Synergistic Role of Recycled Concrete Aggregates and Hybrid Steel Fibers in Roller-Compacted Concrete Pavements: A Multi-Criteria Assessment for Eco-Efficiency Optimization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Aggregates
2.1.2. Cement, Water and Admixture
2.1.3. Fibers
2.2. Methods
2.2.1. Specimen Mixture and Preparation
2.2.2. Mechanical Test Procedures
2.2.3. Durability Testing
2.2.4. Environmental Impact Assessment
2.2.5. Eco-Efficiency Analysis (MCDA)
- (i)
- calculating a probability matrix:
- (ii)
- computing entropy:
- (iii)
- determining divergence:
- (iv)
- normalizing weights:
3. Results and Discussions
3.1. Mechanical Properties
3.1.1. Compressive Strength
3.1.2. Splitting Tensile Strength
3.1.3. Flexural Strength
3.2. Durability Performance
3.2.1. Compressive Strength Retention
3.2.2. Tensile Strength Retention
3.2.3. Flexural Strength Retention
3.3. Environmental Impacts
3.4. Eco-Efficiency Ranking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADP-Elem | Abiotic depletion of elements |
| ADP-fossil | Abiotic depletion of fossil fuels |
| AP | Acidification potential |
| Cem | Cement |
| CG | Crushed granite (coarse aggregate) |
| CMOD | Crack mouth opening displacement |
| CSR_300FTCs | Compressive strength retention after 300 freeze–thaw cycles |
| Ecm | Secant modulus of elasticity |
| EP | Eutrophication |
| fcm | Uniaxial compressive strength |
| fct, L | Initial flexural tensile strength |
| FRC | Fiber-reinforced concrete |
| FSR_300FTCs | Flexural strength retention after 300 freeze–thaw cycles |
| ft | Splitting tensile strength |
| FTCs | Freeze–thaw cycles |
| Gf | Fracture energy |
| GHG | Greenhouse gas |
| GWP | Global warming potential |
| HSF | Hybrid ISF/RSF |
| ISF | Industrial steel fiber |
| ITZ | Interfacial transition zone |
| LCA | Life Cycle Assessment |
| LCI | Life cycle inventory |
| MCDA | Multi-Criteria Decision Analysis |
| MDD | Maximum dry density |
| NA | Natural aggregate |
| ODP | Ozone depletion |
| OMC | Optimum moisture content |
| OPC | Ordinary Portland Cement |
| PE_NRe | Non-renewable energy |
| PE_Re | Renewable energy |
| POCP | Photochemical ozone creation potential |
| RCA | Recycled concrete aggregate |
| RCCP | Roller-compacted concrete pavement |
| RS | River sand (fine aggregate) |
| RSF | Recycled steel fiber |
| SP | Superplasticizer |
| TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
| Toug_Comp | Compressive toughness |
| Toug_Flex | Flexural toughness |
| TSR_300FTCs | Tensile strength retention after 300 freeze–thaw cycles |
| Wat | Water |
| WSM | Weighted Sum Method |
| 3PNBBT | Three-point notched beam bending tests |
References
- Razi, N.; Ansari, R. A prediction-based model to optimize construction programs: Considering time, cost, energy consumption, and CO2 emissions trade-off. J. Clean. Prod. 2024, 445, 141164. [Google Scholar] [CrossRef]
- Min, J.; Yan, G.; Abed, A.M.; Elattar, S.; Khadimallah, M.A.; Jan, A.; Ali, H.E. The effect of carbon dioxide emissions on the building energy efficiency. Fuel 2022, 326, 124842. [Google Scholar] [CrossRef]
- Salles, A.; Salati, M.; Bragança, L. Using City Information Modelling to Evaluate Urban Circularity Through Sustainability Indicators. In Creating a Roadmap Towards Circularity in the Built Environment; Springer Nature: Cham, Switzerland, 2023; pp. 385–394. [Google Scholar]
- Bakhshi, M.; Soheili, H.; Dalalbashi, A. Optimization of a structural lightweight fiber-reinforced concrete for best performance under impact loading. Cem. Concr. Compos. 2022, 136, 104875. [Google Scholar] [CrossRef]
- Hasheminezhad, A.; King, D.; Ceylan, H.; Kim, S. Comparative life cycle assessment of natural and recycled aggregate concrete: A review. Sci. Total Environ. 2024, 950, 175310. [Google Scholar] [CrossRef]
- Shmlls, M.; Abed, M.; Fořt, J.; Horvath, T.; Bozsaky, D. Towards closed-loop concrete recycling: Life cycle assessment and multi-criteria analysis. J. Clean. Prod. 2023, 410, 137179. [Google Scholar] [CrossRef]
- Azimi, N.; Schollbach, K.; Oliveira, D.V.; Lourenço, P.B. Effect of acidic environment exposure on mechanical properties of TRM composites. Constr. Build. Mater. 2024, 438, 137142. [Google Scholar] [CrossRef]
- Bakhshi, M.; Dalalbashi, A.; Soheili, H. Energy dissipation capacity of an optimized structural lightweight perlite concrete. Constr. Build. Mater. 2023, 389, 131765. [Google Scholar] [CrossRef]
- Tang, Y.; Xiao, J.; Liu, Q.; Xia, B.; Singh, A.; Lv, Z.; Song, W. Natural gravel-recycled aggregate concrete applied in rural highway pavement: Material properties and life cycle assessment. J. Clean. Prod. 2022, 334, 130219. [Google Scholar] [CrossRef]
