Effects of Visual Perception of Building Materials on Human Emotional States and Cognitive Functioning in a Physical Learning Environment
Abstract
1. Introduction
1.1. Visual Perception of Building Materials and PLEs
1.2. Virtual Reality (VR) in PLEs
1.3. Human Emotional States and Cognitive Functions in PLEs
1.4. Research Objectives
2. Materials and Methods
2.1. Scene Construction
2.2. Participants
2.3. Experimental Environment and Equipment
2.4. Experimental Steps
2.5. Physiological Status and Indicators
2.5.1. Physiological Indicators
2.5.2. EEG Activity Indicators
2.5.3. Eye Movement Indicator
2.6. Subjective Questionnaires
2.6.1. Presence in the VR Environment
2.6.2. Questionnaire on Visual Perception of Architectural Materials
2.7. Statistical Analyses
3. Results
3.1. Presence in the VR Environment
3.2. Visual Perception of Architectural Materials
3.3. Emotional States
3.4. Cognitive Functions
3.5. Correlation Between Subjective Feedback and Physiological Response
4. Discussion
4.1. Effect of Architectural Material Environment on Emotional States
4.1.1. Skin Conductance and Skin Temperature Aspects
4.1.2. Frontal Asymmetry Activity Index and Alpha Waves Aspects
4.1.3. Pupil Diameter and Time to First Fixation Aspects
4.1.4. Effect on Emotional State
4.2. Effect of Architectural Material Environment on Cognitive Functions
4.2.1. Heart Rate and Heart Rate Variability Aspects
4.2.2. Beta Wave Aspects
4.2.3. Fixation Time Aspects
4.2.4. Effect on Cognitive Functions
4.3. Selection of Building Materials Suitable for a PLE
4.4. Limitations and Future Directions
- (1)
- Sample Size Limitations: The participants in this study were primarily aged between 21 and 26 years, which may limit the generalizability and applicability of our results. Future research should include a broader age range and individuals from diverse cultural backgrounds to enhance the representativeness of the findings.
- (2)
- Complexity of Building Materials: As a foundational study, this study primarily examined the effects of a single material variation on PLEs. However, it did not isolate the influence of individual visual characteristics (such as color, gloss, and texture), which limits the ability to fully distinguish the specific effects of color from those of surface properties on emotional states and cognitive functions. Furthermore, real-world settings typically involve combinations of materials, and their positioning and proportions play a crucial role in shaping the overall experience. This study did not explore such combinations or spatial arrangements, which may limit the ecological validity of the findings. Future research should examine the independent effects of visual features and the effects of material combinations, particularly in terms of layout and proportion, to better reflect real-world complexity and more accurately assess their influence on emotional and cognitive processes.
- (3)
- Limitations of VR Technology: VR technology helps control variables, and this study confirmed that virtual scenarios provide positive immersive experiences through the IPQ scale. However, this may not fully replicate the complexities of real-world contexts. Future studies should consider using portable measurement devices for field research or long-term tracking to better understand the application of material selection in real-world environments.
5. Conclusions
- (1)
- Wood and red brick environments significantly enhanced participants’ emotional states. Specifically, the SCL increased by 0.49 μS and the ST by 1.06 °C in the wood environment, while the SCL increased by 0.53 μS and the ST by 1.12 °C in the red brick environment. The FAA in the wood environment was 2.68 μV, indicating strong emotional arousal. Additionally, the PD increased to 3.75 mm in the red brick environment and 3.61 mm in the wood environment, with TTFF measuring 6.94 and 6.02 ms, respectively. These data suggested that both materials effectively triggered emotional arousal and focus in visual attention.
