in hot arid climatic conditions: Al Ain City, UAE. Energy Build. 2019, 200, 86–103. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Liu, J. Statistical Evaluation of Uniform Temperature and Thermal Gradients for Composite Girder of Tibet Region Using Meteorological Data. Buildings 2024, 14, 3798. [Google Scholar] [CrossRef]
- Ding, Y.; Lu, Z.; Wu, L.; Zhou, L.; Ao, T.; Xu, J.; Wei, R. Evaluating the spatiotemporal dynamics of driving factors for multiple drought types in different climate regions of China. J. Hydrol. 2024, 640, 131710. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: A case study in Hong Kong. Arch. Sci. Rev. 2013, 56, 297–305. [Google Scholar] [CrossRef]
- Jin, H.; Li, X.; Huang, Y.; Yang, C.; Armoogum, S.; Xiong, N.; Wu, W. The interplay of time and space in human behavior: A sociological perspective on the TSCH model. Humanit. Soc. Sci. Commun. 2024, 11, 1–17. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, X.; Liu, K. Assessment of operational carbon emissions for residential buildings comparing different machine learning approaches: A study of 34 cities in China. Build. Environ. 2024, 250, 111176. [Google Scholar] [CrossRef]
- Cilek, M.U.; Cilek, A. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustain. Cities Soc. 2021, 69, 102877. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- You, W.; Liang, Y. Numerical investigation of different building configurations for improving outdoor spatial ventilation conditions in strip-type residential neighbourhoods. Urban Clim. 2024, 56, 102012. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, R.; de Lieto Vollaro, A. Urban microclimate and outdoor thermal comfort. A proper procedure to fit ENVI-met simulation outputs to experimental data. Sustain. Cities Soc. 2016, 26, 318–343. [Google Scholar] [CrossRef]
- Elraouf, R.A.; Elmokadem, A.; Megahed, N.; Eleinen, O.A.; Eltarabily, S. Evaluating urban outdoor thermal comfort: A validation of ENVI-met simulation through field measurement. J. Build. Perform. Simul. 2022, 15, 268–286. [Google Scholar] [CrossRef]
- Cortes, A.; Rejuso, A.J.; Santos, J.A.; Blanco, A. Evaluating mitigation strategies for urban heat island in Mandaue City using ENVI-met. J. Urban Manag. 2022, 11, 97–106. [Google Scholar] [CrossRef]
- Liu, S.; Middel, A.; Fang, X.; Wu, R. ENVI-met model performance evaluation for courtyard simulations in hot-humid climates. Urban Clim. 2024, 55, 101909. [Google Scholar] [CrossRef]
- Yilmaz, S.; Külekçi, E.A.; Mutlu, B.E.; Sezen, I. Analysis of winter thermal comfort conditions: Street scenarios using ENVI-met model. Environ. Sci. Pollut. Res. 2021, 28, 63837–63859. [Google Scholar] [CrossRef] [PubMed]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications—A review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Gao, W.; Zhang, Z.; Chen, W.; Peng, W. Simulation on the impacts of the street tree pattern on built summer thermal comfort in cold region of China. Sustain. Cities Soc. 2018, 37, 563–580. [Google Scholar] [CrossRef]
- Battista, G.; Carnielo, E.; Vollaro, R.D.L. Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome. Energy Build. 2016, 133, 446–454. [Google Scholar] [CrossRef]
- Mahdavinejad, M.; Shaeri, J.; Nezami, A.; Goharian, A. Comparing universal thermal climate index (UTCI) with selected thermal indices to evaluate outdoor thermal comfort in traditional courtyards with BWh climate. Urban Clim. 2024, 54, 101839. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Liu, J.; Lin, Z.; Mak, C.M.; Niu, J.; Tse, K.-T.; Xu, X. Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics. Sustain. Cities Soc. 2019, 44, 676–690. [Google Scholar] [CrossRef]