- Abedi, M.; Hassanshahi, O.; Rashiddel, A.; Ashtari, H.; Meddah, M.S.; Dias, D.; Arjomand, M.A.; Choong, K.K. A sustainable cementitious composite reinforced with natural fibers: An experimental and numerical study. Constr. Build. Mater. 2023, 378, 131093. [Google Scholar] [CrossRef]
- Keleş, Ö.F.; Bayrak, O.Ü.; Bayata, H.F. Experimental investigation on mechanical properties of sustainable roller compacted concrete pavement (RCCP) containing waste rubbers as alternative aggregates. Constr. Build. Mater. 2024, 424, 135930. [Google Scholar] [CrossRef]
- Debbarma, S.; Ransinchung, G.D. Achieving sustainability in roller compacted concrete pavement mixes using reclaimed asphalt pavement aggregates–state of the art review. J. Clean. Prod. 2021, 287, 125078. [Google Scholar] [CrossRef]
- de Bortoli, A. Understanding the environmental impacts of virgin aggregates: Critical literature review and primary comprehensive life cycle assessments. J. Clean. Prod. 2023, 415, 137629. [Google Scholar] [CrossRef]
- Sheikh, E.; Mousavi, S.R.; Afshoon, I. Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. J. Clean. Prod. 2022, 368, 133005. [Google Scholar] [CrossRef]
- Ramezansefat, H.; Rezazadeh, M.; Barros, J.; Valente, I.; Bakhshi, M. Modelling the High Strain Rate Tensile Behavior of Steel Fiber Reinforced Concrete Using Artificial Neural Network Approach. In International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering; Springer: Cham, Switzerland, 2021; pp. 1099–1109. [Google Scholar]
- Bakhshi, M.; Valente, I.B.; Ramezansefat, H.; Barros, J.A.O. Evaluation of the inertia force in compressive impact loading on steel fiber-reinforced concrete. In RILEM-Fib International Symposium on Fibre Reinforced Concrete; Springer: Cham, Switzerland, 2021; pp. 277–288. [Google Scholar]
- Aghayan, I.; Khafajeh, R.; Shamsaei, M. Life cycle assessment, mechanical properties, and durability of roller compacted concrete pavement containing recycled waste materials. Int. J. Pavement Res. Technol. 2021, 14, 595–606. [Google Scholar] [CrossRef]
- Xing, W.; Tam, V.W.; Le, K.N.; Hao, J.L.; Wang, J. Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials. Resour. Conserv. Recycl. 2023, 193, 106947. [Google Scholar] [CrossRef]
- de Andrade Salgado, F.; de Andrade Silva, F. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Özçelikci, E.; Oskay, A.; Bayer, İ.R.; Şahmaran, M. Eco-hybrid cement-based building insulation materials as a circular economy solution to construction and demolition waste. Cem. Concr. Compos. 2023, 141, 105149. [Google Scholar] [CrossRef]
- Bai, W.; Song, Z.; Yuan, C.; Guan, J.; Xie, C.; Huang, H.; Ma, Y. Study on mechanical properties and damage mechanism of recycled concrete containing silica fume in freeze–thaw environment. Constr. Build. Mater. 2023, 375, 130872. [Google Scholar] [CrossRef]
- Yang, T.; Gong, L.; Jin, C.; Qin, J.; Dang, D.; Cui, X. Study on the pore characteristics and ITZ properties of recycled aggregate concrete by desert sand subjecting to salt freeze-thaw environments. J. Build. Eng. 2025, 108, 112918. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Liu, C. Impact of rice husk ash on the mechanical characteristics and freeze–thaw resistance of recycled aggregate concrete. Appl. Sci. 2022, 12, 12238. [Google Scholar] [CrossRef]
- Gao, D.; Luo, F.; Yan, Y.; Tang, J.; Yang, L. Experimental investigation on the flexural performance and damage process of steel fiber reinforced recycled coarse aggregate concrete. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; Volume 51, pp. 1205–1218. [Google Scholar]
- Guo, S.; Ding, Y.; Zhang, X.; Xu, P.; Bao, J.; Zou, C. Tensile properties of steel fiber reinforced recycled concrete under bending and uniaxial tensile tests. J. Build. Eng. 2024, 96, 110467. [Google Scholar] [CrossRef]
- Barros, J.; Costelha, H.; Bento, D.; Brites, N.; Luís, R.; Patrício, H.; Cunha, V.; Bento, L.; Miranda, T.; Coelho, P.; et al. A multidisciplinary engineering-based approach for tunnelling strengthening with a new fibre reinforced shotcrete technology. Tunn. Undergr. Space Technol. 2024, 147, 105707. [Google Scholar] [CrossRef]
- Bakhshi, M.; Valente, I.B.; Ramezansefat, H.; Barros, J.A.O.; Pereira, E.N.B.; Peixinho, N.R.M. Experimental and analytical study of the high-strain-rate flexural behavior of SFRC. J. Mater. Civ. Eng. 2023, 36, 04024043. [Google Scholar] [CrossRef]
- Ramezansefat, H.; Rezazadeh, M.; Barros, J.A.O.; Valente, I.B.; Bakhshi, M. Modeling the Compressive Behavior of Steel Fiber Reinforced Concrete Under High Strain Rate Loads. In RILEM-Fib International Symposium on Fibre Reinforced Concrete; Springer: Cham, Switzerland, 2021; pp. 703–713. [Google Scholar]
