A Method for Extracting Indoor Structural Landmarks Based on Indoor Fire Protection Plan Images of Buildings
Abstract
1. Introduction
2. Related Work
2.1. Indoor Plan Image Analysis
2.2. Indoor Landmark Extraction
3. Approach
3.1. Extraction of Building Wall Lines Based on Indoor Fire Protection Plan Images
3.1.1. Indoor Fire Protection Plan Denoising Based on the HSV Model
| Algorithm 1 A denoising algorithm based on an HSV model |
| input: Indoor fire protection plan image for buildings |
| output: Indoor floor plan after noise removal |
| 1: img = read (fire protection plan image); |
| 2: hsv = cvtColor(img, COLOR_BGR2HSV); |
| 3: lower_red = array ([0, 70, 50]); |
| 4: upper_red = array ([10, 255, 255]); |
| 5: mask = inRange(hsv, lower_red, upper_red); |
| 6: kernel = getStructuringElement (MORPH_ELLIPSE, (n, n); |
| 7: mask = morphologyEx (mask, MORPH_OPEN, kernel); |
| 8: mask = morphologyEx (mask, MORPH_CLOSE, kernel); |
| 9: if mask > 0 then img = [255, 255, 255]; |
| 10: write(“result.jpg”, img); |
3.1.2. Extraction of Vector Lines of Interior Walls in Buildings
| Algorithm 2 A boundary extraction algorithm based on Canny operator |
| input: Indoor floor plan after noise removal |
| output: Edge extraction line image |
| 1:img_gray = read(path, 0); |
| 2: binary_img = threshold img_gray, thresh=127, maxval=255, type = THRESH_BINARY); show(“Binary Image”, binary_img); |
| 3: edges = Canny(binary_img, low_threshold = 50, high_threshold = 150); show(“Edge Detection”, edges); |
| 4: imwrite(“edges_result.jpg”, edges); |
| 5: N = edges.count; |
| 6:while N ≠ 0 // At least two points are required to form a line if nodes.count > 2 then new LineString; N = N − 1; |
| 7: Save as a Shapefile; |
3.2. Calculation of Indoor Space Visibility Based on Space Syntax
3.2.1. Indoor Space Partitioning Based on Regular Grids
3.2.2. Calculation of the Visibility of the Indoor Space Grid
| Algorithm 3 The visibility calculation method |
| input: The indoor space grid |
| output: cells containing the attribute table of visibility values |
| 1: N = cells.count; cellVisbleArea = 0; i = j = 0; |
| 2: for each c[i] in cells do |
| 3: for each c[j] in cells do |
| 4: create connecting line form c[i] to c[j]; |
| 5: if line cross wall then cellVisbleArea = cellVisbleArea + c[j].area; |
| 6: visibility = cellVisbleArea/sumArea × 100; |
| 7: c[i].attribute = visibility; |
3.3. Recognition and Extraction of Indoor Structural Landmarks
3.3.1. Types of Indoor Structural Landmarks
3.3.2. Structural Landmark Recognition Based on Visibility and Spatial Geometric Features
- (1)
- Data Preprocessing and Initial Selection of Candidate Points
- (2)
- Directional Distribution Analysis and Structural Verification
- (3)
- Spatial Clustering Verification and Landmark Marking
3.3.3. Geometric Extraction of Indoor Landmarks
4. Case Studies
4.1. Experimental Data
4.2. Experimental Results
4.3. Detection Accuracy Results and Comparative Study
4.4. The Visibility Change Curves Under Different Navigation Routes
4.5. Comparative Analysis of Different Grid Sizes
4.6. Calculation Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Clarke, K.C. Indoor cartography. Cartogr. Geogr. Inf. Sci. 2020, 47, 95–109. [Google Scholar] [CrossRef]
- Zhou, J.; Haoyu, Y.; Jie, S.; Zhu, L. Indoor navigation map design based on spatial complexity. Cartogr. Geogr. Inf. Sci. 2025, 52, 69–81. [Google Scholar] [CrossRef]
