Analysis of Damage Mechanism of Ellipsoidal Assembled Tower Joint
Abstract
1. Introduction
2. Overview of the Test
2.1. Sample Parameters
2.2. Loading System
2.3. Displacement–Deformation Measurement Program for Sample
3. Analysis of Test Results
3.1. Sample Damage Phenomenon
3.2. Load Displacement Curves of Specimens
3.3. Stress Distribution in Critical Parts
3.3.1. Stress Distribution in the Ball Table Area
3.3.2. Stress Distribution of the Pressure Plate
4. Finite Element Analysis
4.1. Pre-Processing
4.2. Damage Pattern Analysis
4.3. Parameter Expansion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shan, L. Structural Performance and Design of Wind Turbine Towers. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2009. [Google Scholar]
- Zagubien, A.; Wolniewicz, K. The impact of supporting tower on wind turbine noise emission. Appl. Acoust. 2019, 155, 260–270. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Wen, Y. Design and Performance Study of a Six-Leg Lattice Tower for Wind Turbines. Buildings 2024, 14, 965. [Google Scholar] [CrossRef]
- Wu, Q.; Luo, J.; Yang, Y. Fatigue performance experiment of concrete-filled steel tubular-KK joint. J. Traffic Transp. Eng. 2024, 24, 100–116. [Google Scholar]
- Jiang, L.; Liu, Y.; Zhou, X.; Zhao, X. Calculation Method for the Bearing Capacity of Concrete-filled Steel Tube Joints. China J. Highw. Transp. 2022, 35, 86–100. [Google Scholar]
- Fu, H.; Wang, X.; Luo, K. Analysis of influence of welding residual stress and geometric defects on stability of lattice boom. J. Dalian Univ. Technol. 2022, 62, 60–69. [Google Scholar]
- Pei, J.; Wang, X.; Qin, S. Experimental and Numerical Simulation Study on Residual Stress of Single-Sided Full-Penetration Welded Rib-to-Deck Joint of Orthotropic Steel Bridge Deck. Buildings 2024, 14, 2641. [Google Scholar] [CrossRef]
- Acevedo, C.; Drezet, M.; Nussbaumer, A. Numerical modelling and experimental investigation on welding residual stresses in large-scale tubular K-joints. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 177–185. [Google Scholar] [CrossRef]
- Cao, Y.; Meng, Z.; Zhang, S. FEM study on the stress concentration factors of K-joints with welding residual stress. Appl. Ocean Res. 2013, 43, 195–205. [Google Scholar] [CrossRef]
- Yuan, Z.; Yao, Y.; Lu, W. Hot Spot Stress Distribution of CHS T-joints under Out-of-plane Bending. J. Hunan Univ. 2022, 49, 151–159. [Google Scholar]
- Liu, Y.; Zhao, R.; Jiang, L.; Fu, Y. Study on calculation method for equivalent stress intensity factor of rectangular hollow section k-joints. Eng. Mech. 2023, 40, 182–194. [Google Scholar]
- Wang, J.; Chen, Y.; Guo, Y.; Chen, C.; Sun, B. Experimental study on the mechanical behavior of detached tubular k-joints of narrow foundation transmission towers. Eng. Mech. 2019, 36, 66–70. [Google Scholar]
- Chen, K.; Huang, H.; Wu, Q.; Zheng, Q. Calculation method of stress concentration factor for CFST K-joint. China Civ. Eng. J. 2022, 55, 94–104. [Google Scholar]
- Wang, P.; Wang, Z.; Pan, J.; Chen, L. Investigation on mechanical behavior of X-shaped welded spatial partition plate tubular joints. J. Build. Struct. 2019, 40, 221–229. [Google Scholar]
- Pandey, M.; Young, B. Stress concentration factors of cold-formed high strength steel tubular T-joints. Thin-Walled Struct. 2021, 166, 107996. [Google Scholar] [CrossRef]
- Sakai, Y.; Hosaka, T.; Isoe, A.; Ichikawa, A.; Mitsuki, K. Experiments on concrete filled and rein-forced tubular K-joints of truss girder. J. Constr. Steel Res. 2004, 60, 683–699. [Google Scholar] [CrossRef]
- Ozyurt, E. Axial resistance of elliptical hollow section K-joints made of high strength steel. J. Constr. Steel Res. 2024, 213, 108422. [Google Scholar] [CrossRef]
- Pandey, M.; Young, B. Ultimate resistances of member-rotated cold-formed high strength steel tubular T-joints under compression loads. Eng. Struct. 2021, 244, 10. [Google Scholar] [CrossRef]
- Wen, Y.; Cai, J.; Fu, L. Study on cooperative performance of spherical and plate joints of lattice concrete-filled steel tube wind power tower. Acta Energiae Solaris Sin. 2021, 42, 21–27. [Google Scholar]
- Yu, Y. Mechanical Behavior Research on the Bolt Ball Universal Joints of Concrete Filled Steel Tubular Lattice Wind Tower. Master’s Thesis, Inner Mongolia University of Science and Technology, Baotou, China, 2018. [Google Scholar]
- Wen, Y.; Liu, Z.; Xiong, W. Research on stress performance of universally wrapped assembled joints of lattice wind power tower with concrete-filled steel tube. Sci. Rep. 2023, 13, 1670. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, Z.; Yu, J. Mechanical property analysis of spherical Joints of concrete-filled steel tubular wind power towers. J. Southwest Jiao Tong Univ. 2023, 58, 1440–1448. [Google Scholar]
- GB 50017—2017; Standard for Design of Steel Structures. China Architecture & Building Press: Beijing, China, 2017.
- GB50135—2019; Standard for Design of High-Rising Structures. China Planning Press: Beijing, China, 2019.
