A Review on the Behavior of Ultra-High-Performance Concrete (UHPC) Under Long-Term Loads
Abstract
1. Introduction
2. Overview of UHPC Creep Research
3. Creep Models
3.1. Creep Model Aligning to FIB Model Code 2010
3.2. Modification of the Creep Model for Application in UHPC
3.2.1. Creep Model According to Xu Y. et al. [18]
3.2.2. Creep Model According to Sun M. et al. [22]
3.2.3. Creep Model According to Zhu L. et al. [25]
3.2.4. Comparison of Modified Creep Models
4. Analysis of Individual Parameters of Importance for the Creep of UHPC
4.1. Impact of the Steel Fiber Content
4.2. Effect of UHPC Layer Height in Hybrid Systems
4.3. Influence of the Fiber Type
4.4. Effect of Thermal Treatment and Concrete Age at Loading
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richard, P.; Cheyrezy, M. Composition of Reactive Powder Concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Azmee, N.M.; Shafiq, N. Ultra-High Performance Concrete: From Fundamental to Applications. Case Stud. Constr. Mater. 2018, 9, e00197. [Google Scholar] [CrossRef]
- Shaheen, E.; Shrive, N.J. Optimization of Mechanical Properties and Durability of Reactive Powder Concrete. ACI Mater. J. 2006, 103, 444–451. [Google Scholar]
- Shah, S.P.; Weiss, W.J. Ultra high performance concrete: A look to the future. Int. J. Civ. Struct. Eng. 1998. [Google Scholar]
- Habel, K. Structural Behaviour of Elements Combining Ultra-High Performance Fibre Reinforced Concretes (UHPFRC) and Reinforced Concrete. Ph.D. Thesis, Federal Institute of Technology, Lausanne, Switzerland, 2004. [Google Scholar] [CrossRef]
- Parra-Montesinos, G.J.; Peterfreund, S.W.; Chao, S.H. Highly damage-tolerant beam-column joints through use of high-performance fiber-reinforced cement composites. ACI Struct. J. 2005, 102, 487–495. [Google Scholar]
- Bassam, A.T.; Ayad, S.A.; Nahla, N.H.; Abu Bakar, B.H.; Al-Tayeb, M.M.; Mansour, W.N. Properties of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC)—A Review Paper. AIP Conf. Proc. 2019, 2157, 020040. [Google Scholar] [CrossRef]
- Graybeal, B.A. Compressive behavior of ultra-high-performance fiber-reinforced concrete. ACI Mater. J. 2007, 104, 146–152. [Google Scholar]
- Abbas, S.; Nehdi, M.L.; Saleem, M.A. Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges. Int. J. Concr. Struct. Mater. 2016, 10, 271–295. [Google Scholar] [CrossRef]
- Ullah, R.; Qiang, Y.; Ahmad, J.; Vatin, N.I.; El-Shorbagy, M.A. Ultra-High-Performance Concrete (UHPC): A State-of-the-Art Review. Materials 2022, 15, 4131. [Google Scholar] [CrossRef]
- Zhang, D.; Dasari, A.; Tan, K.H. On the mechanism of prevention of explosive spalling in ultra-high performance concrete with polymer fibers. Cem. Concr. Res. 2018, 113, 169–177. [Google Scholar] [CrossRef]
- Fathy, I.N.; El-Sayed, A.A.; Elfakharany, M.E.; Mahmoud, A.A.; Abouelnour, M.A.; Mahmoud, A.S.; Nabil, I.M. Enhancing mechanical properties and radiation shielding of high-strength concrete with bulk lead oxide and granodiorite. Nucl. Eng. Des. 2024, 429, 113626. [Google Scholar] [CrossRef]
- Fathy, I.N.; El-Sayed, A.A.; Elfakharany, M.E.; Mahmoud, A.A.; Abouelnour, M.A.; Mahmoud, A.S.; Mahmoud, K.A.; Hanafy, T.A.; Sayyed, M.I.; Nabil, I.M. Upgrading the compressive strength and radiation shielding properties of high strength concrete supported with nano additives of lead monoxide and granodiorite. Prog. Nucl. Energy 2025, 180, 105562. [Google Scholar] [CrossRef]
- Hajek, P.; Fiala, C. Environmentally optimized floor slabs using UHPC-contribution to sustainable building. In Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany, 5–7 March 2008; pp. 879–886. [Google Scholar]
- Liu, Y.; Wang, L.; Wei, Y.; Sun, C.; Xu, Y.; Sun, C.; Xu, Y. Current research status of UHPC creep properties and the corresponding applications—A review. Constr. Build. Mater. 2024, 416, 135120. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, J.; Wei, Q.; Shang, H.; Liu, X. Creep behaviour of ultra-high-performance concrete (UHPC): A review. J. Build. Eng. 2023, 69, 106187. [Google Scholar] [CrossRef]