- Magnago, V.; Palopoli, L.; Passerone, R.; Fontanelli, D.; Macii, D. Effective Landmark Placement for Robot Indoor Localization with Position Uncertainty Constraints. IEEE Trans. Instrum. Meas. 2019, 68, 4443–4455. [Google Scholar] [CrossRef]
- Gu, F.; Kealy, A.; Khoshelham, K.; Shang, J. Efficient and Accurate Indoor Localization Using Landmark Graphs. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 509–514. [Google Scholar] [CrossRef]
- Jang, B.; Kim, H.; Kim, J.w. Survey of Landmark-based Indoor Positioning Technologies. Inf. Fusion 2023, 89, 166–188. [Google Scholar] [CrossRef]
- Gu, F.; Valaee, S.; Khoshelham, K.; Shang, J.; Zhang, R. Landmark Graph-Based Indoor Localization. IEEE Internet Things J. 2020, 7, 8343–8355. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Q.; Mao, Q.; Tu, W.; Zhang, X.; Chen, L. ALIMC: Activity Landmark-Based Indoor Mapping via Crowdsourcing. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2774–2785. [Google Scholar] [CrossRef]
- Fang, H.; Xin, S.; Zhang, Y.; Wang, Z.; Zhu, J. Assessing the Influence of Landmarks and Paths on the Navigational Efficiency and the Cognitive Load of Indoor Maps. ISPRS Int. J. Geo-Inf. 2020, 9, 82. [Google Scholar] [CrossRef]
- Liu, B.; Linfang, D.; Meng, L. Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation. Cartogr. Geogr. Inf. Sci. 2021, 48, 305–319. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Zhang, H.; Tahir, N.; Fang, Z. A Structure Landmark-Based Radio Signal Mapping Approach for Sustainable Indoor Localization. Sustainability 2021, 13, 1183. [Google Scholar] [CrossRef]
- Hu, X.; Lei, D.; Jianga, S.; Hongchao, F.; Tessio, N.; Alexey, N.; Zipf, A. Data-driven approach to learning salience models of indoor landmarks by using genetic programming. Int. J. Digit. Earth 2020, 13, 1230–1257. [Google Scholar] [CrossRef]
- Marciniak, J.B.; Wiktorzak, B. Automatic Generation of Guidance for Indoor Navigation at Metro Stations. Appl. Sci. 2024, 14, 10252. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Zheng, S.; Yuan, Y.; Wang, S. Research on Generating an Indoor Landmark Salience Model for Self-Location and Spatial Orientation from Eye-Tracking Data. ISPRS Int. J. Geo-Inf. 2020, 9, 97. [Google Scholar] [CrossRef]
- Donabauer, G.; Ludwig, B. Testing Landmark Salience Prediction in Indoor Environments Based on Visual Information; Center for Spatial Studies, UC Santa Barbara: Santa Barbara, CA, USA, 2021. [Google Scholar] [CrossRef]
- Li, C.; Guo, H.; Yin, M.; Zhou, X.; Zhang, X.; Ji, Q. A Systematic Review of Factors Influencing Signage Salience in Indoor Environments. Sustainability 2023, 15, 13658. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, W.; Li, Q.; El-Sheimy, N.; Mao, Q.; Li, Y.; Gu, F.; Huang, L.; Zhu, J. Crowdsourcing-based indoor mapping using smartphones: A survey. ISPRS J. Photogramm. Remote Sens. 2021, 177, 131–146. [Google Scholar] [CrossRef]
- Gimenez, L.; Robert, S.; Suard, F.; Zreik, K. Automatic reconstruction of 3D building models from scanned 2D floor plans. Autom. Constr. 2016, 63, 48–56. [Google Scholar] [CrossRef]
- Yin, X.; Wonka, P.; Razdan, A. Generating 3D building models from architectural drawings: A survey. IEEE Comput. Graph. Appl. 2009, 29, 20–30. [Google Scholar] [CrossRef]
- Schönfelder, P.; Aziz, A.; Bosché, F.; König, M. Enriching BIM models with fire safety equipment using keypoint-based symbol detection in escape plans. Autom. Constr. 2024, 162, 105382. [Google Scholar] [CrossRef]
- Hassaan, M.; Ott, P.A.; Dugstad, A.K.; Torres, M.A.V.; Borrmann, A. Emergency Floor Plan Digitization Using Machine Learning. Sensors 2023, 23, 8344. [Google Scholar] [CrossRef]