- (2)
- Concrete and white paint environments significantly enhanced participants’ cognitive functioning, promoting emotional stability and rational cognition. HR increased by 2.33 bpm and 2.54 bpm in these environments, respectively, while the HRV metrics of SDNN and RMSSD increased by 4.98 ms and 4.96 ms, and 5.41 ms and 5.50 ms, respectively, indicating higher alertness and attention. The β-wave amplitude in the concrete environment reached 10.35 μV, indicating high concentration. Conversely, FT of 24.99 and 27.04 ms in the red brick and wood environments, respectively, drew attention but may also have elevated cognitive load, potentially affecting learning efficiency.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PLE | Physical Learning Environment |
VR | Virtual Reality |
EDA | Electrodermal Activity |
SCL | Skin Conductance Level |
ST | Skin Temperature |
HR | Heart Rate |
HRV (SDNN) | Standard Deviation of Normalized Differences |
HRV (RMSSD) | Root Mean Square of Successive Differences |
FAA | Frontal Asymmetry Activity Index |
EEG | Electroencephalography |
TTFF | Time to First Fixation |
PD | Pupil Diameter |
FT | Fixation Time |
AFT | Average Fixation Time |
MCV (col) | Material Characteristic Variation—Color |
MCV (gloss) | Material Characteristic Variation—Gloss |
MCV (tex) | Material Characteristic Variation—Texture |
ECRV | Emotional Climate Rating of Valence |
References
- Fraser, B.J. Classroom Learning Environments: Retrospect, Context and Prospect. In Second International Handbook of Science Education; Fraser, B.J., Tobin, K., McRobbie, C.J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1191–1239. ISBN 978-1-4020-9040-0. [Google Scholar]
- Cleveland, B.; Fisher, K. The Evaluation of Physical Learning Environments: A Critical Review of the Literature. Learn. Environ. Res. 2014, 17, 1–28. [Google Scholar] [CrossRef]
- Choi, H.-H.; Van Merriënboer, J.J.; Paas, F. Effects of the Physical Environment on Cognitive Load and Learning: Towards a New Model of Cognitive Load. Educ. Psychol. Rev. 2014, 26, 225–244. [Google Scholar] [CrossRef]
- Evans, G.W.; Stecker, R. Motivational Consequences of Environmental Stress. J. Environ. Psychol. 2004, 24, 143–165. [Google Scholar] [CrossRef]
- Tan, J.; Mao, J.; Jiang, Y.; Gao, M. The Influence of Academic Emotions on Learning Effects: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9678. [Google Scholar] [CrossRef]
- Barrett, P.; Zhang, Y.; Moffat, J.; Kobbacy, K. A Holistic, Multi-Level Analysis Identifying the Impact of Classroom Design on Pupils’ Learning. Build. Environ. 2013, 59, 678–689. [Google Scholar] [CrossRef]
- Demattè, M.L.; Zucco, G.M.; Roncato, S.; Gatto, P.; Paulon, E.; Cavalli, R.; Zanetti, M. New Insights into the Psychological Dimension of Wood–Human Interaction. Eur. J. Wood Wood Prod. 2018, 76, 1093–1100. [Google Scholar] [CrossRef]
- Wang, C.; Lu, W.; Ohno, R.; Gu, Z. Effect of Wall Texture on Perceptual Spaciousness of Indoor Space. Int. J. Environ. Res. Public Health 2020, 17, 4177. [Google Scholar] [CrossRef]
- Zhang, X.; Lian, Z.; Wu, Y. Human Physiological Responses to Wooden Indoor Environment. Physiol. Behav. 2017, 174, 27–34. [Google Scholar]
- Zhao, J.; Nagai, Y.; Gao, W.; Shen, T.; Fan, Y. The Effects of Interior Materials on the Restorativeness of Home Environments. Int. J. Environ. Res. Public Health 2023, 20, 6364. [Google Scholar] [CrossRef]
- Bertheaux, C.; Zimmermann, E.; Gazel, M.; Delanoy, J.; Raimbaud, P.; Lavoué, G. Effect of Material Properties on Emotion: A Virtual Reality Study. Front. Hum. Neurosci. 2024, 17, 1301891. [Google Scholar] [CrossRef]
- Coşgun, B.; Yıldırım, K.; Hidayetoglu, M.L. Effect of Wall Covering Materials on the Perception of Cafe Environments. Facilities 2022, 40, 214–232. [Google Scholar]