- Hassanshahi, O.; Salati, M.; Azimi, N.; Bakhshi, M. Hybrid Steel Fibers and RCA in RCC Pavements: Mechanical Recovery, Freeze–Thaw Durability, and Eco-Efficiency. Infrastructures 2025, 10, 321. [Google Scholar] [CrossRef]
- Bakhshi, M.; Valente, I.B.; Ramezansefat, H.; Barros, J.A.O. Effect of inertia and test approach on the high-strain-rate tensile behavior of steel fiber reinforced concrete. Cem. Concr. Compos. 2025, 161, 106095. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Papastergiou, P.; Angelakopoulos, H.; Guadagnini, M.; Pilakoutas, K. Effect of fibre length on the mechanical properties of SFRC using recycled Steel fibres. Constr. Build. Mater. 2024, 415, 134890. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Guo, J.; Wu, J.; Zhang, C. Production of sustainable steel fiber-reinforced rubberized concrete with enhanced mechanical properties: A state-of-the-art review. J. Build. Eng. 2024, 91, 109735. [Google Scholar] [CrossRef]
- Mahboob, A.; Hassanshahi, O.; Safi, M.; Majid, T.A. Experimental investigation of eco-friendly fiber-reinforced concrete using recycled and natural fibers, integrated with recycled aggregates. Adv. Compos. Mater. 2024, 33, 1101–1130. [Google Scholar] [CrossRef]
- Abdolpour, H.; Niewiadomski, P.; Kwiecień, A.; Tekieli, M.; Sadowski, Ł. Fundamental understanding of the mechanical and post-cracking behaviour of ultra-high performance mortar with recycled steel fibers. Constr. Build. Mater. 2023, 374, 130918. [Google Scholar] [CrossRef]
- Roshan, N.; Ghalehnovi, M.; Pakzad, S.S. Recycled steel fiber for fiber reinforced concrete production: Fresh and hardened properties, cost, and ecological assessments. J. Build. Pathol. Rehabilitation 2023, 8, 24. [Google Scholar] [CrossRef]
- Gu, L.; Liu, Y.; Zeng, J.; Zhang, Z.; Pham, P.N.; Liu, C.; Zhuge, Y. The synergistic effects of fibres on mechanical properties of recycled aggregate concrete: A comprehensive review. Constr. Build. Mater. 2024, 436, 137011. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, M.; Zhang, M. Effect of hybrid industrial and recycled steel fibres on static and dynamic mechanical properties of ultra-high performance concrete. Constr. Build. Mater. 2023, 370, 130691. [Google Scholar] [CrossRef]
- Mehmandari, T.A.; Shokouhian, M.; Josheghan, M.Z.; Mirjafari, S.A.; Fahimifar, A.; Armaghani, D.J.; Tee, K.F. Flexural properties of fiber-reinforced concrete using hybrid recycled steel fibers and manufactured steel fibers. J. Build. Eng. 2024, 98, 111069. [Google Scholar] [CrossRef]
- Dharek, M.S.; Manjunatha, M.; Brijbhushan, S.; Vengala, J.; Tangadagi, R.B. Performance evaluation of hybrid fiber reinforced concrete on engineering properties and life cycle assessment: A sustainable approach. J. Clean. Prod. 2024, 458, 142498. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, X.; Liu, H.; Wang, Z.; Chen, C.; Li, H. Recycling of waste recycled aggregate concrete in freeze-thaw environment and emergy analysis of concrete recycling system. J. Build. Eng. 2024, 96, 110377. [Google Scholar] [CrossRef]
- Taheri, A.; Azimi, N.; Oliveira, D.V.; Tinoco, J.; Lourenço, P.B. Integrating Experimental Analysis and Gradient Boosting for the Durability Assessment of Lime-Based Mortar in Acidic Environment. Buildings 2025, 15, 408. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Zhu, X.; Xiao, J. Multi-criteria optimization of concrete mixes incorporating cenosphere waste and multi-minerals. J. Clean. Prod. 2022, 367, 133102. [Google Scholar] [CrossRef]
- Rashid, K.; Rehman, M.U.; de Brito, J.; Ghafoor, H. Multi-criteria optimization of recycled aggregate concrete mixes. J. Clean. Prod. 2020, 276, 124316. [Google Scholar] [CrossRef]
- Negrin, I.; Kripka, M.; Yepes, V. Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildings. J. Clean. Prod. 2023, 425, 139115. [Google Scholar] [CrossRef]
- Hoseini, S.O.; Sohrabi, M.R.; Mousavi, S.R.; Ghasemi, M. November. Studying the rheological features, mechanical properties and flexural toughness of the WSFRSCC by varying the coarse aggregate volume. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; Volume 57, p. 105115. [Google Scholar]
- EFCA. Environmental Product Declaration (EPD) Report. In Concrete Admixtures–Plasticisers and Superplasticisers; European Federation of Concrete Admixtures Associations Ltd. (EFCA): Vigo, Spain, 2015. [Google Scholar]
- EN 197-1; European Reference Life Cycle Database of the Joint Research Center, Version 3.2: Portland Cement (CEM I). CEMBUREAU Production Mix, at Plant, CEMBUREAU Technology Mix. European Committee for Standardization: Brussels, Belgium, 2015.