- Wang, C.; Luo, J.; Zhang, C.; Liu, X. A Dynamic Escape Route Planning Method for Indoor Multi-floor Buildings Based on Real-time Fire Situation Awareness. In Proceedings of the 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, 2–4 December 2020; pp. 222–229. [Google Scholar]
- Wu, X.; Zhang, X.; Jiang, Y.; Huang, X.; Huang, G.G.; Usmani, A. An intelligent tunnel firefighting system and small-scale demonstration. Tunn. Undergr. Space Technol. 2022, 120, 104301. [Google Scholar] [CrossRef]
- Dodge, S.; Xu, J.; Stenger, B. Parsing floor plan images. In Proceedings of the 15th IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 358–361. [Google Scholar]
- Lv, X.; Zhao, S.; Yu, X.; Zhao, B. Residential floor plan recognition and reconstruction. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16712–16721. [Google Scholar]
- Hakert, A.; Schönfelder, P. Informed Machine Learning Methods for Instance Segmentation of Architectural Floor Plans. Forum Bauinformatik 2022, 33, 395–403. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 20–22 June 2023; pp. 7464–7475. [Google Scholar]
- Mishra, S.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Towards Robust Object Detection in Floor Plan Images: A Data Augmentation Approach. Appl. Sci. 2021, 11, 11174. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Zeng, Y.; Wu, X.; Huang, X.; Xiao, F. Building Artificial-Intelligence Digital Fire (AID-Fire) System: A Real-scale Demonstration. J. Build. Eng. 2022, 51, 104264. [Google Scholar] [CrossRef]
- Zhu, L.; Švedová, H.; Shen, J.; Stachoň, Z.; Shi, J.; Snopková, D.; Li, X. An instance-based scoring system for indoor landmark salience evaluation. Geografie 2019, 124, 103–131. [Google Scholar] [CrossRef]
- Zhou, Z.; Robert, W.; Cheng, F.; Stephan, W.; Huang, H. Indoor landmark selection for route communication: The influence of route-givers’ social roles and receivers’ familiarity with the environment. Spat. Cogn. Comput. 2021, 21, 257–289. [Google Scholar] [CrossRef]
- Lyu, H.; Yu, Z.; Meng, L. A Computational Method for Indoor Landmark Extraction. In Progress in Location-Based Services 2014; Gartner, G., Huang, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 45–59. [Google Scholar]
- Dong, W.; Tong, Q.; Hua, L.; Yu, L.; Liu, J. Comparing the roles of landmark visual salience and semantic salience in visual guidance during indoor wayfinding. Cartogr. Geogr. Inf. Sci. 2020, 47, 229–243. [Google Scholar] [CrossRef]
- Gangaputra, R. Indoor Landmark and Indoor Wayfinding: The Indoor Landmark Identification Issue. Master’s Thesis, Technical University of Munich, Munich, Germany, 2017. [Google Scholar]
- Wang, Y.; Fan, H.; Chen, R.; Li, H.; Wang, L.; Zhao, K.; Du, W. Positioning Locality Using Cognitive Directions Based on Indoor Landmark Reference System. Sensors 2018, 18, 1049. [Google Scholar] [CrossRef]
- Ludwig, B.; Donabauer, G.; Ramsauer, D.; al Subari, K. URWalking: Indoor Navigation for Research and Daily Use. Künstliche Intell. 2023, 37, 83–90. [Google Scholar] [CrossRef]
- Arabsheibani, R.; Haunert, J.-H.; Winter, S.; Tomko, M. Strategic allocation of landmarks to reduce uncertainty in indoor navigation. Comput. Environ. Urban Syst. 2024, 114, 102198. [Google Scholar] [CrossRef]
- Fellner, I.; Huang, H.; Gartner, G. “Turn Left after the WC, and Use the Lift to Go to the 2nd Floor”—Generation of Landmark-Based Route Instructions for Indoor Navigation. ISPRS Int. J. Geo-Inf. 2017, 6, 183. [Google Scholar]