- Demers, C.; Landry, V.; Jafarian, H.; Blanchet, P. Effects of Interior Wood Finishes on the Lighting Ambiance and Materiality of Architectural Spaces. Indoor Built Environ. 2017, 27, 786–804. [Google Scholar]
- Liu, J.; Lughofer, E.; Zeng, X. Aesthetic Perception of Visual Textures: A Holistic Exploration Using Texture Analysis, Psychological Experiment, and Perception Modeling. Front. Comput. Neurosci. 2015, 9, 134. [Google Scholar] [CrossRef]
- MASUDA, M. Why Wood Is Excellent for Interior Design? From Vision Physical Point of View. In Proceedings of the 8th World Conference on Timber Engineering, Lahti, Finland, 14–17 June 2004; pp. 101–106. [Google Scholar]
- Burnard, M.D.; Kutnar, A. Wood and Human Stress in the Built Indoor Environment: A Review. Wood Sci. Technol. 2015, 49, 969–986. [Google Scholar]
- Ojala, A.; Kostensalo, J.; Viik, J.; Matilainen, H.; Wik, I.; Virtanen, L.; Muilu-Mäkelä, R. Psychological and Physiological Effects of a Wooden Office Room on Human Well-Being: Results from a Randomized Controlled Trial. J. Environ. Psychol. 2023, 89, 102059. [Google Scholar]
- Wastiels, L.; Schifferstein, H.N.; Heylighen, A.; Wouters, I. Red or Rough, What Makes Materials Warmer? Mater. Des. 2012, 42, 441–449. [Google Scholar]
- Lan, L.; Wargocki, P.; Wyon, D.P.; Lian, Z. Effects of Thermal Discomfort in an Office on Perceived Air Quality, SBS Symptoms, Physiological Responses, and Human Performance. Indoor Air 2011, 21, 376–390. [Google Scholar]
- Knez, I.; Hygge, S. Irrelevant Speech and Indoor Lighting: Effects on Cognitive Performance and Self-Reported Affect. Appl. Cogn. Psychol. Off. J. Soc. Appl. Res. Mem. Cogn. 2002, 16, 709–718. [Google Scholar] [CrossRef]
- Marx, A.; Fuhrer, U.; Hartig, T. Effects of Classroom Seating Arrangements on Children’s Question-Asking. Learn. Environ. Res. 1999, 2, 249–263. [Google Scholar] [CrossRef]
- China Architecture & Design; Research Group. New Building of the School of Urban Design, Wuhan University. Archit. J. 2024, 50–55. [Google Scholar] [CrossRef]
- Jiang, B.; Nordin, J.; Mohd Salleh, M.N. Design Preferences for Learning Spaces among Rural Primary School Students in China: A Case Study. Build. Res. Inf. 2024, 52, 1–21. [Google Scholar] [CrossRef]
- Wang, G.; Ye, W. The Social Response of Educational Architecture: The Design of Shizishan School Complex in Chongqing. New Archit. 2022, 40, 44–47. [Google Scholar]
- Wei, G.; Zhou, K. Shijiazhuang Municipal Library. Urban Environ. Des. 2021, 70–74. [Google Scholar]
- Zhang, Y.; Wang, F.; Dong, X. Enclosure Without Closure—Design of Huzhou Hehe Elementary School Affiliated to Hangzhou Normal University. Archit. J. 2019, 69, 80–81. [Google Scholar]
- Lyons, A. Materials for Architects and Builders; Routledge: London, UK, 2014. [Google Scholar]
- Alapieti, T.; Mikkola, R.; Pasanen, P.; Salonen, H. The Influence of Wooden Interior Materials on Indoor Environment: A Review. Eur. J. Wood Wood Prod. 2020, 78, 617–634. [Google Scholar] [CrossRef]
- Picard, R.W. Affective Computing: Challenges. Int. J. Hum.-Comput. Stud. 2003, 59, 55–64. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Llinares, C.; Guixeres, J.; Alcañiz, M. Emotion Recognition in Immersive Virtual Reality: From Statistics to Affective Computing. Sensors 2020, 20, 5163. [Google Scholar] [CrossRef]
- Baños, R.M.; Botella, C.; Alcañiz, M.; Liaño, V.; Guerrero, B.; Rey, B. Immersion and Emotion: Their Impact on the Sense of Presence. Cyberpsychol. Behav. 2004, 7, 734–741. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.-C.; Al-Hussein, M. Virtual Reality Applications for the Built Environment: Research Trends and Opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Ergan, S.; Radwan, A.; Zou, Z.; Tseng, H.; Han, X. Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks. J. Comput. Civ. Eng. 2019, 33, 04018062. [Google Scholar] [CrossRef]