- Liu, G.J. Research on mechanism of concrete creep. Appl. Mech. Mater. 2014, 670–671, 441–444. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Liu, J.; Zhang, P.; Zhang, Q.; Jiang, L. Experimental studies and modeling of creep of UHPC. Constr. Build. Mater. 2018, 175, 643–652. [Google Scholar] [CrossRef]
- Graybeal, B. Characterization of the Behaviour of Ultra–High Performance Concrete. Ph.D. Thesis, Faculty of the Graduate School of the University of Maryland, College Park, MD, USA, 2008. [Google Scholar]
- Acker, P.; Behloul, M. Ductal Technology: A Large Spectrum of Properties, a Wide Range of Applications. In Proceedings of the International Symposium on Ultra-High Performance Concrete, Kassel, Germany, 5–7 March 2008; pp. 11–23. [Google Scholar]
- Spasojević, A. Structural Implications of Ultra-High Performance Fibre-Reinforced Concrete in Bridge Design. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2008. [Google Scholar] [CrossRef]
- Sun, M.; Visintin, P.; Bennett, T. Basic and drying creep of Ultra-high performance concrete. Aust. J. Civ. Eng. 2023, 1–11. [Google Scholar] [CrossRef]
- Sun, M. Time-Dependent Deformation of Ultra-High Performance Concrete. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2022. [Google Scholar]
- Rossi, P.; Tailhan, J.L.; Le Maou, F.; Gaillet, L.; Martin, E. Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem. Concr. Res. 2012, 42, 61–73. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.J.; Li, X.; Zhao, G.Y.; Huo, X.J. Experimental and numerical study on creep and shrinkage effects of ultra high performance concrete beam. Compos. B 2020, 184, 107713. [Google Scholar] [CrossRef]
- Barbos, G.A. Long-term behavior of ultra–high performance concrete (UHPC) bended beams. Proc. Technol. 2016, 22, 203–210. [Google Scholar] [CrossRef]
- Mohebbi, A.; Graybeal, B.A.; Haber, Z.B. Time-dependent properties of ultrahigh-performance concrete: Compressive creep and shrinkage. J. Mater. Civ. Eng. 2022, 34, 04022096. [Google Scholar] [CrossRef]
- Rossi, P.; Charron, J.P.; Bastien-Masse, M.; Tailhan, J.L.; Le Maou, F.; Ramanich, S. Tensile basic creep versus compressive basic creep at early ages: Comparison between normal strength concrete and a very high strength fibre reinforced concrete. Mater. Struct. 2014, 47, 1773–1785. [Google Scholar] [CrossRef]
- Graybeal, B.A. Material Property Characterization of Ultra-High Performance Concrete; Report Number FHWA-HRT-06-103; Federal Highway Administration: Washington, DC, USA, 2006. [Google Scholar]
- Haber, Z.B.; De la Varga, I.; Graybeal, B.A.; Nakashoji, B.; El-Helou, R. Properties and Behavior Of UHPC-Class Materials; Report Number FHWA-HRT-18-036; Federal Highway Administration: Washington, DC, USA, 2018. [Google Scholar]
- Garas, V.Y.; Kahn, L.F.; Kurtis, K.E. Short-term tensile creep and shrinkage of ultra-high performance concrete. Cem. Concr. Compos. 2009, 31, 147–152. [Google Scholar] [CrossRef]
- Garas, V.Y.; Kurtis, K.E.; Kahn, L.F. Creep of UHPC in tension and compression: Effect of thermal treatment. Cem. Concr. Compos. 2012, 34, 493–502. [Google Scholar] [CrossRef]
- Mertol, H.C.; Rizkalla, S.; Zia, P.; Mirmiran, A. Creep and shrinkage behavior of high-strength concrete and minimum reinforcement ratio for bridge columns. PCI J. 2010, 55, 138–154. [Google Scholar] [CrossRef]
- Flietstra, J.C. Creep and Shrinkage Behaviour of Ultra-High-Performance Concrete Under Compressive Loading with Varying Curing Regimes. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2011. [Google Scholar] [CrossRef]
- Ul Islam, M.M. Investigation of tensile creep for Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC) for the long-term. Constr. Build. Mater. 2021, 305, 124752. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, P.; Sha, F.; Yu, Z.; He, S.; Xu, W.; Lv, M. Effects of type and content of fibers, water-to-cement Ratio and cementitious materials on the shrinkage and creep of ultra-high performance concrete. Polymers 2022, 14, 1956. [Google Scholar] [CrossRef]
- Rogowski, R. Time Dependent Creep Response of Ultra-High Performance Concrete Without Fiber Reinforcing. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2022. [Google Scholar]
- Fib Model Code for Concrete Structures 2010; Fédération International du Béton; Ernst & Sohn: Berlin, Germany, 2013.