- Park, W.J.; Kim, T.; Roh, S.; Kim, R. Analysis of life cycle environmental impact of recycled aggregate. Appl. Sci. 2019, 9, 1021. [Google Scholar] [CrossRef]
- Hassanshahi, O.; Kameli, S.; Mohammadpour, R.; Bakhshi, M.; Mahboob, A. Experimental Investigation of Sustainable Roller-Compacted Concrete Pavement (RCCP) Reinforced with Natural Fibers: Mechanical Performance, Durability, and Environmental Impacts. Int. J. Pavement Res. Technol. 2025, 1–24. [Google Scholar] [CrossRef]
- Salati, M.; Bragança, L.; Mateus, R. Sustainability assessment on an urban scale: Context, challenges, and most relevant indicators. Appl. Syst. Innov. 2022, 5, 41. [Google Scholar] [CrossRef]
- Braga, A.M.; Silvestre, J.D.; de Brito, J. Compared environmental and economic impact from cradle to gate of concrete with natural and recycled coarse aggregates. J. Clean. Prod. 2017, 162, 529–543. [Google Scholar] [CrossRef]
- Salles, A.; Salati, M.; Bragança, L. Analyzing the feasibility of integrating urban sustainability assessment indicators with city information modelling (CIM). Appl. Syst. Innov. 2023, 6, 45. [Google Scholar] [CrossRef]
- Abed, M.; Shmlls, M. Analysis of three generations of recycled concrete: An approach using LCA and weighted sum model. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Kareem, M.A.; Ajadi, E.O.; Fadipe, O.O.; Ishola, K.; Olawuyi, O.A.; Ayanlere, S.A.; Olatoyan, O.J.; Adeosun, J.O.; Adefajo, A.A.; Oyewo, A.T.; et al. Sustainability-driven application of waste steel and tyre rubber fibres as reinforcement in concrete: An optimization study using response surface methodology. Next Mater. 2024, 7, 100345. [Google Scholar] [CrossRef]
- Zong, S.; Liu, Z.; Li, S.; Lu, Y.; Zheng, A. Stress-strain behaviour of steel-fibre-reinforced recycled aggregate concrete under axial tension. J. Clean. Prod. 2021, 278, 123248. [Google Scholar] [CrossRef]
- Peen, W.Y.; Keong, C.K. Behaviour of hollow circular section with multiple perforations under compression, flexure and torsion. Lat. Am. J. Solids Struct. 2019, 16, e169. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Ni, S.; Liu, L.; Walubita, L.F. Mechanical performance and environmental impacts of self-compacting concrete with recycled demolished concrete blocks. J. Clean. Prod. 2021, 293, 126129. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Q.; Deng, Y.; Lin, J. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites. Cem. Concr. Compos. 2022, 128, 104422. [Google Scholar] [CrossRef]
- Ramkumar, K.B.; PR, K.R. Impact of hybrid steel fibres on fresh and mechanical properties of Self-compacting concrete. Case Stud. Constr. Mater 2022, 17, e01274. [Google Scholar]
- Mahboob, A.; Hasanshahi, O.; Hakimi, A.; Safi, M. Evaluating the performance of hollow core slabs (HCS)-concrete and simplifying their implementation. Recent Prog. Mater. 2023, 5, 1–15. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Khayat, K.H. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos. Part B Eng. 2019, 174, 107021. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, M.; Xiong, B.; Zhang, S. Study on the physical and mechanical properties of concrete interfacial transition zones (ITZ) with consideration of positional effects. Constr. Build. Mater. 2025, 486, 141985. [Google Scholar] [CrossRef]
- Htet, P.; Chen, W.; Hao, H.; Shaikh, F. Influence of micro basalt and recycled macro polypropylene hybrid fibre on physical and mechanical properties of recycled aggregate concrete. J. Build. Eng. 2023, 76, 107083. [Google Scholar] [CrossRef]
- Cui, K.; Xu, L.; Tao, T.; Huang, L.; Li, J.; Hong, J.; Li, H.; Chi, Y. Mechanical behavior of multiscale hybrid fiber reinforced recycled aggregate concrete subject to uniaxial compression. J. Build. Eng. 2023, 71, 106504. [Google Scholar] [CrossRef]
- Abedi, M.; Sanivada, U.K.; Mirian, S.A.; Fangueiro, R. A self-sensing and self-heating planar braided composite for smart civil infrastructures reinforcement. Constr. Build. Mater. 2023, 387, 131617. [Google Scholar] [CrossRef]
- Zia, A.; Zhang, P.; Holly, I. Effectiveness of hybrid discarded tire/Industrial steel fibers for improving the sustainability of concrete structures. Constr. Build. Mater. 2023, 378, 131226. [Google Scholar] [CrossRef]