- Kim, S.; Yun, B.Y.; Choi, J.Y.; Kim, Y.U.; Kim, S. Quantification of Visual Thermal Perception Changes in a Wooden Interior Environment Using Physiological Responses and Immersive Virtual Environment. Build. Environ. 2023, 240, 110420. [Google Scholar] [CrossRef]
- Asad, M.M.; Naz, A.; Churi, P.; Tahanzadeh, M.M. Virtual Reality as Pedagogical Tool to Enhance Experiential Learning: A Systematic Literature Review. Educ. Res. Int. 2021, 2021, 7061623. [Google Scholar]
- Yin, J.; Zhu, S.; MacNaughton, P.; Allen, J.G.; Spengler, J.D. Physiological and Cognitive Performance of Exposure to Biophilic Indoor Environment. Build. Environ. 2018, 132, 255–262. [Google Scholar]
- Llinares Millan, C.; Higuera-Trujillo, J.L.; Montañana i Aviñó, A.; Torres, J.; Sentieri, C. The Influence of Classroom Width on Attention and Memory: Virtual-Reality-Based Task Performance and Neurophysiological Effects. Build. Res. Inf. 2021, 49, 813–826. [Google Scholar]
- Harley, J.M.; Bouchet, F.; Azevedo, R. Measuring Learners’ Co-Occurring Emotional Responses during Their Interaction with a Pedagogical Agent in MetaTutor. In Intelligent Tutoring Systems, Proceedings of the 11th International Conference, ITS 2012, Chania, Greece, 14–18 June 2012; Proceedings 11; Springer: Berlin/Heidelberg, Germany, 2012; pp. 40–45. [Google Scholar]
- Pekrun, R. Emotion and Achievement during Adolescence. Child Dev. Perspect. 2017, 11, 215–221. [Google Scholar]
- Carruthers, P. The Cognitive Functions of Language. Behav. Brain Sci. 2002, 25, 657–674. [Google Scholar]
- Baig, M.; Kavakli, M. A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems. Multimodal Technol. Interact. 2019, 3, 37. [Google Scholar] [CrossRef]
- Reaves, J.; Flavin, T.; Mitra, B.; Mahantesh, K.; Nagaraju, V. Assessment and Application of EEG: A Literature Review. J. Appl. Bioinform. Comput. Biol. 2021, 10, 7. [Google Scholar]
- Cacioppo, J.T.; Klein, D.J.; Berntson, G.G.; Hatfield, E. The Psychophysiology of Emotion; Guilford: New York, NY, USA, 1993. [Google Scholar]
- Healey, J. Physiological sensing of emotion. In The Oxford Handbook of Affective Computing; Calvo, R.A., D’Mello, S., Gratch, J., Kappas, A., Eds.; Oxford University Press: Oxford, UK, 2014; p. 204. [Google Scholar]
- Sirois, S.; Brisson, J. Pupillometry. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 679–692. [Google Scholar] [CrossRef]
- Cruz-Garza, J.G.; Darfler, M.; Rounds, J.D.; Gao, E.; Kalantari, S. EEG-Based Investigation of the Impact of Classroom Design on Cognitive Performance of Students. arXiv 2021, arXiv:2102.03629. [Google Scholar]
- Pijeira-Díaz, H.J.; Drachsler, H.; Kirschner, P.A.; Järvelä, S. Profiling Sympathetic Arousal in a Physics Course: How Active Are Students? J. Comput. Assist. Learn. 2018, 34, 397–408. [Google Scholar]
- Aranberri Ruiz, A.; Nevado, B.; Migueles Seco, M.; Aritzeta Galán, A. Heart Rate Variability Biofeedback Intervention Programme to Improve Attention in Primary Schools. Appl. Psychophysiol. Biofeedback 2024, 49, 651–664. [Google Scholar] [PubMed]
- Cai, Y.; Li, X.; Li, J. Emotion Recognition Using Different Sensors, Emotion Models, Methods and Datasets: A Comprehensive Review. Sensors 2023, 23, 2455. [Google Scholar] [CrossRef] [PubMed]
- Horvers, A.; Tombeng, N.; Bosse, T.; Lazonder, A.W.; Molenaar, I. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review. Sensors 2021, 21, 7869. [Google Scholar] [CrossRef]
- GB 50189-2015; Code for Design of Educational Buildings. China Standards Press: Beijing, China, 2015.