- ACI Committee 209; Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2008.
- GB 50010-2010; The National Standard of the People’s Republic of China, Code for Design of Concrete Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2010.
- AS 3600:2018; Concrete Structures. Standards Australia: Sydney, Australia, 2018.
- Bažant, Z.P.; Jirasek, M.I.; Hubler, M.H.; Carol, I. RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: Material model and structural analysis. Mater. Struct. 2015, 48, 753–770. [Google Scholar] [CrossRef]
- Pribramsky, V. B4 model adaptation for prediction of UHPC strains from creep and shrinkage. Solid State Phenom. 2019, 292, 210–216. [Google Scholar] [CrossRef]
- LRFD Bridge Design Specification, 9th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2020.
- Flietstra, J.C.; Ahlborn, T.M.; Harris, D.K.; De Melo e Silva, H. Creep behaviour of UHPC under compressive loading with varying curing regimes. In Proceedings of the 3rd International Symposium on UHPC, Kassel, Germany, 7–9 March 2012; pp. 333–340. [Google Scholar]
- Mazloom, M. Estimating long-term creep and shrinkage of high-strength concrete. Cem. Concr. Compos. 2008, 30, 316–326. [Google Scholar] [CrossRef]
- Pan, Z.; Li, B.; Lu, Z. Re-evaluation of CEB-FIP 90 prediction models for creep and shrinkage with experimental database. Constr. Build. Mater. 2013, 38, 1022–1030. [Google Scholar] [CrossRef]
- CEB-FIP Model Code for Concrete Structures; Comité Euro-International du Béton (CEB): Lausanne, Switzerland, 1990.
- Code-Type Models for Concrete Behaviour; Background of MC2012, Bulletin Number 70; Fédération International du Béton (FIB): Lausanne, Switzerland, 2013.
- Holowaty, J. New formula for creep of concrete in fib Model Code 2010. Am. J. Mater. Sci. 2015, 3, 59–66. [Google Scholar]
- Mazloom, M.; Ramezanianpour, A.A.; Brooks, J.J. Effect of silica fume on mechanical properties of high-strength concrete. Cem. Concr. Compos. 2004, 26, 347–357. [Google Scholar] [CrossRef]
- Rezakhani, R.; Scott, D.A.; Bousikhane, F.; Pathirage, M.; Moser, R.D.; Green, B.H.; Cusatis, G. Influence of steel fiber size, shape, and strength on the quasi-static properties of ultra-high performance concrete: Experimental investigation and numerical modeling. Constr. Build. Mater. 2021, 296, 123532. [Google Scholar] [CrossRef]
- El-Dieb, A. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers. Mater. Des. 2009, 30, 4286–4292. [Google Scholar] [CrossRef]
- Schmidt, M.; Fehling, E.; Teichmann, T.; Bunje, K.; Bornemann, R. Ultra-high performance concrete: Perspective for the precast concrete industry. Concr. Precast. Plant Technol. 2003, 69, 16–29. [Google Scholar]
- Shehab El-Din, H.K.; Mohamed, H.A.; Khater, M.; Ahmed, S. Effect of Steel Fibers on Behavior of Ultra High Performance Concrete. In Proceedings of the International Interactive Symposium on Ultra-High Performance Concrete, Des Moines, IA, USA, 18–20 July 2016; Iowa State University Digital Press: Ames, IA, USA, 2016. [Google Scholar] [CrossRef]