- Yousefi, A.; Bunnori, N.M.; Khavarian, M. Experimental investigation on effect of multi-walled carbon nanotubes concentration on flexural properties and microstructure of cement mortar composite. In Proceedings of the International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering (IGNITE-AICCE’17), Penang, Malaysia, 8–9 August 2017; AIP Conference Proceedings. AIP Publishing: Melville, NY, USA, 2017; Volume 1892. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, X.; Wan, S.; Cao, Z.; Weng, S.; Wu, K. Experimental and theoretical investigation on axial tensile behavior of ultra-high performance concrete (UHPC) with recycled steel fibers from waste tires. Constr. Build. Mater. 2024, 456, 139300. [Google Scholar] [CrossRef]
- Abedi, M.; Hasanshahi, O.; Barros, J.A.; Correia, A.G.; Fangueiro, R. Three-dimensional braided composites as innovative smart structural reinforcements. Compos. Struct. 2022, 297, 115912. [Google Scholar] [CrossRef]
- Yuan, C.; Qu, S.; Bai, W.; Guan, J.; Xie, Y. Study on the mechanical properties and mesoscopic damage mechanism of recycled aggregate concrete under different dynamic strain rates after freeze-thaw cycles. Case Stud. Constr. Mater. 2025, 22, e04182. [Google Scholar] [CrossRef]
- Azimi, N.; Oliveira, D.V.; Schollbach, K.; Lourenço, P.B. Durability and bond behavior of textile-reinforced mortar composites under prolonged saline exposure. J. Build. Eng. 2025, 112, 113887. [Google Scholar] [CrossRef]
- Azimi, N.; Oliveira, D.V.; Ghiassi, B.; Dalalbashi, A.; Lourenço, P.B. Evaluation of creep effects on textile-reinforced mortar via single-lap shear testing. Constr. Build. Mater. 2025, 497, 143897. [Google Scholar] [CrossRef]
- Shao, R.; Wu, C.; Li, J.; Liu, Z. Development of sustainable steel fibre-reinforced dry ultra-high performance concrete (DUHPC). J. Clean. Prod. 2022, 337, 130507. [Google Scholar] [CrossRef]
- Zhong, R.; Ai, X.; Pan, M.; Yao, Y.; Cheng, Z.; Peng, X.; Wang, J.; Zhou, W. Durability of micro-cracked UHPC subjected to coupled freeze-thaw and chloride salt attacks. Cem. Concr. Compos. 2024, 148, 105471. [Google Scholar] [CrossRef]
- Han, X.; Ding, N.; Chen, A.; Wang, Z.; Xu, Y.; Feng, L.; Ji, Y.; Li, K.; Jing, J.; Sun, S.; et al. Experimental study on freeze-thaw failure of concrete incorporating waste tire crumb rubber and analytical evaluation of frost resistance. Constr. Build. Mater. 2024, 439, 137356. [Google Scholar] [CrossRef]
- Hassanshahi, O.; Jorge, M.; Sena-Cruz, J.; Correia, L.; Leite, C.; Hasan, T.; Correia, J.R.; Garrido, M.; Cabral-Fonseca, S. Durability of GFRP composites produced by pultrusion under thermal environments. Procedia Struct. Integr. 2024, 64, 81–88. [Google Scholar] [CrossRef]
- El Ouni, M.H.; Shah, S.H.A.; Ali, A.; Muhammad, S.; Mahmood, M.S.; Ali, B.; Marzouki, R.; Raza, A. Mechanical performance, water and chloride permeability of hybrid steel-polypropylene fiber-reinforced recycled aggregate concrete. Case Stud. Constr. Mater. 2022, 16, e00831. [Google Scholar] [CrossRef]
- Hasanshahi, O.; Majid, T.A.; Lau, T.L.; Yousefi, A.; Tahara, R.M.K. Seismic performance of the typical RC beam–column joint subjected to repeated earthquakes. In Proceedings of the International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering (IGNITE-AICCE’17), Penang, Malaysia, 8–9 August 2017; AIP Conference Proceedings. AIP Publishing: Melville, NY, USA, 2017; Volume 1892, p. 120014. [Google Scholar] [CrossRef]
- Lu, D.; Wang, D.; Wang, Y.; Zhong, J. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide. Constr. Build. Mater. 2023, 384, 131244. [Google Scholar] [CrossRef]
- Bao, X.; Li, Y.; Chen, X.; Yang, H.; Cui, H. Investigation on the flexural behaviour and crack propagation of hybrid steel fibre reinforced concrete with a low fibre content for tunnel structures. Constr. Build. Mater. 2024, 417, 135253. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Yoo, D.Y. Combined corrosion and inclination effects on pullout behavior of various steel fibers under wet-dry cycle deterioration. Cem. Concr. Compos. 2023, 142, 105229. [Google Scholar] [CrossRef]