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar]
- Shield, B.M.; Dockrell, J.E. The Effects of Noise on Children at School: A Review. Build. Acoust. 2003, 10, 97–116. [Google Scholar]
- Pashler, H. Dual-Task Interference in Simple Tasks: Data and Theory. Psychol. Bull. 1994, 116, 220. [Google Scholar]
- Weijs, M.L.; Jonauskaite, D.; Reutimann, R.; Mohr, C.; Lenggenhager, B. Effects of Environmental Colours in Virtual Reality: Physiological Arousal Affected by Lightness and Hue. R. Soc. Open Sci. 2023, 10, 230432. [Google Scholar]
- Greene, S.; Thapliyal, H.; Caban-Holt, A. A Survey of Affective Computing for Stress Detection: Evaluating Technologies in Stress Detection for Better Health. IEEE Consum. Electron. Mag. 2016, 5, 44–56. [Google Scholar]
- Benedek, M.; Kaernbach, C. A Continuous Measure of Phasic Electrodermal Activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar]
- Van Der Mee, D.; Gevonden, M.; Westerink, J.H.; De Geus, E. Validity of Electrodermal Activity-Based Measures of Sympathetic Nervous System Activity from a Wrist-Worn Device. Int. J. Psychophysiol. 2021, 168, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Herborn, K.A.; Graves, J.L.; Jerem, P.; Evans, N.P.; Nager, R.; McCafferty, D.J.; McKeegan, D.E. Skin Temperature Reveals the Intensity of Acute Stress. Physiol. Behav. 2015, 152, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G. Heart-Rate Variability—More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [PubMed]
- Niemic, C. Studies of Emotion: A Theoretical and Empirical Review of Psychophysiological Studies of Emotion. J. Undergrad. Res. 2002, 1, 15–18. [Google Scholar]
- Alarcao, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2017, 10, 374–393. [Google Scholar] [CrossRef]
- Henry, J.C. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Neurology 2006, 67, 2092. [Google Scholar] [CrossRef]
- Jatupaiboon, N.; Pan-Ngum, S.; Israsena, P. Emotion Classification Using Minimal EEG Channels and Frequency Bands. In Proceedings of the 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 29–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 21–24. [Google Scholar]
- Liu, Y.; Sourina, O.; Nguyen, M.K. Real-Time EEG-Based Emotion Recognition and Its Applications. In Transactions on Computational Science XII Special Issue on Cyberworlds; Springer: Berlin/Heidelberg, Germany, 2011; pp. 256–277. [Google Scholar]
- Choi, D.; Sekiya, T.; Minote, N.; Watanuki, S. Relative Left Frontal Activity in Reappraisal and Suppression of Negative Emotion: Evidence from Frontal Alpha Asymmetry (FAA). Int. J. Psychophysiol. 2016, 109, 37–44. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Gable, P.A. On the Role of Asymmetric Frontal Cortical Activity in Approach and Withdrawal Motivation: An Updated Review of the Evidence. Psychophysiology 2018, 55, e12879. [Google Scholar] [CrossRef]
- Niu, H.; Zhai, Y.; Huang, Y.; Wang, X.; Wang, X. Investigating the Short-Term Cognitive Abilities under Local Strong Thermal Radiation through EEG Measurement. Build. Environ. 2022, 224, 109567. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Li, Y.; Zheng, Y.; Hong, B. Effects of Outdoor Activity Intensities on College Students’ Indoor Thermal Perception and Cognitive Performance. J. Build. Eng. 2024, 87, 109017. [Google Scholar] [CrossRef]
