Effects of Permeable Geotextiles of Different Densities on Soil Cracking and Evaporation Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.2.1. Test Process
2.2.2. Parameter Calculation
3. Results
3.1. Influence of Geotextiles on Soil Water Evaporation
3.2. Influence of Geotextiles on Soil Cracking
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Chen, Y.; Zhao, C.; Li, Z. Effect of geotextiles with different masses per unit area on water loss and cracking under bottom water loss soil conditions. Geotext. Geomembr. 2024, 52, 233–240. [Google Scholar] [CrossRef]
- Liu, H.; Han, J.; Al-Naddaf, M.; Parsons, R.L.; Kakrasul, J.I. Field monitoring of wicking geotextile to reduce soil moisture under a concrete pavement subjected to precipitations and temperature variations. Geotext. Geomembr. 2022, 50, 1004–1019. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Pan, L. Review of organic mulching effects on soil and water loss. Arch. Agron. Soil Sci. 2021, 67, 136–151. [Google Scholar] [CrossRef]
- Zhong, S.; Han, Z.; Li, A.; Du, H. Research on the application of palm mat geotextiles for sand fixation in the hobq desert. Sustainability 2019, 11, 1751. [Google Scholar] [CrossRef]
- Wang, F.; Han, J.; Zhang, X.; Guo, J. Laboratory tests to evaluate effectiveness of wicking geotextile in soil moisture reduction. Geotext. Geomembr. 2017, 45, 8–13. [Google Scholar] [CrossRef]
- Kobiela-Mendrek, K.; Salachna, A.; Chmura, D.; Klama, H.; Broda, J. The influence of geotextiles stabilizing the soil on vegetation of post-excavation slopes and drainage ditches. J. Ecol. Eng. 2019, 20, 125–131. [Google Scholar] [CrossRef]
- Vishnudas, S.; Savenije, H.H.G.; Van der Zaag, P.; Anil, K.R. Coir geotextile for slope stabilization and cultivation—A case study in a highland region of Kerala, South India. Phys. Chem. Earth 2012, 47–48, 135–138. [Google Scholar] [CrossRef]
- Yuan, B.; Liang, J.; Lin, H.; Wang, W.; Xiao, Y. Experimental Study on Influencing Factors Associated with a New Tunnel Waterproofing for Improved Impermeability. J. Test. Eval. 2024, 52, 344–363. [Google Scholar] [CrossRef]
- De Carvalho, A.F.; Fernandes-Filho, E.I.; Daher, M.; de Carvalho Gomes, L.; Cardoso, I.M.; Fernandes, R.B.A.; Schaefer, C.E. Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agrofor. Syst. 2021, 95, 119–134. [Google Scholar] [CrossRef]
- Mehta, H.; Kumar, R.; Dar, M.A.; Juyal, G.P.; Patra, S.; Dobhal, S.; Rathore, A.C.; Kaushal, R.; Mishra, P.K. Effect of geojute technique on density, diversity and carbon stock of plant species in landslide site of North West Himalaya. J. Mt. Sci. 2018, 15, 1961–1971. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, R.; Miao, J.; Wang, J.; Jia, D. Effect of diatomite on soil evaporation characteristics. Environ. Earth Sci. 2021, 80, 219. [Google Scholar] [CrossRef]
- Tomar, J.; Kumar, R.; Kaushal, R.; Kar, S.; Mehta, H.; Chaturvedi, O. Soil conservation measures improve vegetation development and ecological processes in the Himalayan slopes. Trop. Ecol. 2023, 64, 53–61. [Google Scholar] [CrossRef]
- Rodrigues, S.C.; Bezerra, J.F.R. Study of matric potential and geotextiles applied to degraded soil recovery, Uberlândia (MG), Brazil. Environ. Earth Sci. 2010, 60, 1281–1289. [Google Scholar] [CrossRef]
- Yang, B.; Li, D.; Yuan, S.; Jin, L. Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils. CATENA 2021, 204, 105457. [Google Scholar] [CrossRef]