- Salati, M.; Costa, A.A.; Silvestre, J.D. A Comprehensive Review of Dynamic Life Cycle Assessment for Buildings: Exploring Key Processes and Methodologies. Sustainability 2024, 17, 159. [Google Scholar] [CrossRef]
- Ma, X.; Hu, H.; Luo, Y.; Yao, W.; Wei, Y.; She, A. A carbon footprint assessment for usage of recycled aggregate and supplementary cementitious materials for sustainable concrete: A life-cycle perspective in China. J. Clean. Prod. 2025, 490, 144772. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Li, W.; Xiao, H.; Xu, K.; Yang, J. Mechanical properties of soil reinforced by fiber and alkaline-activated rice husk ash, and rainfall erosion model tests. Sci. Total Environ. 2025, 958, 178099. [Google Scholar] [CrossRef]
- Hafez, H.; Malchiodi, B.; Tošić, N.; Drewniok, M.; Purnell, P.; de la Fuente, A. Decarbonization potential of steel fibre-reinforced limestone calcined clay cement concrete one-way slabs. Constr. Build. Mater. 2024, 435, 136847. [Google Scholar] [CrossRef]
- Dezhampanah, S.; Nikbin, I.; Charkhtab, S.; Fakhimi, F.; Bazkiaei, S.M.; Mohebbi, R. Environmental performance and durability of concrete incorporating waste tire rubber and steel fiber subjected to acid attack. J. Clean. Prod. 2020, 268, 122216. [Google Scholar] [CrossRef]
- Kumari, S.; Walia, R. Life cycle assessment of sustainable concrete by utilizing groundnut husk ash in concrete. Mater. Today Proc. 2022, 49, 1910–1915. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Sen, S.; Gadkari, S. The mathematics of life cycle sustainability assessment. J. Clean. Prod. 2021, 309, 127457. [Google Scholar] [CrossRef]
- Huang, W.; Wang, H. Comprehensive assessment of engineering and environmental attributes of geopolymer pervious concrete with natural and recycled aggregate. J. Clean. Prod. 2024, 468, 143138. [Google Scholar] [CrossRef]
- Biswas, W.K.; Zhang, X.; Matters, C.; Maboud, M. Techno-Eco-Efficiency Assessment of Using Recycled Steel Fibre in Concrete. Sustainability 2024, 16, 3717. [Google Scholar] [CrossRef]























| Variables | Coarse Aggregates (kg/m3) | Fine Aggregate (kg/m3) | ||
|---|---|---|---|---|
| RCA | CG | RS | ||
| Bulk specific gravity (OD) | 2.35 | 2.68 | 2.56 | |
| Bulk specific gravity (SSD) | 2.45 | 2.72 | 2.61 | |
| Apparent specific gravity | 2.55 | 2.78 | 2.66 | |
| Fineness modulus (FM) | - | - | 2.85 | |
| Absorption capacity (%) | 6.5 | 0.8 | 0.5 | |
| Voids (%) | Loose condition | 35 | 27 | 38 |
| Compact condition | 30 | 22 | 33 | |
| SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | MgO (%) | CaO (%) | Na2O (%) | K2O (%) | SO3 (%) | Loss of Ignition | Specific Gravity (g/cm3) |
|---|---|---|---|---|---|---|---|---|---|
| 13.48 | 3.69 | 7.78 | 1.29 | 67.46 | 0.36 | 0.98 | 4.82 | 1.98 | 3.18 |
| Fibers | Density (Kg/m3) | Tensile Strength (MPa) | Modulus of Elasticity (MPa) | Elongation (%) | Diameter (mm) | Length (mm) |
|---|---|---|---|---|---|---|
| ISF | 7400 | 1230 | 210,000 | 3.0 ± 1.0 | 0.55 | 33.0 |
| RSF | 7400 | 2648 ± 423 | 200,000 | 2.2 ± 1.5 | 0.25 ± 0.08 | 26 ± 10 |
| Components | Quantity (kg/m3) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Cem | Wat | RCA | CG | RS | ISF | RSF | SP | Wat/Cem (−) | |
| N100_R0_ISF0_RSF0 | 340 | 159.5 | - | 1120 | 930 | - | - | - | 0.47 |
| N100_R0_ISF0.3_RSF0 | 340 | 154.04 | - | 1120 | 930 | 21.6 | - | 3.4 | 0.45 |
| N100_R0_ISF0.6_RSF0 | 340 | 158.6 | - | 1120 | 930 | 43.2 | - | 6.8 | 0.47 |
| N100_R0_ISF0.9_RSF0 | 340 | 157.3 | - | 1120 | 930 | 64.8 | - | 10.2 | 0.46 |
| N100_R0_ISF0_RSF0.3 | 340 | 156.04 | - | 1120 | 930 | - | 21.6 | 3.4 | 0.46 |
| N100_R0_ISF0_RSF0.6 | 340 | 156.2 | - | 1120 | 930 | - | 43.2 | 6.8 | 0.46 |
| N100_R0_ISF0_RSF0.9 | 340 | 159.7 | - | 1120 | 930 | - | 64.8 | 10.2 | 0.47 |
| N100_R0_ISF0.15_RSF0.15 | 340 | 155 | - | 1120 | 930 | 10.8 | 10.8 | 3.4 | 0.46 |
| N100_R0_ISF0.3_RSF0.3 | 340 | 159.71 | - | 1120 | 930 | 21.6 | 21.6 | 6.8 | 0.47 |
| N100_R0_ISF0.45_RSF0.45 | 340 | 157.54 | - | 1120 | 930 | 32.4 | 32.4 | 10.2 | 0.46 |
| N50_R50_ISF0_RSF0 | 340 | 183.9 | 491 | 560 | 930 | - | - | - | 0.54 |
| N50_R50_ISF0.3_RSF0 | 340 | 181.4 | 491 | 560 | 930 | 21.6 | - | 3.4 | 0.53 |