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Bonneau, O.; Poulin, C.; Dugat, J.; Richard, P.; Aitcin, P. Reactive Powder Concretes: From Theory to Practice. Concr. Int. 1996, 18, 47–49. [Google Scholar]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Chern, J.C.; Young, C.H. Compressive creep and shrinkage of steel fibre reinforced concrete. Int. J. Cem. Compos. Lightweight Concr. 1989, 11, 205–214. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Q. Effect of Steel Fiber on Creep Behavior of Concrete. J. Chin. Ceram. Soc. 2013, 41, 1087–1093. [Google Scholar] [CrossRef]
- Chen, P.; Zheng, W.; Wang, Y.; Chang, W. Analysis and Modelling of Shrinkage and Creep of Reactive Powder Concrete. Appl. Sci. 2018, 8, 732. [Google Scholar] [CrossRef]
- Hakeem, I.Y.; Rahman, M.K.; Althoey, F. Experimental investigation of hybrid beams utilizing Ultra-High Performance Concrete (UHPC) as tension reinforcement. Materials 2022, 15, 5619. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, M.M.A.; Jawdhari, A.; Peiris, A. Development of hybrid UHPC-NC beams: A numerical study. Eng. Struct. 2021, 233, 111893. [Google Scholar] [CrossRef]
- Lin, P.; Yan, W.; Zhao, H.; Ma, J. Theoretical and Experimental Investigation on the Flexural Behaviour of Prestressed NC-UHPC Composite Beams. Materials 2023, 16, 879. [Google Scholar] [CrossRef]
- Tong, T.; Yuan, S.; Wang, J.; Liu, Z. The role of bond strength in structural behaviors of UHPC-NC composite beams: Experimental investigation and finite element modeling. Compos. Struct. 2021, 255, 112914. [Google Scholar] [CrossRef]
- Danha, L.S.; Abdul-Hussien, Z.A.; Abduljabbar, M.S.; Yassin, L.A.G. Flexural behavior of hybrid ultra-high-performance concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012008. [Google Scholar] [CrossRef]
- Wight, J.K.; MacGregor, J.G. Reinforced Concrete-Mechanics and Design, 6th ed.; Prentice Hall: Saddle River, NJ, USA, 2011. [Google Scholar]
- Nezhentseva, A.; Sørensen, E.V.; Andersen, L.V.; Schuler, F. Distribution and Orientation of Steel Fibers in UHPFRC; DCE Technical Report Number 151; Aalborg University: Aalborg Øst, Denmark, 2013. [Google Scholar]
- Barnett, S.J.; Lataste, J.F.; Parry, T.; Millard, S.G.; Soutsos, M.N. Assessment of fiber orientation in ultra-high performance fibre reinforced concrete and its effect on flexural strength. Mater. Struct. 2010, 43, 1009–1023. [Google Scholar] [CrossRef]
- Kruschwitz, S.; Oesch, T.; Mielentz, F.; Meinel, D.; Spyridis, P. Non-Destructive Multi-Method Assessment of Steel Fiber Orientation in Concrete. Appl. Sci. 2022, 12, 697. [Google Scholar] [CrossRef]
- Shiotani, T.; Ogura, N.; Okude, N.; Watabe, K.; Van Steen, C.; Tsangouri, E.; Lacidogna, G.; Czarnecki, S.; Chai, H.K.; Yang, Y.; et al. Non-destructive inspection technologies for repair assessment in materials and structures. Dev. Built Environ. 2024, 18, 100443. [Google Scholar] [CrossRef]