- Abdelnasser, H.; Mohamed, R.; Elgohary, A.; Alzantot, M.F.; Wang, H.; Sen, S.; Choudhury, R.R.; Youssef, M. SemanticSLAM: Using Environment Landmarks for Unsupervised Indoor Localization. IEEE Trans. Mob. Comput. 2016, 15, 1770–1782. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Q.; Cao, R.; Sun, K.; Liu, T.; Garibaldi, J.M.; Li, Q.; Liu, B.; Qiu, G. Indoor Topological Localization Using a Visual Landmark Sequence. Remote Sens. 2019, 11, 73. [Google Scholar] [CrossRef]
- Nguyen-Huu, K.; Lee, S.-W. A Multi-Floor Indoor Pedestrian Localization Method Using Landmarks Detection for Different Holding Styles. Mob. Inf. Syst. 2021, 2021, 6617417. [Google Scholar] [CrossRef]
- Zhou, Z.; Robert, W.; Huang, H. Familiarity-dependent computational modelling of indoor landmark selection for route communication: A ranking approach. Int. J. Geogr. Inf. Sci. 2022, 36, 514–546. [Google Scholar] [CrossRef]
- Zhou, J.; Weibel, R.; Fu, C.; Zhou, Z.; Zhu, L.; Shen, J. Enhancing indoor spatial knowledge through navigation map design with landmark hierarchy. In Proceedings of the 18th International Conference on Location Based Services, Ghent, Belgium, 20–22 November 2023; p. 19. [Google Scholar]
- Dubey, R.K.; Sohn, S.S.; Thrash, T.; Hoelscher, C.; Kapadia, M. Identifying Indoor Navigation Landmarks Using a Hierarchical Multi-Criteria Decision Framework. In Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction and Games, Newcastle upon Tyne, UK, 28–30 October 2019; p. 15. [Google Scholar]
- Yang, L.; Worboys, M. Generation of navigation graphs for indoor space. Int. J. Geogr. Inf. Sci. 2015, 29, 1737–1756. [Google Scholar] [CrossRef]


















| Lamark ID | The Number of Cells | Ave (%) | Max (%) |
|---|---|---|---|
| SL1 | 2 | 12.11 | 12.11 |
| SL2 | 4 | 13.33 | 15.26 |
| SL3 | 5 | 27.33 | 29.13 |
| SL4 | 2 | 34.88 | 35.06 |
| SL5 | 4 | 22.06 | 22.28 |
| SL6 | 14 | 23.67 | 24.86 |
| SL7 | 6 | 23.66 | 24.94 |
| SL8 | 2 | 28.44 | 29.14 |
| SL9 | 4 | 25.55 | 34.50 |
| Lamark ID | The Number of Cells | Ave (%) | Max (%) |
|---|---|---|---|
| SL1 | 2 | 51.00 | 51.00 |
| SL2 | 43 | 54.92 | 76.64 |
| SL3 | 10 | 45.69 | 51.43 |
| SL4 | 6 | 36.38 | 37.99 |
| Building ID | SL Number of Our Method | Labeled SL Number | Detection Accuracy |
|---|---|---|---|
| a | 6 | 6 | 100% |
| b | 6 | 6 | 100% |
| c | 9 | 10 | 90% |
| d | 4 | 4 | 100% |
| Building ID | Cell Number of Grids | Time (s) |
|---|---|---|
| a | 443 | 1397 |
| b | 159 | 149 |
| c | 576 | 3377 |
| d-up | 101 | 83 |
| d-down | 151 | 146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Xu, H.; Miao, L.; Zheng, J. A Method for Extracting Indoor Structural Landmarks Based on Indoor Fire Protection Plan Images of Buildings. Buildings 2025, 15, 4411. https://doi.org/10.3390/buildings15244411
Pang Y, Xu H, Miao L, Zheng J. A Method for Extracting Indoor Structural Landmarks Based on Indoor Fire Protection Plan Images of Buildings. Buildings. 2025; 15(24):4411. https://doi.org/10.3390/buildings15244411
Chicago/Turabian StylePang, Yueyong, Heng Xu, Lizhi Miao, and Jieying Zheng. 2025. "A Method for Extracting Indoor Structural Landmarks Based on Indoor Fire Protection Plan Images of Buildings" Buildings 15, no. 24: 4411. https://doi.org/10.3390/buildings15244411
APA StylePang, Y., Xu, H., Miao, L., & Zheng, J. (2025). A Method for Extracting Indoor Structural Landmarks Based on Indoor Fire Protection Plan Images of Buildings. Buildings, 15(24), 4411. https://doi.org/10.3390/buildings15244411