| N50_R50_ISF0.6_RSF0 | 340 | 188.14 | 491 | 560 | 930 | 43.2 | - | 6.8 | 0.55 |
| N50_R50_ISF0.9_RSF0 | 340 | 186.6 | 491 | 560 | 930 | 64.8 | - | 10.2 | 0.55 |
| N50_R50_ISF0_RSF0.3 | 340 | 170.2 | 491 | 560 | 930 | - | 21.6 | 3.4 | 0.5 |
| N50_R50_ISF0_RSF0.6 | 340 | 178.4 | 491 | 560 | 930 | - | 43.2 | 6.8 | 0.52 |
| N50_R50_ISF0_RSF0.9 | 340 | 186.9 | 491 | 560 | 930 | - | 64.8 | 10.2 | 0.55 |
| N50_R50_ISF0.15_RSF0.15 | 340 | 182.4 | 491 | 560 | 930 | 10.8 | 10.8 | 3.4 | 0.54 |
| N50_R50_ISF0.3_RSF0.3 | 340 | 181.8 | 491 | 560 | 930 | 21.6 | 21.6 | 6.8 | 0.53 |
| N50_R50_ISF0.45_RSF0.45 | 340 | 185 | 491 | 560 | 930 | 32.4 | 32.4 | 10.2 | 0.54 |
| Raw Materials | GWP (kg CO2-eq.) | ODP (kg CFC11-eq.) | AP (kg SO2-eq.) | EP -eq.) | POCP (kg ethene-eq.) | ADP | |
|---|---|---|---|---|---|---|---|
| Elements (kg Sb-eq.) | Fossil Fuels (MJ) | ||||||
| Cem | 0.90323 | 4.37 × −108 | 0.00221 | 0.000259 | 0.000166 | 1.43 × −108 | 3.47205 |
| Wat | 0.00026 | 3.01 × −1011 | 1.31 × −106 | 7.28 × −107 | 5.88 × −108 | 5.83 × −1010 | 0.0 |
| RCA | 0.00396 | 6.82 × −1011 | 2.97 × −105 | 1.37 × −105 | 6.33 × −107 | 5.5 × −1010 | 0.0533 |
| CG | 0.0244 | 2.43 × −1010 | 0.000144 | 3.18 × −105 | 7.83 × −106 | 1.09 × −109 | 0.0 |
| RS | 0.003145 | 1.17 × −1010 | 3.59 × −105 | 8.1 × −106 | 7.28 × −107 | 3.28 × −1012 | 0.0 |
| ISF | 1.09588 | 7.97 × −108 | 0.00298 | 0.000307 | 0.0005 | 0.0 | 11.371 |
| RSF | 0.05474 | 8.63 × −109 | 0.000327 | 1.72 × −105 | 1.62 × −105 | 1.36 × −109 | 0.642 |
| SP | 1.88 | 2.3 × −1010 | 0.00292 | 0.00103 | 0.000212 | 0.0000011 | 29.1 |
| Raw Materials | PE-NRe (MJ) | PE-Re (MJ) |
|---|---|---|
| Cem | 4.112 | 0.1322 |
| Wat | 0.0051 | 0.000683 |
| RCA | 0.05 | 0.0001 |
| CG | 0.344 | 0.000381 |
| RS | 0.04 | 0.0 |
| ISF | 12.1 | 0.21928 |
| RSF | 0.991 | 0.01527 |
| SP | 31.4 | 1.51 |
| Cylinder Specimens | Compressive Strength | Secant Modulus of Elasticity | Compressive Toughness | |||
|---|---|---|---|---|---|---|
| (MPa) | CoV (%) | (MPa) | CoV (%) | (N/mm) | CoV (%) | |
| N100_R0_ISF0_RSF0 | 31.72 | 6.72 | 34431.4 | 5.91 | 15.77 | 17.01 |
| N100_R0_ISF0.3_RSF0 | 28.1 | 4.89 | 32304.44 | 5.88 | 18.42 | 19.63 |
| N100_R0_ISF0.6_RSF0 | 31.15 | 4.2 | 33245.58 | 4.6 | 34.77 | 11.20 |
| N100_R0_ISF0.9_RSF0 | 24.42 | 6.91 | 29177.7 | 5.89 | 39.62 | 13.76 |
| N100_R0_ISF0_RSF0.3 | 27.04 | 5.72 | 31342.9 | 5.53 | 18.53 | 18.07 |
| N100_R0_ISF0_RSF0.6 | 26.18 | 4.28 | 30987.92 | 4.56 | 20.83 | 20.05 |
| N100_R0_ISF0_RSF0.9 | 24.5 | 6.82 | 29473.8 | 5.72 | 38.66 | 14.92 |
| N100_R0_ISF0.15_RSF0.15 | 27.5 | 3.81 | 31677.1 | 6.57 | 18.07 | 21.87 |
| N100_R0_ISF0.3_RSF0.3 | 25.13 | 5.55 | 29973.07 | 7.59 | 30.69 | 13.85 |
| N100_R0_ISF0.45_RSF0.45 | 29.05 | 4.37 | 33358.41 | 4.7 | 40.48 | 13.11 |
| N50_R50_ISF0_RSF0 | 25.19 | 4.29 | 30192.08 | 6.12 | 14.29 | 13.7 |
| N50_R50_ISF0.3_RSF0 | 25.61 | 6.44 | 30533.79 | 6.42 | 21.27 | 16.46 |
| N50_R50_ISF0.6_RSF0 | 28.7 | 5.21 | 32481.51 | 4.95 | 30.88 | 13.68 |
| N50_R50_ISF0.9_RSF0 | 23.9 | 5.91 | 28754.6 | 5.24 | 34.93 | 10.34 |
| N50_R50_ISF0_RSF0.3 | 25.32 | 5.5 | 30356.73 | 6.8 | 18.38 | 12.88 |
| N50_R50_ISF0_RSF0.6 | 22.29 | 6.4 | 26576.05 | 3.9 | 26.65 | 11.69 |
| N50_R50_ISF0_RSF0.9 | 23.85 | 5.79 | 28210.66 | 4.29 | 31.43 | 12.51 |
| N50_R50_ISF0.15_RSF0.15 | 27.94 | 5.44 | 31750.45 | 4.06 | 18.47 | 14.05 |
| N50_R50_ISF0.3_RSF0.3 | 29.62 | 7.6 | 33012.7 | 3.3 | 43.57 | 8.51 |
| N50_R50_ISF0.45_RSF0.45 | 29.33 | 5.38 | 32953.14 | 4.33 | 41.81 | 7.12 |
| Notched Beam Specimens | CMOD ≤ 0.05 mm | CMOD1 = 0.5 mm | CMOD2 = 1.5 mm | CMOD3 = 2.5 mm | CMOD4 = 3.5 mm | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| (MPa) | CoV (%) | (MPa) | CoV (%) | (MPa) | CoV (%) | (MPa) | CoV (%) | (MPa) | CoV (%) | |
| N100_R0_ISF0_RSF0 | 4.14 | 6.32 | 0.03 | 9.29 | - | - | - | - | - | - |
| N100_R0_ISF0.3_RSF0 | 4.4 | 7.8 | 2.25 | 10.84 | 1.53 | 17.34 | 1.17 | 28.44 | 0.54 | 33.27 |
| N100_R0_ISF0.6_RSF0 | 5.92 | 5.3 | 5.18 | 7.1 | 4.3 | 10.81 | 3.44 | 12.52 | 2.55 | 19.02 |
| N100_R0_ISF0.9_RSF0 | 5.87 | 5.7 | 5.86 | 6.56 | 5.04 | 8.13 | 3.27 | 9.43 | 2.43 | 11.22 |
| N100_R0_ISF0_RSF0.3 | 4.29 | 8.51 | 2.67 | 11.74 | 1.32 | 19.66 | 0.83 | 33.42 | 0.51 | 37.1 |