- Mavros, P.; J Wälti, M.; Nazemi, M.; Ong, C.H.; Hölscher, C. A Mobile EEG Study on the Psychophysiological Effects of Walking and Crowding in Indoor and Outdoor Urban Environments. Sci. Rep. 2022, 12, 18476. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.T.; Luke, S.G. Best Practices in Eye Tracking Research. Int. J. Psychophysiol. 2020, 155, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Z.; Mountstephens, J.; Teo, J. Emotion Recognition Using Eye-Tracking: Taxonomy, Review and Current Challenges. Sensors 2020, 20, 2384. [Google Scholar] [CrossRef]
- Skaramagkas, V.; Ktistakis, E.; Manousos, D.; Kazantzaki, E.; Tachos, N.S.; Tripoliti, E.; Fotiadis, D.I.; Tsiknakis, M. eSEE-d: Emotional State Estimation Based on Eye-Tracking Dataset. Brain Sci. 2023, 13, 589. [Google Scholar] [CrossRef]
- Schubert, T.; Friedmann, F.; Regenbrecht, H. Decomposing the Sense of Presence: Factor Analytic Insights. In Proceedings of the 2nd International Workshop on Presence, Colchester, UK, 6–7 April 1999; University of Essex: Colchester, UK, 1999; Volume 1999. [Google Scholar]
- Fleming, R.W. Material Perception. Annu. Rev. Vis. Sci. 2017, 3, 365–388. [Google Scholar] [CrossRef]
- Russell, J.A. A Circumplex Model of Affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [Google Scholar] [CrossRef]
- Kreibig, S.D. Autonomic Nervous System Activity in Emotion: A Review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef]
- Sugenoya, J.; Iwase, S.; Mano, T.; Ogawa, T. Identification of Sudomotor Activity in Cutaneous Sympathetic Nerves Using Sweat Expulsion as the Effector Response. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 61, 302–308. [Google Scholar] [CrossRef]
- Leonidou, C.; Panayiotou, G. Can We Predict Experiential Avoidance by Measuring Subjective and Physiological Emotional Arousal? Curr. Psychol. 2022, 41, 7215–7227. [Google Scholar] [CrossRef]
- Egger, M.; Ley, M.; Hanke, S. Emotion Recognition from Physiological Signal Analysis: A Review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar] [CrossRef]
- Kuzinas, A.; Noiret, N.; Bianchi, R.; Laurent, É. The Effects of Image Hue and Semantic Content on Viewer’s Emotional Self-Reports, Pupil Size, Eye Movements, and Skin Conductance Response. Psychol. Aesthet. Creat. Arts 2016, 10, 360. [Google Scholar]
- Ismail, W.W.; Hanif, M.; Mohamed, S.; Hamzah, N.; Rizman, Z.I. Human Emotion Detection via Brain Waves Study by Using Electroencephalogram (EEG). Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 1005–1011. [Google Scholar] [CrossRef]
- Lipovac, D.; Burnard, M.D. Effects of Visual Exposure to Wood on Human Affective States, Physiological Arousal and Cognitive Performance: A Systematic Review of Randomized Trials. Indoor Built Environ. 2021, 30, 1021–1041. [Google Scholar]
- Elliot, A.J. Color and Psychological Functioning: A Review of Theoretical and Empirical Work. Front. Psychol. 2015, 6, 127893. [Google Scholar]
- Li, J.; Wu, J.; Lam, F.; Zhang, C.; Kang, J.; Xu, H. Effect of the Degree of Wood Use on the Visual Psychological Response of Wooden Indoor Spaces. Wood Sci. Technol. 2021, 55, 1485–1508. [Google Scholar] [CrossRef]
