The Uniaxial Compressive Constitutive Behavior and Mesoscopic Numerical Simulation of HPC Incorporating ASR Mitigation Measures After Ten Years of Alkali Solution Immersion
Abstract
1. Introduction
2. Experiments
2.1. Materials
| Cement | Specific Surface Area/m2·kg−1 | Fineness/% | Standard Consistency Water Demand/% | Setting Time/min | Flexural Strength/MPa | Compressive Strength/MPa | |||
|---|---|---|---|---|---|---|---|---|---|
| Initial | Final | 3d | 28d | 3d | 28d | ||||
| P.O 42.5 | 348 | 0.8 | 26 | 145 | 220 | 5.5 | 7.6 | 21.6 | 48.7 |
| P.II 52.5 | 412 | 0.8 | 25 | 95 | 146 | 5.6 | 9.3 | 26.8 | 57.2 |
| Cementitious Materials | CaO | SiO2 | Al2O3 | Na2O | K2O | SO3 | Fe2O3 | Cl− | Ignition Loss |
|---|---|---|---|---|---|---|---|---|---|
| P.II 52.5 | 65.88 | 19.56 | 3.78 | 0.50 | 0.82 | 2.41 | 3.69 | 0.022 | 0.94 |
| P.O 42.5 | 59.45 | 20.98 | 9.38 | 0.24 | 0.59 | 2.44 | 3.64 | 0.023 | 1.28 |
| GGBFS | 37.38 | 26.09 | 26.88 | 0.49 | 0.83 | 1.75 | 0.67 | 0.014 | 0.31 |
| SF | 0.50 | 90.51 | 0.96 | 1.03 | 2.00 | — | 0.64 | 0.26 | 2.26 |
| FA | 2.94 | 52.68 | 32.42 | 0.74 | 1.46 | 0.74 | 7.47 | 0.0012 | 0.34 |
| Cementitious Materials | K2O | NaO | K2O + 0.658NaO |
|---|---|---|---|
| P.II 52.5 | 0.82 | 0.50 | 1.04 |
| P.O 42.5 | 0.59 | 0.24 | 0.63 |
| GGBFS | 0.40 | 0.27 | 0.53 |
| SF | 2.00 | 1.03 | 2.35 |
| FA | 1.35 | 0.63 | 1.52 |
| Aggregate | Bulk Density /kg·m−3 | Apparent Density /kg·m−3 | Percentage of Void/ % | Soil Content/ % | Flat Elongated Particles Content/% | Crush Index/% | SO42−/% | Cl− /% |
|---|---|---|---|---|---|---|---|---|
| Sand | 1470 | 2648 | 38.1 | 5.6 | - | - | 0.11 | 0.0054 |
| Stone | 1535 | 2680 | 41.0 | 0.8 | 2.9 | 8.2 | 0.02 | 0.0063 |
2.2. Mix Proportions
2.3. Corrosive Medium
2.4. Experimental Methods
2.4.1. Uniaxial Compressive Mechanical Test
2.4.2. Interface Transition Zone Thickness Test
2.4.3. Microphase and Microstructure Test
2.4.4. Data Processing
3. Results and Discussion
3.1. Evolution and Mechanical Behavior of HPC Under Uniaxial Compression
3.1.1. Trends in Uniaxial Compressive Strength
3.1.2. Effects of Internal Corrosion Damage and Expansion on Compressive Strength
3.1.3. Evolution of Elastic Modulus of HPC
3.2. Failure Patterns Under Uniaxial Compression and Evolution of Stress–Strain Curves
3.2.1. Failure Characteristics and Complete Stress–Strain Curve Analysis
3.2.2. Normalized Stress–Strain Equations and Analysis
3.3. Numerical Simulation of Uniaxial Compression and Mesoscale Damage Mechanism of HPC Under Long-Term Alkali Solution Immersion
3.3.1. A Mesoscale Approach: Modeling and Validating the Deterioration Process of HPC Under Long-Term Alkali Solution Immersion
3.3.2. Analysis of the Failure Process and Meso-Mechanism in HPC Prisms Under Uniaxial Compression
3.4. Microstructure and Microscopic Mechanism of ASR Inhibition of HPC in Alkaline Solution
4. Conclusions
- (1)
- While the axial compressive strength and elastic modulus of HPC increase with strength grade, they are reduced by elevated equivalent alkali content, which also intensifies internal damage and expansion. The observed linear dependence of strength on these damage parameters is of considerable significance, as it enables the non-destructive evaluation of compressive strength and offers substantial practical utility.