- Jaramillo, J.; Chabi-Olaye, A.; Kamonjo, C.; Jaramillo, A.; Vega, F.E.; Poehling, H.-M.; Borgemeister, C. Thermal tolerance of the coffee berry borer Hypothenemus hampei: Predictions of climate change impact on a tropical insect pest. PLoS ONE 2009, 4, e6487. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Strzepek, K.M.; Major, D.C.; Iglesias, A.; Yates, D.N.; McCluskey, A.; Hillel, D. Water resources for agriculture in a changing climate: International case studies. Glob. Environ. Chang. 2004, 14, 345–360. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; You, C. Biochar Effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 2016, 26, 265–272. [Google Scholar] [CrossRef]
- Dassanayake, S.; Mousa, A.; Fowmes, G.J.; Susilawati, S.; Zamara, K. Forecasting the moisture dynamics of a landfill capping system comprising different geosynthetics: A NARX neural network approach. Geotext. Geomembr. 2023, 51, 282–292. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Cheng, Q.; Zhu, C.; Yin, L.Y.; Shi, B. Drought-induced soil desiccation cracking behavior with consideration of basal friction and layer thickness. Water Resour. Res. 2020, 56, e2019WR026948. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, L.S.; Ye, Y.H.; Cheng, Z.H.; Zhou, Z.X. Effects of different chloride salts on granite residual soil: Properties and water–soil chemical interaction mechanisms. J. Soils Sediments 2023, 23, 1844–1856. [Google Scholar] [CrossRef]
- Cui, K.; Zhao, X.; Hu, M.; Yang, C.; Xie, G. Effect of salt content on the evaporation and cracking of soil from heritage structures. Adv. Mater. Sci. Eng. 2021, 2021, 3213703. [Google Scholar] [CrossRef]
- Xu, J.; Tang, C.; Cheng, Q.; Xu, Q.; Inyang, H.; Lin, Z.; Shi, B. Investigation on desiccation cracking behavior of clayey soils with a perspective of fracture mechanics: A review. J. Soils Sediments 2021, 22, 859–888. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, C.; Leng, T.; Shi, B.; Cheng, Q.; Zeng, H. Three-dimensional characterization of desiccation cracking behavior of compacted clayey soil using X-ray computed tomography. Eng. Geol. 2019, 255, 1–10. [Google Scholar] [CrossRef]
- Colombi, T.; Kirchgessner, N.; Iseskog, D.; Alexandersson, S.; Larsbo, M.; Keller, T. A time-lapse imaging platform for quantification of soil crack development due to simulated root water uptake. Soil Tillage Res. 2021, 205, 104769. [Google Scholar] [CrossRef]
- Yuan, B.; Liang, J.; Huang, X.; Huang, Q.; Zhang, B.; Yang, G.; Wang, Y.; Yuan, J.; Wang, H.; Yuan, P. Eco-efficient recycling of engineering muck for manufacturing low-carbon geopolymers assessed through LCA: Exploring the impact of synthesis conditions on performance. Acta Geotech. 2024, 20, 1–21. [Google Scholar] [CrossRef]
- Yuan, B.; Chen, W.; Li, Z.; Zhao, J.; Luo, Q.; Chen, W.; Chen, T. Sustainability of the polymer SH reinforced recycled granite residual soil: Properties, physicochemical mechanism, and applications. J. Soils Sediments 2023, 23, 246–262. [Google Scholar] [CrossRef]
- Yang, T.; Xing, X.; Fu, W.; Ma, X. Performances of evaporation and desiccation cracking characteristics for attapulgite soils. J. Soil Sci. Plant Nutr. 2022, 22, 2503–2519. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Liu, Y.; Fan, S. Geometric and fractal analysis of dynamic cracking patterns subjected to wetting-drying cycles. Soil Tillage Res. 2017, 170, 1–13. [Google Scholar] [CrossRef]
- Mariappan, S.; Kamon, M.; Ali, F.H.; Katsumi, T.; Akai, T.; Inui, T.; Nishimura, M. Performances of landfill liners under dry and wet conditions. Geotech. Geol. Eng. 2011, 29, 881–898. [Google Scholar] [CrossRef]