| N100_R0_ISF0_RSF0.6 | 4.72 | 7.09 | 4.6 | 8.86 | 3.62 | 13.11 | 3.01 | 18.88 | 2.58 | 22.84 |
| N100_R0_ISF0_RSF0.9 | 5.94 | 6.12 | 5.68 | 6.92 | 4.52 | 8.79 | 3.65 | 11.08 | 2.6 | 13.52 |
| N100_R0_ISF0.15_RSF0.15 | 4.38 | 8.55 | 2.62 | 12.31 | 1.42 | 19.51 | 0.93 | 31.61 | 0.62 | 38.88 |
| N100_R0_ISF0.3_RSF0.3 | 5.91 | 4.1 | 5.45 | 5.37 | 4.28 | 7.46 | 3.54 | 11.19 | 2.84 | 13.88 |
| N100_R0_ISF0.45_RSF0.45 | 6.25 | 5.56 | 6.1 | 6.51 | 5.0 | 7.88 | 3.27 | 9.77 | 2.6 | 11.53 |
| N50_R50_ISF0_RSF0 | 4.04 | 8.52 | 0.14 | 12.61 | - | - | - | - | - | - |
| N50_R50_ISF0.3_RSF0 | 4.22 | 7.78 | 2.59 | 10.89 | 1.32 | 17.75 | 0.88 | 27.69 | 0.61 | 37.94 |
| N50_R50_ISF0.6_RSF0 | 5.85 | 4.62 | 5.47 | 5.91 | 4.03 | 8.39 | 3.39 | 11.24 | 2.43 | 14.84 |
| N50_R50_ISF0.9_RSF0 | 5.92 | 4.64 | 5.71 | 5.38 | 4.69 | 6.91 | 3.52 | 7.88 | 2.45 | 9.69 |
| N50_R50_ISF0_RSF0.3 | 4.49 | 8.1 | 2.07 | 10.85 | 1.6 | 16.55 | 1.34 | 25.16 | 0.69 | 34.97 |
| N50_R50_ISF0_RSF0.6 | 5.02 | 7.4 | 4.39 | 9.62 | 3.81 | 14.09 | 3.52 | 18.32 | 2.28 | 24.73 |
| N50_R50_ISF0_RSF0.9 | 5.97 | 5.79 | 5.5 | 7.01 | 4.07 | 9.32 | 3.83 | 11.93 | 3.18 | 15.03 |
| N50_R50_ISF0.15_RSF0.15 | 4.58 | 8.61 | 2.44 | 12.57 | 1.51 | 19.55 | 1.08 | 30.89 | 0.76 | 38.55 |
| N50_R50_ISF0.3_RSF0.3 | 6.27 | 5.8 | 5.83 | 7.95 | 4.73 | 9.5 | 4.04 | 10.45 | 2.89 | 12.23 |
| N50_R50_ISF0.45_RSF0.45 | 6.32 | 4.95 | 5.74 | 6.09 | 4.75 | 7.19 | 4.19 | 7.77 | 3.34 | 9.01 |
| Eco-Efficiency Ranking | WSM Ranking | TOPSIS Ranking | ||
|---|---|---|---|---|
| RCCP Mixtures | Score | RCCP Mixtures | Score | |
| 1 | N50_R50_ISF0.3_RSF0.3 | 0.8 | N50_R50_ISF0.3_RSF0.3 | 0.73 |
| 2 | N50_R50_ISF0.45_RSF0.45 | 0.72 | N50_R50_ISF0.45_RSF0.45 | 0.64 |
| 3 | N100_R0_ISF0.45_RSF0.45 | 0.66 | N100_R0_ISF0_RSF0.9 | 0.61 |
| 4 | N100_R0_ISF0_RSF0.9 | 0.65 | N50_R50_ISF0_RSF0.9 | 0.61 |
| 5 | N50_R50_ISF0_RSF0.9 | 0.65 | N100_R0_ISF0.45_RSF0.45 | 0.6 |
| 6 | N100_R0_ISF0.6_RSF0 | 0.62 | N100_R0_ISF0.6_RSF0 | 0.59 |
| 7 | N100_R0_ISF0.3_RSF0.3 | 0.59 | N100_R0_ISF0.3_RSF0.3 | 0.58 |
| 8 | N50_R50_ISF0.6_RSF0 | 0.57 | N50_R50_ISF0.6_RSF0 | 0.56 |
| 9 | N50_R50_ISF0_RSF0.6 | 0.54 | N50_R50_ISF0_RSF0.6 | 0.53 |
| 10 | N100_R0_ISF0.9_RSF0 | 0.5 | N100_R0_ISF0.9_RSF0 | 0.5 |
| 11 | N100_R0_ISF0_RSF0.6 | 0.5 | N100_R0_ISF0_RSF0.6 | 0.5 |
| 12 | N50_R50_ISF0.9_RSF0 | 0.49 | N50_R50_ISF0.9_RSF0 | 0.5 |
| 13 | N50_R50_ISF0.15_RSF0.15 | 0.47 | N50_R50_ISF0.15_RSF0.15 | 0.48 |
| 14 | N50_R50_ISF0_RSF0.3 | 0.47 | N50_R50_ISF0_RSF0.3 | 0.48 |
| 15 | N100_R0_ISF0_RSF0 | 0.45 | N100_R0_ISF0_RSF0 | 0.47 |
| 16 | N50_R50_ISF0_RSF0 | 0.41 | N50_R50_ISF0_RSF0 | 0.45 |
| 17 | N100_R0_ISF0_RSF0.3 | 0.4 | N100_R0_ISF0_RSF0.3 | 0.43 |
| 18 | N100_R0_ISF0.15_RSF0.15 | 0.4 | N100_R0_ISF0.15_RSF0.15 | 0.42 |
| 19 | N50_R50_ISF0.3_RSF0 | 0.38 | N50_R50_ISF0.3_RSF0 | 0.41 |
| 20 | N100_R0_ISF0.3_RSF0 | 0.38 | N100_R0_ISF0.3_RSF0 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanshahi, O.; Karimzadeh, S.; Bakhshi, M.; Azimi, N. Synergistic Role of Recycled Concrete Aggregates and Hybrid Steel Fibers in Roller-Compacted Concrete Pavements: A Multi-Criteria Assessment for Eco-Efficiency Optimization. Buildings 2025, 15, 4279. https://doi.org/10.3390/buildings15234279
Hassanshahi O, Karimzadeh S, Bakhshi M, Azimi N. Synergistic Role of Recycled Concrete Aggregates and Hybrid Steel Fibers in Roller-Compacted Concrete Pavements: A Multi-Criteria Assessment for Eco-Efficiency Optimization. Buildings. 2025; 15(23):4279. https://doi.org/10.3390/buildings15234279
Chicago/Turabian StyleHassanshahi, Omid, Shaghayegh Karimzadeh, Mohammad Bakhshi, and Nima Azimi. 2025. "Synergistic Role of Recycled Concrete Aggregates and Hybrid Steel Fibers in Roller-Compacted Concrete Pavements: A Multi-Criteria Assessment for Eco-Efficiency Optimization" Buildings 15, no. 23: 4279. https://doi.org/10.3390/buildings15234279
APA StyleHassanshahi, O., Karimzadeh, S., Bakhshi, M., & Azimi, N. (2025). Synergistic Role of Recycled Concrete Aggregates and Hybrid Steel Fibers in Roller-Compacted Concrete Pavements: A Multi-Criteria Assessment for Eco-Efficiency Optimization. Buildings, 15(23), 4279. https://doi.org/10.3390/buildings15234279