- (2)
- A large amount of FA, SF, and GGBFS was incorporated as ASR mitigation measures. Comparative analysis indicated that HPC with the air-entraining agent exhibited higher uniaxial compressive strength than specimens with only corrosion-inhibiting admixture. This demonstrates that the addition of air-entraining agents offers superior ASR mitigation, highlighting the significance of exploring ASR suppression strategies.
- (3)
- The study analyzed stress–strain curves and established a constitutive model, with parameters a and b influencing curve shape and concrete performance. An increase in a indicates that HPC exhibits predominantly plastic deformation in the corresponding stage, whereas a smaller a indicates mainly elastic behavior. As b approaches infinity, HPC demonstrates full ductility; conversely, when b = 0, the curve rapidly drops at the peak, indicating complete brittleness.
- (4)
- Mesoscale simulations of alkali-exposed HPC under uniaxial compression revealed distinct failure mechanisms correlated with strength. Low-strength specimens exhibited poor integrity, with cracks initiating from multiple sites, propagating extensively, and causing pronounced spalling. Conversely, high-strength concrete demonstrated superior crack resistance, characterized by fewer, more localized cracks that often coalesced into a single dominant shear fracture. Cross-sectional analysis confirmed that cracking consistently initiated within the mortar phase and propagated inwards under load, ultimately forming characteristic diagonal failure planes. By studying the SEM-EDS images, it was found that ASR only occurs in the local area of HPC, and does not cause serious cracking damage, which shows the design of the specific mix ratio HPC in this paper can effectively inhibit ASR. And HPC still has good corrosion resistance in long-term alkali solution immersion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Fu, M.; Zheng, K.; Zhang, K.; Fan, Y.; Niu, D. Ion transport mechanism and diffusion model establishment in recycled aggregate concrete subjected to magnesium, sulfate, and chloride attack. Constr. Build. Mater. 2024, 428, 136273–136285. [Google Scholar] [CrossRef]
- Xie, Y.; Jia, Y.; Zhang, Y.; Yang, F.; Zhu, C. Alkali-aggregate reaction in concrete for construction of Qinghai-Tibet Railway. J. Railw. Sci. Eng. 2004, 1, 6–13. [Google Scholar]
- Stanton, T.E. Expansion of concrete through reaction between cement and aggregate. ASCE 1940, 66, 1781–1811. [Google Scholar] [CrossRef]
- Tang, M. Classification of alkali aggregate reaction. In Proceedings of the 9th International Conference of Alkali Aggregate Reaction in Concrete, London, UK, 27–31 July 1992; Volume 2, pp. 648–653. [Google Scholar]
- Fanijo, E.O.; Kassem, E.; Ibrahim, A. ASR mitigation using binary and ternary blends with waste glass powder. Constr. Build. Mater. 2021, 280, 122425. [Google Scholar] [CrossRef]
- Nguyen, A.; Gharehbaghi, V.; Le, N.T.; Sterling, L.; Chaudhry, U.I.; Crawford, S. ASR crack identification in bridges using deep learning and texture analysis. Structures 2023, 50, 494–507. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Raja, K.; Vishnuvardhan, K.; Suchithra, S.; Maniarasan, S.; Saravanan, M.; Miruna, M.; Prabanjan, S. The ASR mechanism in concrete and the influence of lithium in mitigating it: A critical review. Mater. Today Proc. 2022, 65, A1–A6. [Google Scholar] [CrossRef]