- Appelhans, B.M.; Luecken, L.J. Heart Rate Variability as an Index of Regulated Emotional Responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar]
- Gullett, N.; Zajkowska, Z.; Walsh, A.; Harper, R.; Mondelli, V. Heart Rate Variability (HRV) as a Way to Understand Associations between the Autonomic Nervous System (ANS) and Affective States: A Critical Review of the Literature. Int. J. Psychophysiol. 2023, 192, 35–42. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Wong, C.H.; Aziz, A.A. Perceptions of Youngsters on Interior Space Quality in Relation to Materiality and Spatial Design. Int. J. Built Environ. Sustain. 2021, 8, 103–119. [Google Scholar] [CrossRef]
- Subramanian, R.; Shankar, D.; Sebe, N.; Melcher, D. Emotion Modulates Eye Movement Patterns and Subsequent Memory for the Gist and Details of Movie Scenes. J. Vis. 2014, 14, 31. [Google Scholar]
- Wan, Q.; Li, X.; Zhang, Y.; Song, S.; Ke, Q. Visual Perception of Different Wood Surfaces: An Event-Related Potentials Study. Ann. For. Sci. 2021, 78, 25. [Google Scholar] [CrossRef]
- Haji, F.A.; Rojas, D.; Childs, R.; de Ribaupierre, S.; Dubrowski, A. Measuring Cognitive Load: Performance, Mental Effort and Simulation Task Complexity. Med. Educ. 2015, 49, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Jamin, A.; Beta, R.M.D.M.; Ismail, S.; Sakarji, S.R.; Zain, Z.M. The Importance of Office Layout for Employee Productivity. Din. Pendidik. 2020, 15, 164–171. [Google Scholar] [CrossRef]
- Xiong, L.; Huang, X.; Li, J.; Mao, P.; Wang, X.; Wang, R.; Tang, M. Impact of Indoor Physical Environment on Learning Efficiency in Different Types of Tasks: A 3 × 4 × 3 Full Factorial Design Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1256. [Google Scholar] [CrossRef]
- Vischer, J.C. The Effects of the Physical Environment on Job Performance: Towards a Theoretical Model of Workspace Stress. Stress Health J. Int. Soc. Investig. Stress 2007, 23, 175–184. [Google Scholar] [CrossRef]
- Ross, M.; Mason, G.J. The Effects of Preferred Natural Stimuli on Humans’ Affective States, Physiological Stress and Mental Health, and the Potential Implications for Well-Being in Captive Animals. Neurosci. Biobehav. Rev. 2017, 83, 46–62. [Google Scholar] [CrossRef]
- Häyrinen, L.; Toppinen, A.; Toivonen, R. Finnish Young Adults’ Perceptions of the Health, Well-Being and Sustainability of Wooden Interior Materials. Scand. J. For. Res. 2020, 35, 394–402. [Google Scholar] [CrossRef]
Gender | N | Mean Age | BMI (kg/m2) | Clo |
---|---|---|---|---|
Male | 23 | 23.5 (21–26) | 22.95 | 0.5 |
Female | 23 | 25.53 (22–26) | 21.42 | 0.5 |
Total | 46 | 24.04 (21–26) |
Factor | Range | Accuracy | Mean |
---|---|---|---|
Air temperature | (from 0 to 50) °C | ±0.5 °C | 25.9 °C |
Relative humidity | (from 5 to 95)% | ±5% | 46.39% |
Independent Variable | Implicit Variable | Indicator Name |
---|---|---|
Emotional state | Physiological Indicators | SCL, ST |
EEG Activity Indicators | Overall α Wave, FAA | |
Eye Movement Indicators | TTFF, PD | |
Cognitive function | Physiological Indicators | HR, HRV(SDNN), HRV(RMSSD) |
EEG Activity Indicators | Overall β Wave | |
Eye Movement Indicators | FT, AFT |
