Parametric Optimization of Concentrated Photovoltaic-Phase Change Material as a Thermal Energy Source for Buildings
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Numerical Model
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
PCM | phase change material |
PV | photovoltaics |
BIPV | building integrated photovoltaics |
CPV | concentrator photovoltaics |
CPV-PCM | concentrated photovoltaic-phase change material system |
ACPPVC | asymmetric compound parabolic photovoltaic concentrators |
THM | temperature history method |
DTA | differential thermal analysis |
DSC | differential scanning calorimetry |
FF | fill factor |
A | area (m2) |
PV panel temperature (°C) | |
ambient temperature (°C) | |
liquidus temperature (°C) | |
solidus temperature (°C) | |
PCM temperature (°C) | |
G | solar radiation intensity (W/m2) |
open circuit voltage (V) | |
and | unit vectors |
convection heat transfer (Wh) | |
radiation heat transfer (Wh) | |
k | thermal conductivity (W/m·K) |
ρ | density (kg/m3) |
η | energy efficiency |
H | convection matric |
K | conductivity matrix |
M | mass matrix |
c | heat capacity |
the time derivative of temperature | |
irradiance or boundary flux matrix | |
R | radiation matrix |
co | reference heat capacity (solid) |
References
- Saly, V.; Ruzinsky, M.; Redi, P. Indoor study and ageing tests of solar cells and encapsulations of experimental modules. In Proceedings of the 24th International Spring Seminar on Electronics Technology: Concurrent Engineering in Electronic Packaging, Calimanesti-Caciulata, Romania, 5–9 May 2001. [Google Scholar]
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Huang, M.J.; Eames, P.C.; Norton, B. Thermal regulation of building-integrated photovoltaics using phase change materials. Int. J. Heat Mass Transf. 2004, 47, 2715–2733. [Google Scholar] [CrossRef]
- Huang, M.J.; Eames, P.C.; Norton, B. Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy 2006, 80, 1121–1130. [Google Scholar] [CrossRef]
- Huang, M.J.; Eames, P.C.; Norton, B.; Hewitt, N.J. Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells 2011, 95, 1598–1603. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 2010, 84, 1601–1612. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Sarwar, J.; Norton, B. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Sol. Energy 2015, 115, 264–276. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method. Energy Convers. Manag. 2014, 81, 322–329. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Alnoman, H.; Abdelbaq, S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in the hot climate. Sol. Energy 2017, 146, 417–429. [Google Scholar] [CrossRef]
- Hasan, A.; Alnoman, H.; Rashid, Y. Energy and Buildings: Impact of integrated photovoltaic-phase change material system on building energy efficiency in hot climate. Energy Build. 2016, 130, 495–505. [Google Scholar] [CrossRef]
- Ho, C.J.; Tanuwijava, A.O.; Lai, C.M. Thermal and electrical performance of a BIPV integrated with a microencapsulated phase change material layer. Energy Build. 2012, 50, 331–338. [Google Scholar] [CrossRef]
- Hendricks, J.H.C.; Sark, W.G.J.H.M. Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Prog. Photovolt. 2013, 21, 620–630. [Google Scholar] [CrossRef]
- Aelenei, L.; Pereira, R.; Gonçalves, H.; Athienitis, A. Thermal performance of a hybrid BIPV-PCM: Modeling. Des. Exp. Investig. Energy Proc. 2014, 48, 474–483. [Google Scholar] [CrossRef]
- Hasan, A.; Alnoman, H.; Shah, A.H. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery. Energies 2016, 9, 782. [Google Scholar] [CrossRef]
- Bahaidarah, H.M.S.; Baloch, A.A.B.; Gandhidasan, P. Uniform cooling of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2016, 57, 1520–1544. [Google Scholar] [CrossRef]
- Browne, M.C.; Norton, B.; McCormack, S.J. Phase change materials for photovoltaic thermal management. Renew. Sustain. Energy Rev. 2015, 47, 762–782. [Google Scholar] [CrossRef]