- Xiao, Q.; Fan, X.; Guo, Y.; Li, S.; He, W.; Deng, Y.; Xiao, Z.; Wang, P.; Wu, C. Tree form characteristics as criteria for tree species selection to improve pedestrian thermal comfort in street canyons: Case study of a humid subtropical city. Sustain. Cities Soc. 2024, 105, 105339. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Zhang, G. A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int. J. Biometeorol. 2013, 57, 895–907. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theor. Appl. Clim. 2014, 115, 333–340. [Google Scholar] [CrossRef]
- Ali-Toudert, F. Dependence of Outdoor Thermal Comfort on Street Design in Hot and Dry Climate. Ph.D. Thesis, Universität Freiburg, Freiburg im Breisgau, Germany, 2005. [Google Scholar]
- Fiorillo, E.; Brilli, L.; Carotenuto, F.; Cremonini, L.; Gioli, B.; Giordano, T.; Nardino, M. Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements. Atmosphere 2023, 14, 641. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P. Effect of street design on pedestrian thermal comfort. Arch. Sci. Rev. 2019, 62, 92–111. [Google Scholar] [CrossRef]
Representative Cities | Building Climate Zones | Key Indicators |
---|---|---|
Harbin | Severe cold zone (I) | January mean Ta ≤ −10 °C, July mean Ta ≥ 25 °C July mean RH ≥ 50% |
Urumqi | Severe cold zone (II) | −20 °C ≤ January mean Ta ≤ −5 °C July mean Ta ≥ 18 °C, July mean RH ≤ 50% |
Xi’an | Cold zone (I) | −10 °C ≤ January mean Ta ≤ 0 °C 18 °C ≤ July mean Ta ≤ 28 °C |
Xining | Cold zone (II) | −22 °C ≤ January mean Ta ≤ 0 °C July mean Ta ≤ 18 °C |
Changsha | Hot summer–cold winter zone | 0 °C ≤ January mean Ta ≤ 10 °C 25 °C ≤ July mean Ta ≤ 30 °C |
Guangzhou | Hot summer–warm winter zone | January mean Ta ≥ 10 °C 25 °C ≤ July mean Ta ≤ 29 °C |
Kunming | Mild zone | 0 °C ≤ January mean Ta ≤ 13 °C 18 °C ≤ July mean Ta ≤ 25 °C |
Equipment | Indicators | Measurement Range | Precision | Range of Error |
---|---|---|---|---|
JT2020-M23553 (a) | black globe temperature | −20~100 °C | 0.1 °C | ±0.5 °C |
JT2020-M23553 (b) | wind speed | 0~10 m/s | 0.1 m/s | ±0.5 m/s |
JT2020-M23553 (c) | air temperature | −20~100 °C | 0.1 °C | ±0.5 °C |
YGY-CJY-4 (a) | wind direction | 0~360° | 1° | ±3° |
YGY-CJY-4 (b) | wind speed | 0~70 m/s | 0.1 m/s | ±0.5 m/s |
YGY-CJY-4 (c) | Ta/RH | −40~100 °C/0~100% | 0.1 °C/0.1% | ±0.3 °C/±0.5% |
YGY-CJY-4 (d) | horizontal surface radiation | 0~2000 W/m2 | 1 W/m2 | ±5 W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Rao, J.; Wang, L. The Effect of Street Orientation on the Temporal Variation in Thermal Environment Within Streets in Different Climate Zones. Buildings 2025, 15, 1506. https://doi.org/10.3390/buildings15091506
Li J, Rao J, Wang L. The Effect of Street Orientation on the Temporal Variation in Thermal Environment Within Streets in Different Climate Zones. Buildings. 2025; 15(9):1506. https://doi.org/10.3390/buildings15091506
Chicago/Turabian StyleLi, Jiayu, Jifa Rao, and Lan Wang. 2025. "The Effect of Street Orientation on the Temporal Variation in Thermal Environment Within Streets in Different Climate Zones" Buildings 15, no. 9: 1506. https://doi.org/10.3390/buildings15091506
APA StyleLi, J., Rao, J., & Wang, L. (2025). The Effect of Street Orientation on the Temporal Variation in Thermal Environment Within Streets in Different Climate Zones. Buildings, 15(9), 1506. https://doi.org/10.3390/buildings15091506