- Mpalaskas, A.C.; Kytinou, V.K.; Zapris, A.G.; Matikas, T.E. Optimizing Building Rehabilitation through Nondestructive Evalua-tion of Fire-Damaged Steel-Fiber-Reinforced Concrete. Sensors 2024, 24, 5668. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yu, J.; Geng, G.; Jiang, J.; Liu, X. Effect of fiber types on creep behavior of concrete. Constr. Build. Mater. 2016, 105, 416–422. [Google Scholar] [CrossRef]
- Shen, D.; Liu, C.; Luo, Y.; Shao, H.; Zhou, X.; Bai, S. Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers. Cem. Concr. Compos. 2023, 138, 104948. [Google Scholar] [CrossRef]
- Chen, B.; Guo, L.; Zhang, L.; Zhang, W.; Bai, Y.; Wang, X. Influence of polyvinyl alcohol fiber and fly ash content on compressive creep properties of high ductility cementitious composites. E3S Web Conf. 2021, 272, 02014. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M.H. Reactive powder concretes with high ductility and 200-800 MPa compressive strength. Am. Concr. Inst. SP 1994, 144, 507–518. [Google Scholar] [CrossRef]
- Kamen, A.; Denarié, E.; Brühwiler, E. Viscoelastic behavior of a strain hardening Ultra-High Performance Fiber Reinforced Concrete. In Advances in Construction Materials; Springer: Berlin/Heidelberg, Germany, 2007; pp. 157–164. [Google Scholar] [CrossRef]
- Kamen, A.; Denarié, E.; Sadouki, H.; Brühwiler, E. UHPFRC tensile creep at early age. Mater. Struct. 2009, 42, 113–122. [Google Scholar] [CrossRef]
Component | Typical Value Ranges [kg/m3] |
---|---|
Sand | 490–1390 |
Cement | 610–1080 |
Silica fume | 50–334 |
Ground quartz | 0–410 |
Fibers | 40–250 |
Superplasticizer | 9–71 |
Water | 126–261 |
Reference | Water/ Binder Ratio (w/b) | Strength [MPa] | Fiber Type, Dosage | Creep Type | Specimen Size [mm] | Testing Conditions | Loading Age |
---|---|---|---|---|---|---|---|
[18] | 0.16, 0.22 | 104.0–128.7 | Steel fiber, 0–2% vol. | Compression | 100 × 100 × 300 | 20 ± 2 °C RH 60 ± 5% | 28 days |
[25] | 0.14 | 124.6–135.3 | Steel fiber, 2% vol. | Compression | 70 × 70 × 240 | 16 ± 1 °C RH 34 ± 4% | 7 days |
[26] | 0.20 | 172.6–190.3 | Steel fiber, 0–2.55% vol. | Compression | 120 × 240 | 20 ± 2 °C RH 60 ± 5% | 6 days |
[27] | – | 95–172 | Steel fiber, 2% vol. | Compression | ϕ102 × 203 | 23 ± 2 °C RH 50 ± 5% | 2, 3, 7, 8, 10, 14, 22, 30 days |
[28] | 0.20 | 120.8 | Steel fiber, 4% vol. | Compression, tensile | ϕ100 × 200 ϕ160 × 1000 | 23 ± 3 °C RH 50 ± 5% | 7 days |
[29] | – | 126.0–193.0 | Steel fiber, 6.2% wgt. | Compression | ϕ102 × 203 | 90 °C RH 95% | 4 days |
[30] | – | 95.0–172.0 | Steel fiber, 2–4.5% vol. | Compression | ϕ102 × 204 | 23 ± 2 °C RH 50 ± 5% | 7 days |
[31] | – | 6.04–6.50 (tensile) | Steel fiber, 2% vol. | Tensile | ϕ100 × 380 | 23 ± 2 °C RH 50 ± 3% | 7 days |
[32] | – | 116.0–169.0 | Steel fiber, 2% vol. | Compression, tensile | ϕ100 × 380 75 × 75 × 483 | 23 ± 2 °C RH 50 ± 3% | 7 days |
[33] | 0.25, 0.26, 0.30 | 124.0 | – | Compression | ϕ100 × 300 75 × 75 × 290 | 22 °C RH 50% | 1, 7, 28 days |