- Lacsado, M.F.Y.; Velasco, I.I.I.V.L.; Juan, K.S. Expansion and Mitigation of Alkali-Silica Reaction in Binary Blended Concrete Confining Potentially Reactive Aggregates. Key Eng. Mater. 2023, 953, 75–82. [Google Scholar] [CrossRef]
- Chatterji, S. The role of Ca(OH)2 in the breakdown of Portland cement concrete due to alkali-silica reaction. Cem. Concr. Res. 1979, 9, 185–188. [Google Scholar] [CrossRef]
- Urhan, S. Alkali silica and pozzolanic reactions in concrete. Part 1: Interpretation of published results and an hypothesis concerning the mechanism. Cem. Concr. Res. 1987, 17, 141–152. [Google Scholar] [CrossRef]
- Chatterji, S.; Thaulow, N.; Jensen, A.D. Studies of alkali-silica reaction, part 6. Practical implications of a proposed reaction mechanism. Cem. Concr. Res. 1988, 18, 363–366. [Google Scholar] [CrossRef]
- Chatterji, S.; Thaulow, N.; Jensen, A.D. Studies of alkali-silica reaction. Part 5. Verification of a newly proposed reaction mechanism. Cem. Concr. Res. 1989, 19, 177–183. [Google Scholar] [CrossRef]
- Wang, H.; Gillott, J.E. Mechanism of alkali-silica reaction and the significance of calcium hydroxide. Cem. Concr. Res. 1991, 21, 647–654. [Google Scholar] [CrossRef]
- Garcia-Diaz, E.; Riche, J.; Bulteel, D.; Vernet, C. Mechanism of damage for the alkali–silica reaction. Cem. Concr. Res. 2006, 36, 395–400. [Google Scholar] [CrossRef]
- Figueira, R.; Sousa, R.; Coelho, L.; Azenha, M.; de Almeida, J.; Jorge, P.; da Silva, C.J.R. Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Constr. Build. Mater. 2019, 222, 903–931. [Google Scholar] [CrossRef]
- Ding, J.T.; Bai, Y.; Cai, Y.B. Suppressing effect of lithium slag on alkali silica reaction and separation of its self-expansion. J. Ho Hai Univ. (Nat. Sci.) 2008, 36, 824–827. [Google Scholar]
- Saha, A.K.; Khan, M.N.N.; Sarker, P.K.; Shaikh, F.A.; Pramanik, A. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Constr. Build. Mater. 2018, 171, 743–758. [Google Scholar] [CrossRef]
- Yang, H.Q.; Li, P.X.; Rao, M.J. Long term investigation and inhibition on alkali-aggregates reaction of Three Gorges Dam concrete. Constr. Build. Mater. 2017, 151, 673–681. [Google Scholar] [CrossRef]
- Kawamura, M.; Iwahori, K. ASR gel composition and expansive pressure in mortars under restraint. Cem. Concr. Compos. 2004, 26, 47–56. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghiasvand, E.; Nili, M. Relation between mechanical properties of concrete and alkali-silica reaction (ASR); a review. Constr. Build. Mater. 2020, 258, 119567. [Google Scholar] [CrossRef]
- Swamy, R.N.; Al-Asali, M.M. Engineering properties of concrete affected by alkali-silica reaction. Mater. J. 1988, 85, 367–374. [Google Scholar]
- Bektas, F.; Wang, K. Performance of ground clay brick in ASR-affected concrete: Effects on expansion, mechanical properties and ASR gel chemistry. Cem. Concr. Compos. 2012, 34, 273–278. [Google Scholar] [CrossRef]
- Ahmed, T.W.; El-Dieb, A.S.; Reda Taha, M.M. Evaluating the reactivity of alkali-silica reactive aggregates under the combined effect of stress and alkali attack. Constr. Build. Mater. 2018, 158, 380–391. [Google Scholar]