- Lau, Z.C.; Bouazza, A.; Gates, W.P. Influence of polymer enhancement on water uptake, retention and barrier performance of geosynthetic clay liners. Geotext. Geomembr. 2022, 50, 590–606. [Google Scholar] [CrossRef]
- Guzmán-Martínez, J.C.; García, E.F.; Vega-Posada, C.A. Effects of hydro-mechanical material parameters on the capillary barrier of reinforced embankments. Soils Found. 2022, 62, 101090. [Google Scholar] [CrossRef]
- Rahardjo, H.; Kim, Y.; Gofar, N.; Leong, E.C.; Wang, C.L.; Wong, J.L.H. Field instrumentations and monitoring of GeoBarrier System for steep slope protection. Transp. Geotech. 2018, 16, 29–42. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, Z.; Zhang, J.; Zhu, Y.; Zhang, L.; Fan, Y.; Zhou, X.; Tang, S.; Lu, Y.; Li, W.; et al. Research on the aging mechanism of polypropylene nonwoven geotextiles under simulated heavy metal aging scenarios. Geotext. Geomembr. 2024, 52, 1240–1250. [Google Scholar] [CrossRef]
- Guo, J.; Ding, G.; Wang, H. Dynamic development law of expansive soil cracks under environmental influence. Int. J. Civ. Eng. 2024, 22, 787–800. [Google Scholar] [CrossRef]
- Rawal, A.; Anand, S.; Shah, T. Optimization of parameters for the production of needlepunched nonwoven geotextiles. J. Ind. Text. 2008, 37, 341–356. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Liu, C.; Zhao, L.; Wang, B. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Eng. Geol. 2008, 101, 204–217. [Google Scholar] [CrossRef]
No. | Densities /g·m−2 | Thickness /mm | Pore Size/mm | Breaking Strength /kN·m−1 | CBR Bursting Strength /kN | Tearing Strength /kN |
---|---|---|---|---|---|---|
A | 200 | 1.7 | 12.1 | 6.5 | 0.9 | 0.16 |
B | 400 | 3.0 | 10.2 | 12.5 | 2.1 | 0.33 |
C | 600 | 4.1 | 8.7 | 19.0 | 3.2 | 0.46 |
Bulk Density /g·cm−3 | Field Water Capacity /% | Organic Matter /g·kg−1 | Soil Particle Gradation/% | ||
---|---|---|---|---|---|
0.05–2 mm | 0.002–0.05 mm | <0.002 mm | |||
1.42 | 21.54 | 38.68 | 13.2 | 29.5 | 57.3 |
Experimental Conditions | Parameter |
---|---|
Geotextile densities/g·m−2 | 200, 400, 600 |
Soil type | Clayey soil |
Soil depth | 10 cm |
Soil preparation methods | leveled |
Water content measurement techniques | Gravimetric |
Crack analysis methods | Box-counting |
Grid Cell Size | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Number of grid cells (No geotextile) | 908,027 | 237,557 | 109,566 | 63,577 | 41,856 | 29,746 |
Number of grid cells (Geotextile Density = 200 g/m2) | 871,336 | 234,507 | 110,586 | 65,420 | 43,723 | 31,671 |
Number of grid cells (Geotextile Density = 400 g/m2) | 568,246 | 152,189 | 71,067 | 41,783 | 27,674 | 19,861 |
Number of grid cells (Geotextile Density = 600 g/m2) | 157,238 | 42,267 | 19,844 | 11,766 | 7915 | 5714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Yin, Y.; Yang, C. Effects of Permeable Geotextiles of Different Densities on Soil Cracking and Evaporation Behavior. Buildings 2025, 15, 367. https://doi.org/10.3390/buildings15030367
Yang B, Yin Y, Yang C. Effects of Permeable Geotextiles of Different Densities on Soil Cracking and Evaporation Behavior. Buildings. 2025; 15(3):367. https://doi.org/10.3390/buildings15030367
Chicago/Turabian StyleYang, Binbin, Yidan Yin, and Changde Yang. 2025. "Effects of Permeable Geotextiles of Different Densities on Soil Cracking and Evaporation Behavior" Buildings 15, no. 3: 367. https://doi.org/10.3390/buildings15030367
APA StyleYang, B., Yin, Y., & Yang, C. (2025). Effects of Permeable Geotextiles of Different Densities on Soil Cracking and Evaporation Behavior. Buildings, 15(3), 367. https://doi.org/10.3390/buildings15030367