- Ma, T.; Yang, H.; Zhang, Y.; Lu, L.; Wang, X. Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook Renew. Sustain. Energy Rev. 2015, 43, 1273–1284. [Google Scholar] [CrossRef]
- Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers. Manag. 2016, 126, 177–204. [Google Scholar] [CrossRef]
- Royne, A.; Dey, C.J.; Mills, D.R. Cooling of photovoltaic cells under concentrated illumination: A critical review. Sol. Energy Mater. Sol. Cells 2005, 86, 451–483. [Google Scholar] [CrossRef]
- Du, B.; Hu, E.; Kolhe, M. Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew. Sustain. Energy Rev. 2012, 16, 6732–6736. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Shah, A.H. Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities. Renew. Sustain. Energy Rev. 2018, 94, 835–852. [Google Scholar] [CrossRef]
- D’Orazio, M.; Di Perna, C.; Di Giuseppe, E. Performance assessment of different roof integrated photovoltaic modules under Mediterranean Climate. Energy Procedia 2013, 42, 183–192. [Google Scholar] [CrossRef]
- Maiti, S.; Banerjee, S.; Vyas, K.; Patel, P.; Ghosh, P.K. Self regulation of photovoltaic module temperature in V-trough using a metal-wax composite phase change matrix. Sol. Energy 2011, 85, 1805–1816. [Google Scholar] [CrossRef]
- Wu, Y.; Eames, P. Experimental characterization of an asymmetric compound parabolic PV concentrator complied with a phase change material. In Proceedings of the 7th Photovoltaic Science, Applications and Technology Conference, Heriot-Watt University, Edinburgh, UK, 6–8 April 2011. [Google Scholar]
- Emam, M.; Ookawara, S.; Ahmed, M. Performance study and analysis of an inclined concentrated photovoltaic-phase change material system. Sol. Energy 2017, 150, 229–245. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Shu, L. Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system. Sol. Energy 2018, 159, 777–785. [Google Scholar] [CrossRef]
- Sharma, S.; Tahir, A.; Reddy, K.S.; Tapas, K.M. Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material. Sol. Energy Mater. Sol. Cells 2016, 149, 29–39. [Google Scholar] [CrossRef]
- Sarwar, J. Experimental and Numerical Investigation of Thermal Regulation of Photovoltaic and Concentrated Photovoltaic Using Phase Change Materials. Ph.D. Thesis, Dublin Institute of Technology, Dublin, Ireland, 2012. [Google Scholar]
- Omaraa, E.; Saman, W.; Bruno, F.; Citation, M.L. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature. AIP Conf. Proc. 2017, 1850, 080020. [Google Scholar] [CrossRef]
- Sharma, N.K.; Gaur, M.K.; Malvi, C.S. Application of phase change materials for cooling of solar photovoltaic panels: A review. Mater. Today 2021, 47 Pt 19, 6759–6765. [Google Scholar] [CrossRef]
- Sivashankar, M.; Selvam, C.; Manikandan, S. A review on the selection of phase change materials for photovoltaic thermal management. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1130, 012026. [Google Scholar] [CrossRef]
- Hussain, B.; Waseem, H.; Hasnain, M.F.U.; Irfan, M. Phase Change Material for the Cooling of Solar Panels—An Experimental Study. Eng. Proc. 2023, 45, 43. [Google Scholar] [CrossRef]
- Xu, Z.; Kong, Q.; Qu, H.; Wang, C. Cooling characteristics of solar photovoltaic panels based on phase change materials. Case Stud. Therm. Eng. 2023, 41, 102667. [Google Scholar] [CrossRef]
- Durez, A.; Ali, M.; Waqas, A.; Nazir, K.; Kumarasamy, S. Modelling and optimization of phase change materials (PCM)-based passive cooling of solar PV panels in multi climate conditions. Front. Energy Res. 2023, 11, 1121138. [Google Scholar] [CrossRef]
- El Kassar, R.; Al Takash, A.; Faraj, J.; Khaled, M.; Ramadan, H.S. Phase change materials for enhanced photovoltaic panels performance: A comprehensive review and critical analysis. Energy Built Environ. 2024; in press. [Google Scholar] [CrossRef]
- Osking, L.; Glass Wool Insulation Business Co., Ltd. Available online: http://www.osking-insulation.com/ (accessed on 21 August 2024).