- Jin, L.; Liu, M.; Zhang, R.; Du, X. Cracking of cover concrete due to non-uniform corrosion of corner rebar: A 3D meso-scale study. Constr. Build. Mater. 2020, 245, 118449. [Google Scholar] [CrossRef]
- Liu, C.; Xie, D.; She, W.; Liu, Z.; Liu, G.; Yang, L.; Zhang, Y. Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material. Constr. Build. Mater. 2018, 189, 1251–1263. [Google Scholar] [CrossRef]
- Lu, Y.; Tu, Z. Mesoscale modelling of concrete for static and dynamic response analysis-Part 2: Numerical investigations. Struct. Eng. Mech. Int. J. 2011, 37, 215–231. [Google Scholar] [CrossRef]
- Naito, N.; Maeda, K.; Konno, H.; Ushiwatari, Y.; Suzuki, K.; Kawase, R. Rockfall impacts on sand cushions with different soil mechanical characteristics using discrete element method. Soils Found 2020, 60, 384–397. [Google Scholar] [CrossRef]
- Camborde, F.; Mariotti, C.; Donzé, F.V. Numerical study of rock and concrete behaviour by discrete element modelling. Comput. Geotech. 2000, 27, 225–247. [Google Scholar] [CrossRef]
- Ng, T.T. Triaxial test simulations with discrete element method and hydrostatic boundaries. J. Eng. Mech. 2004, 130, 1188–1194. [Google Scholar] [CrossRef]
- Schlangen, E.; Van Mier, J.G.M. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater. Struct. 1992, 25, 534–542. [Google Scholar] [CrossRef]
- Fascetti, A.; Ichimaru, S.; Bolander, J.E. Stochastic lattice discrete particle modeling of fracture in pervious concrete. Comput. Aided Civ. Infrastruct. Eng. 2022, 37, 1788–1808. [Google Scholar] [CrossRef]
- Zhou, G.T.; Xu, Z.H. 3D mesoscale investigation on the compressive fracture of concrete with different aggregate shapes and interface transition zones. Constr. Build. Mater. 2023, 393, 132111. [Google Scholar] [CrossRef]
- Häfner, S.; Eckardt, S.; Luther, T. Mesoscale modeling of concrete: Geometry and numerics. Comput. Struct. 2006, 84, 450–461. [Google Scholar] [CrossRef]
- Unger, J.F.; Eckardt, S. Multiscale Modeling of Concrete. Arch. Comput. Methods Eng. 2011, 18, 341–393. [Google Scholar] [CrossRef]
- Lilliu, G.; Van Mier, J.G.M. On the relative use of micro-mechanical lattice analysis of 3-phase particle composites. Eng. Fract. Mech. 2007, 74, 1174–1189. [Google Scholar] [CrossRef]
- Wittmann, F.H.; Roelfstra, P.E.; Sadouki, H. Simulation and analysis of composite structures. Mater. Sci. Eng. 1985, 68, 239–248. [Google Scholar] [CrossRef]
- Wang, F.; Yu, H.; Ma, H.; Cheng, M.; Guo, J.; Zhang, J.; Liu, W.; Gao, W.; Tao, Q.; Guo, J. Mechanical Performance of The ITZ and Mesoscopic Compression Failure Mechanism of HPC with ASR Inhibition Measures under Long-term Brine Corrosion. Case Stud. Constr. Mater. 2024, 21, e03505. [Google Scholar] [CrossRef]
- Peng, G. Study on the Durability of Concrete Structures in Subway Engineering Under High-Altitude Saline Soil Environment in Northwest China. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2018. [Google Scholar]
- Guo, J.; Guo, J.; Yu, H.; Ma, H.; Zhang, J.; Yan, J.; Wang, F.; Zhang, L. Mechanical Properties and Mesoscopic Numerical Simulation of Local Weakening in HPC under 10 Years of Alkali Solution Immersion. Buildings 2024, 14, 1965. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for Design of Concrete Structures. Architecture & Building Press: Beijing, China, 2015.
- ACI 318-11M; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2011.
- Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. Suitability of recycled concrete aggregate for use in BS 5328 EDSignated mixes. Proc. Inst. Civ. Eng.-Struct. Build. 1999, 134, 257–274. [Google Scholar] [CrossRef]
- Yu, H.; Da, B.; Yuan, Y.; Zhu, H. Proportioning Design and Compressive Strength Law of All-Coral Seawater Concrete; Annual Progress Report on Open Subjects; State Key Laboratory of Explosion Shock Compressive Strength Law of All-Coral Seawater Concrete People’s Liberation Army University of Science and Technology: Nanjing, China, 2014. [Google Scholar]
- Lai, J. Preparation and Dynamic Behaviour of Ultra-High Performance Cementitious Composites. Ph.D. Thesis, Southeast University, Nanjing, China, 2007. [Google Scholar]
- Wu, Z.; Zhang, J.; Yu, H.; Ma, H.; Chen, L.; Dong, W.; Huan, Y.; Zhang, Y. Coupling effect of strain rate and specimen size on the compressive properties of coral aggregate concrete: A 3D mesoscopic study. Compos. Part B Eng. 2020, 200, 108299. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Yu, H. Three-Dimensional Mesoscopic Investigation on Quasi- Static Compressive Properties of Coral Aggregate Concrete. ACI Mater. J. 2021, 118, 121–132. [Google Scholar] [CrossRef]
- Yan, J.; Yu, H.-F.; Zhang, W.-Q.; Zhang, L.-F.; Ma, H.-Y.; Gong, X.; Cheng, M.; Zhang, X.-T. Expansion and mechanical properties of high-performance concrete with ASR inhibition measures exposed to alkaline solution at 38°C for 10 years. Constr. Build. Mater. 2022, 353, 129044. [Google Scholar] [CrossRef]
- Ho, Q.V.; Le, T.H.M.; Huynh, T.P. The influence of pre-compression on the durability of high-performance concrete incorporating industrial by-products. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 2024, 238, 901–915. [Google Scholar] [CrossRef]
- Yan, J.; Yu, H.-F.; Zhang, W.-Q.; Zhang, L.-F.; Gong, X.; Cheng, M.; Zhang, X.-T. Full uniaxial compressive stress–strain curve of high-performance concrete with ASR inhibition measures exposed to lye solution at 38° C for 10 years. Constr. Build. Mater. 2022, 351, 128919. [Google Scholar] [CrossRef]
- Ma, H.; Tu, Y.; Yu, H.; Diao, Y.; Han, W.; Zhang, M. Mechanical properties and microstructural characteristics of coral-aggregate-concrete ITZ: Experimental study. J. Build. Eng. 2023, 72, 106647. [Google Scholar] [CrossRef]

















| Material/kg·m−3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Specimen Number | Stone | Sand | Cement | SF | FA | GGBFS | Total Powder Content | Air Entraining Agent | Rust Inhibitor | Water Reducer | Water | Equivalent Alkali Content/ % |
| Ca40-0 | 1165 | 714 | 405 | 55 | 460 | 0.23 | 8.64 | 161 | 0.6 | |||
| Ca45-0 | 1130 | 722 | 336 | 48 | 96 | 480 | 0.24 | 9.6 | 168 | 0.5 | ||
| Ca50-0 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 0.25 | 10 | 150 | 0.8 | |
| C50Z-0 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 33 | 10 | 127 | 0.8 | |