- Technical Code for Concrete Filled Steel Tubular Structures; China Architecture & Building Press: Beijing, China, 2014.
- Han, L. Concrete-Filled Steel Tubular Structures: Theory and Practice; Science Press: Beijing, China, 2007. [Google Scholar]
- Nassiraei, H. Probabilistic Analysis of Strength in Retrofitted X-Joints under Tensile Loading and Fire Conditions. Buildings 2024, 14, 2105. [Google Scholar] [CrossRef]
Component | Parameter Name | Parameter Value |
---|---|---|
Rotor blades | Number of wind turbine blades | 3 |
Rotor diameter d | 60 m | |
Rotation speed | 20 r/min | |
Windward area | 2826 m2 | |
Rated wind speed | 13 m/s | |
Survival wind speed | 50 m/s | |
Quantity | 20,000 kg | |
Blade | Length | 30 m |
Quantity | 5000 kg | |
Tower | Tower height h2 | 62.4 m |
Tower bottom diameter | 4 m | |
Tower top diameter | 2.7 m | |
Cabin of a plane | Quantity | 40,000 kg |
Total | Total height h1 | 97 m |
Node Number | Tower Column Cross Section (mm) | Tower Column Length (mm) | Wrapped Object Cross Section (mm) | Web Member Cross Section (mm) | Web Member Lengths (mm) | Thickness of Ball Table (mm) | Rigidity Ratio of Tower Column to Web Member |
---|---|---|---|---|---|---|---|
JD-1 | ϕ219 × 6 | 1800 | ϕ235 × 8 | ϕ89 × 3.5 | 700 | 6 | 0.03 |
JD-2 | ϕ219 × 6 | 1800 | ϕ235 × 8 | ϕ89 × 3.5 | 700 | 10 | 0.03 |
JD-2 | ϕ219 × 6 | 1800 | ϕ235 × 8 | ϕ89 × 5.0 | 700 | 6 | 0.05 |
JD-2 | ϕ219 × 6 | 1800 | ϕ235 × 8 | ϕ89 × 5.0 | 700 | 10 | 0.05 |
Parts | fy/MPa | fu/MPa | ES/MPa |
---|---|---|---|
Tower column | 322 | 486 | 2.02 × 105 |
Wrapped object | 314 | 482 | 1.99 × 105 |
Ball table | 306 | 466 | 1.99 × 105 |
Pressure plate of the ball table | 315 | 471 | 2.01 × 105 |
Web member | 336 | 483 | 2.04 × 105 |
Specimen Number | Nut/kN | Nuc/kN | Error/% |
---|---|---|---|
JD-1 | 278 | 293.7 | 5.6 |
JD-2 | 290 | 319.95 | 10.3 |
JD-3 | 342 | 352.92 | 3.2 |
JD-4 | 390 | 383.76 | 1.6 |
Wall Thickness of Ball Table/mm | Wall Thickness of Web Member | Nuc/kN | Model Number | Wall Thickness of Ball Table/mm | Wall Thickness of Web Member | Nuc/kN | |
---|---|---|---|---|---|---|---|
4 | 3 | 218.50 | 1 | 21 | 8 | 4 | 349.31 |
5 | 3 | 234.80 | 2 | 22 | 9 | 4 | 363.67 |
6 | 3 | 246.80 | 3 | 23 | 10 | 4 | 357.52 |
7 | 3 | 258.30 | 4 | 24 | 11 | 4 | 345.21 |
8 | 3 | 262.20 | 5 | 25 | 4 | 5 | 305.97 |
9 | 3 | 278.80 | 6 | 26 | 5 | 5 | 327.05 |
10 | 3 | 272.39 | 7 | 27 | 6 | 5 | 352.92 |
11 | 3 | 252.37 | 8 | 28 | 7 | 5 | 372.26 |
4 | 3.5 | 267.60 | 9 | 29 | 8 | 5 | 381.81 |
5 | 3.5 | 281.30 | 10 | 30 | 9 | 5 | 402.79 |
6 | 3.5 | 293.70 | 11 | 31 | 10 | 5 | 383.76 |
7 | 3.5 | 302.98 | 12 | 32 | 11 | 5 | 377.61 |
8 | 3.5 | 318.90 | 13 | 33 | 4 | 6 | 308.80 |
9 | 3.5 | 328.23 | 14 | 34 | 5 | 6 | 334.27 |
10 | 3.5 | 319.95 | 15 | 35 | 6 | 6 | 358.32 |
11 | 3.5 | 301.49 | 16 | 36 | 7 | 6 | 373.67 |
4 | 4 | 294.28 | 17 | 37 | 8 | 6 | 394.33 |
5 | 4 | 312.81 | 18 | 38 | 9 | 6 | 417.88 |
6 | 4 | 327.17 | 19 | 39 | 10 | 6 | 411.16 |
7 | 4 | 337.50 | 20 | 40 | 11 | 6 | 397.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Ma, J.; Wen, Y. Analysis of Damage Mechanism of Ellipsoidal Assembled Tower Joint. Buildings 2025, 15, 572. https://doi.org/10.3390/buildings15040572
Li M, Ma J, Wen Y. Analysis of Damage Mechanism of Ellipsoidal Assembled Tower Joint. Buildings. 2025; 15(4):572. https://doi.org/10.3390/buildings15040572
Chicago/Turabian StyleLi, Miao, Jiaxin Ma, and Yang Wen. 2025. "Analysis of Damage Mechanism of Ellipsoidal Assembled Tower Joint" Buildings 15, no. 4: 572. https://doi.org/10.3390/buildings15040572
APA StyleLi, M., Ma, J., & Wen, Y. (2025). Analysis of Damage Mechanism of Ellipsoidal Assembled Tower Joint. Buildings, 15(4), 572. https://doi.org/10.3390/buildings15040572