Sum of Squares | Df | Mean Square | F | Sig. | η2 | ||
---|---|---|---|---|---|---|---|
MCV (col) | Material | 108.854 | 2.432 | 44.765 | 30.980 | 0.001 *** | 0.397 |
Error | 165.146 | 114.290 | 1.445 | ||||
MCV (gloss) | Material | 98.229 | 2.876 | 34.157 | 24.785 | 0.001 *** | 0.345 |
Error | 186.271 | 135.163 | 1.378 | ||||
MCV (tex) | Material | 95.542 | 2.912 | 32.804 | 27.556 | 0.001 *** | 0.370 |
Error | 162.958 | 136.885 | 1.190 | ||||
ECRV | Material | 94.682 | 2.869 | 32.997 | 7.896 | 0.001 *** | 0.144 |
Error | 563.568 | 134.861 | 4.179 |
Sum of Squares | Df | Mean Square | F | Sig. | η2 | ||
---|---|---|---|---|---|---|---|
SCL | Material | 0.262 | 2.483 | 0.106 | 6.125 | 0.002 ** | 0.203 |
Error | 1.028 | 59.601 | 0.017 | ||||
ST | Material | 0.084 | 2.692 | 0.031 | 7.632 | 0.001 *** | 0.241 |
Error | 0.264 | 64.608 | 0.004 | ||||
α | Material | 39.506 | 2.499 | 15.808 | 3.131 | 0.038 * | 0.082 |
Error | 441.630 | 87.468 | 5.049 | ||||
FAA | Material | 0.082 | 2.266 | 0.036 | 4.064 | 0.016 * | 0.066 |
Error | 0.863 | 97.435 | 0.009 | ||||
TTFF | Material | 101.319 | 2.594 | 39.058 | 3.134 | 0.037 * | 0.095 |
Error | 969.991 | 77.822 | 12.464 | ||||
PD | Material | 6.718 | 3.000 | 4.370 | 16.616 | 0.001 *** | 0.537 |
Error | 12.239 | 43.000 | 0.177 |
Sum of Squares | Df | Mean Square | F | Sig. | η2 | ||
---|---|---|---|---|---|---|---|
HR | Material | 121.601 | 2.507 | 48.511 | 4.865 | 0.006 ** | 0.144 |
Error | 724.818 | 72.693 | 9.971 | ||||
HRV (SDNN) | Material | 0.955 | 2.512 | 0.380 | 3.060 | 0.040 * | 0.069 |
Error | 12.800 | 102.922 | 0.124 | ||||
HRV (RMSSD) | Material | 1.732 | 2.724 | 0.636 | 6.907 | 0.001 *** | 0.192 |
Error | 7.274 | 79.009 | 0.092 | ||||
β | Material | 39.435 | 2.004 | 19.679 | 6.241 | 0.003 ** | 0.163 |
Error | 202.214 | 64.124 | 3.153 | ||||
FT | Material | 336.217 | 2.437 | 137.955 | 4.325 | 0.012 * | 0.143 |
Error | 2020.965 | 63.366 | 31.894 | ||||
AFT | Material | 448.784 | 2.349 | 191.088 | 1.780 | 0.172 | 0.064 |
Error | 6556.376 | 61.063 | 107.371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhao, X.; Feng, Y.; Xuan, C.; Yang, C.; Jia, X. Effects of Visual Perception of Building Materials on Human Emotional States and Cognitive Functioning in a Physical Learning Environment. Buildings 2025, 15, 1163. https://doi.org/10.3390/buildings15071163
Zhou Y, Zhao X, Feng Y, Xuan C, Yang C, Jia X. Effects of Visual Perception of Building Materials on Human Emotional States and Cognitive Functioning in a Physical Learning Environment. Buildings. 2025; 15(7):1163. https://doi.org/10.3390/buildings15071163
Chicago/Turabian StyleZhou, Yufeng, Xiaochen Zhao, Yongbo Feng, Changzheng Xuan, Changhan Yang, and Xiaohu Jia. 2025. "Effects of Visual Perception of Building Materials on Human Emotional States and Cognitive Functioning in a Physical Learning Environment" Buildings 15, no. 7: 1163. https://doi.org/10.3390/buildings15071163
APA StyleZhou, Y., Zhao, X., Feng, Y., Xuan, C., Yang, C., & Jia, X. (2025). Effects of Visual Perception of Building Materials on Human Emotional States and Cognitive Functioning in a Physical Learning Environment. Buildings, 15(7), 1163. https://doi.org/10.3390/buildings15071163