[34] | 0.20 | 96.5 | Steel fiber, 2% vol. | Compression | ϕ76.2 × 304.8 | 22 ± 2 °C RH 50% | 7 days |
[35] | 0.12 | 76.0–134.0 | Steel fiber, 8.6% wgt. | Tensile | 75 × 80 × 500 | 23 ± 2 °C RH 50 ± 5% | 28 days |
[36] | 0.16, 0.18, 0.20, 0.22, 0.24 | 83.4–122.3 | Carbon, PP, and PVA (0.1–0.3%); Steel fiber, (1–3%) | Compression | 100 × 100 × 400 | 20 ± 1 °C RH 95 ± 5% | 28 days |
[22] | 0.17 | 129.4–138.8 | – | Compression | ϕ75 × 150 ϕ100 × 200 | 25 °C RH 55% | 28 days |
[37] | 0.18 | 128.8 | – | Compression | 122 × 914 | 23 °C RH 50% | 28 days |
Specimen—Creep Type | α1 | α2 | γ |
---|---|---|---|
ϕ75 × 150 mm—basic | 0.48 | – | 0.535 |
ϕ75 × 150 mm—drying | – | 1.73 | 0.525 |
ϕ100 × 200 mm—basic | 0.52 | – | 0.555 |
ϕ100 × 200 mm—drying | – | 1.55 | 0.530 |
Time (Days) | Creep Coefficient φ | |||
---|---|---|---|---|
FIB MC 2010 | According to Model [18] | According to Model [22] | According to Model [25] | |
29 | 0.101 | – | 0.081 | 0.046 |
30 | 0.142 | – | 0.112 | 0.064 |
35 | 0.238 | – | 0.180 | 0.118 |
40 | 0.288 | – | 0.212 | 0.151 |
50 | 0.348 | 0.048 | 0.250 | 0.195 |
60 | 0.387 | 0.087 | 0.274 | 0.226 |
90 | 0.459 | 0.159 | 0.318 | 0.285 |
120 | 0.503 | 0.203 | 0.344 | 0.318 |
180 | 0.558 | 0.258 | 0.378 | 0.357 |
365 | 0.639 | 0.339 | 0.428 | 0.404 |
730 | 0.705 | 0.405 | 0.472 | 0.430 |
1460 | 0.761 | 0.461 | 0.511 | 0.445 |
1825 | 0.777 | 0.477 | 0.523 | 0.448 |
2190 | 0.791 | 0.491 | 0.532 | 0.450 |
2555 | 0.801 | 0.501 | 0.540 | 0.451 |
2920 | 0.811 | 0.511 | 0.547 | 0.452 |
3285 | 0.819 | 0.519 | 0.553 | 0.453 |
3650 | 0.826 | 0.526 | 0.558 | 0.454 |
Beam Name | Steel-Fiber Percentage (%) | Specific Strains (‰) |
1 HB 0.00 | 0.00 | 0.610 |
1 HB 0.50 | 0.50 | 0.580 |
1 HB 1.50 | 1.50 | 0.550 |
1 HB 2.55 | 2.55 | 0.527 |
Fibers | Diameter (μm) | Length (mm) | Tensile Strength (MPa) | Density (kg/m3) | Elastic Modulus Ef (GPa) |
---|---|---|---|---|---|
Steel fibers | 1000 | 50 | 800 | 7850 | 200 |
PP fibers | 48 | 19 | 620 | 910 | 4.5 |
PVA fibers | 15 | 12 | 1532 | 1280 | 30.7 |
Basalt fibers | 15 | 18 | 4150–4800 | 2650 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redžić, N.; Grgić, N.; Baloević, G. A Review on the Behavior of Ultra-High-Performance Concrete (UHPC) Under Long-Term Loads. Buildings 2025, 15, 571. https://doi.org/10.3390/buildings15040571
Redžić N, Grgić N, Baloević G. A Review on the Behavior of Ultra-High-Performance Concrete (UHPC) Under Long-Term Loads. Buildings. 2025; 15(4):571. https://doi.org/10.3390/buildings15040571
Chicago/Turabian StyleRedžić, Nermin, Nikola Grgić, and Goran Baloević. 2025. "A Review on the Behavior of Ultra-High-Performance Concrete (UHPC) Under Long-Term Loads" Buildings 15, no. 4: 571. https://doi.org/10.3390/buildings15040571
APA StyleRedžić, N., Grgić, N., & Baloević, G. (2025). A Review on the Behavior of Ultra-High-Performance Concrete (UHPC) Under Long-Term Loads. Buildings, 15(4), 571. https://doi.org/10.3390/buildings15040571