- Apogee Instruments. SP-110: Self-Powered Pyranometer. Available online: https://www.apogeeinstruments.com/sp-110-ss-self-powered-pyranometer/ (accessed on 21 August 2024).
- National Instruments. Compact DAQ. 2016. Available online: http://www.ni.com/data-acquisition/compactdaq/ (accessed on 7 August 2024).
- Rubitherma. Available online: https://www.rubitherm.eu/en/productcategory/organische-pcm-rt (accessed on 2 September 2024).
- Rubitherm. Available online: https://www.rubitherm.eu/en/productcategory/anorganische-pcm-sp (accessed on 2 September 2024).
- Aalco: The UK’s Largest Independent Multi-Metals Stockholder. Available online: http://www.aalco.co.uk/ (accessed on 21 August 2024).
- Aoul, K.T.; Hassan, A.; Shah, A.H.; Riaz, H. Energy performance comparison of concentrated photovoltaic—Phase change material thermal (CPV-PCM/T) system with flat plate collector (FPC). Sol. Energy 2018, 176, 453–464. [Google Scholar] [CrossRef]
PCM | Melting Range (°C) | Congealing Range (°C) | Latent Heat (kJ/kg) | Specific Heat Capacity (kJ/kg·K) | Heat Conductivity (W/m·K) | Density (kg/L) | Volume Expansion | Flash Point (°C) |
---|---|---|---|---|---|---|---|---|
RT60 [39] | 55–61 | 61–55 | 160 | 2 | 0.2 | 0.88 | 12.5% | >200 |
SP-58 [40] | 56–59 | 56–54 | 250 | 2 | 0.6 | 1.3 | 8% | NA |
Fatty Acid [41] | 58–64 | 62–56 | 185 | 2.2 | 0.2 | 0.85 | 10% | 230 |
Properties | Melting Point (°C) | Congealing Point (°C) | Latent Heat (kJ/kg) | Specific Heat Capacity (kJ/kg·K) | Heat Conductivity (W/m·K) | Density (kg/L) | Volume Expansion | Flash Point (°C) |
---|---|---|---|---|---|---|---|---|
Aluminum [42] | 650 | NA | NA | 0.91 | 222 | 2.71 | 24 × 10−6/K | NA |
Epoxy Resin | 130 | NA | NA | NA | 1.26 | 2.09 | 34 × 10−6/K | 350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.H.; Hassan, A.; Abdelbaqi, S.; Alnoman, H.; Fardoun, A.; Haggag, M.; Noor, M.; Laghari, M.S. Parametric Optimization of Concentrated Photovoltaic-Phase Change Material as a Thermal Energy Source for Buildings. Buildings 2025, 15, 327. https://doi.org/10.3390/buildings15030327
Shah AH, Hassan A, Abdelbaqi S, Alnoman H, Fardoun A, Haggag M, Noor M, Laghari MS. Parametric Optimization of Concentrated Photovoltaic-Phase Change Material as a Thermal Energy Source for Buildings. Buildings. 2025; 15(3):327. https://doi.org/10.3390/buildings15030327
Chicago/Turabian StyleShah, Ali Hasan, Ahmed Hassan, Shaimaa Abdelbaqi, Hamza Alnoman, Abbas Fardoun, Mahmoud Haggag, Mutassim Noor, and Mohammad Shakeel Laghari. 2025. "Parametric Optimization of Concentrated Photovoltaic-Phase Change Material as a Thermal Energy Source for Buildings" Buildings 15, no. 3: 327. https://doi.org/10.3390/buildings15030327
APA StyleShah, A. H., Hassan, A., Abdelbaqi, S., Alnoman, H., Fardoun, A., Haggag, M., Noor, M., & Laghari, M. S. (2025). Parametric Optimization of Concentrated Photovoltaic-Phase Change Material as a Thermal Energy Source for Buildings. Buildings, 15(3), 327. https://doi.org/10.3390/buildings15030327