| Ca50Z-0 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 0.25 | 33 | 10 | 127 | 0.8 |
| Ca60Z-0 | 1155 | 739 | 322 | 16 | 80 | 118 | 536 | 0.268 | 33 | 13.4 | 127 | 0.7 |
| Ca40-1 | 1165 | 714 | 405 | 55 | 460 | 0.23 | 8.64 | 161 | 1.4 | |||
| Ca45-1 | 1130 | 722 | 336 | 48 | 96 | 480 | 0.24 | 9.6 | 168 | 1.4 | ||
| Ca50-1 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 0.25 | 10 | 150 | 1.3 | |
| C50Z-1 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 33 | 10 | 127 | 1.2 | |
| Ca50Z-1 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 0.25 | 33 | 10 | 127 | 1.2 |
| Ca60Z-1 | 1155 | 739 | 322 | 16 | 80 | 118 | 536 | 0.268 | 33 | 13.4 | 127 | 1.1 |
| Ca40-2 | 1165 | 714 | 405 | 55 | 460 | 0.23 | 8.64 | 161 | 1.9 | |||
| Ca45-2 | 1130 | 722 | 336 | 48 | 96 | 480 | 0.24 | 9.6 | 168 | 1.9 | ||
| Ca50-2 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 0.25 | 10 | 150 | 1.8 | |
| C50Z-2 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 33 | 10 | 127 | 1.6 | |
| Ca50Z-2 | 1159 | 741 | 325 | 15 | 60 | 100 | 500 | 0.25 | 33 | 10 | 127 | 1.6 |
| Ca60Z-2 | 1155 | 739 | 322 | 16 | 80 | 118 | 536 | 0.268 | 33 | 13.4 | 127 | 1.6 |
| No. | Internal Damage Variable D | Expansion Rate εt/% | Peak Stress σ0/MPa | Peak Strain ε0/10−3 | Peak Secant Modulus Ep/GPa | Elastic Modulus Ec/GPa |
|---|---|---|---|---|---|---|
| Ca40-0 | 0.04 | 0.096 | 31.1 | 1.12 | 27.77 | 28.51 |
| Ca45-0 | 0.05 | 0.094 | 28.8 | 1.27 | 22.68 | 26.4 |
| C50Z-0 | 0.04 | 0.092 | 35.8 | 1.38 | 25.94 | 31.02 |
| Ca50-0 | 0.03 | 0.096 | 41.9 | 1.52 | 27.57 | 33.15 |
| Ca50Z-0 | 0.04 | 0.096 | 41.5 | 1.35 | 30.74 | 33.05 |
| Ca60Z-0 | 0.05 | 0.094 | 47.9 | 1.31 | 36.56 | 35.89 |
| Ca40-1 | 0.03 | 0.095 | 30.5 | 1.47 | 20.75 | 26.43 |
| Ca45-1 | 0.03 | 0.091 | 20.4 | 1.58 | 12.91 | 21.38 |
| C50Z-1 | 0.09 | 0.088 | 38.7 | 1.50 | 25.80 | 28.18 |
| Ca50-1 | 0.12 | 0.097 | 39.0 | 1.35 | 28.89 | 31.08 |
| Ca50Z-1 | 0.04 | 0.095 | 39.4 | 1.47 | 26.80 | 32.75 |
| Ca60Z-1 | 0.03 | 0.089 | 45.9 | 1.51 | 30.40 | 35.25 |
| Ca40-2 | 0.04 | 0.095 | 29.7 | 1.20 | 24.75 | 24.59 |
| Ca45-2 | 0.06 | 0.093 | 19.1 | 0.92 | 20.76 | 20.82 |
| C50Z-2 | 0.14 | 0.086 | 33.7 | 1.32 | 25.53 | 26.49 |
| Ca50-2 | 0.12 | 0.097 | 39.0 | 1.49 | 26.17 | 30.66 |
| Ca50Z-2 | 0.09 | 0.096 | 40.0 | 1.43 | 27.97 | 31.27 |
| Ca60Z-2 | 0.08 | 0.070 | 43.7 | 1.43 | 30.56 | 33.49 |
| No. | a | R | b | R | No. | a | R | b | R |
|---|---|---|---|---|---|---|---|---|---|
| Ca40-0 | 0.687 | 0.998 | 0.268 | 0.955 | Ca50-0 | 0.877 | 0.999 | 0.074 | 0.995 |
| Ca40-1 | 0.872 | 0.999 | 0.284 | 0.981 | Ca50-1 | 0.647 | 0.995 | 0.223 | 0.975 |
| Ca40-2 | 0.764 | 0.997 | 0.318 | 0.994 | Ca50-2 | 0.684 | 0.996 | 0.189 | 0.980 |
| Ca45-0 | 0.758 | 0.999 | 0.236 | 0.984 | Ca50Z-0 | 0.660 | 0.998 | 0.050 | 0.991 |
| Ca45-1 | 0.796 | 0.997 | 1.341 | 0.949 | Ca50Z-1 | 0.718 | 0.999 | 0.071 | 0.988 |
| Ca45-2 | 0.803 | 0.999 | 0.467 | 0.921 | Ca50Z-2 | 0.483 | 0.999 | 0.056 | 0.998 |
| C50Z-0 | 0.466 | 0.997 | 0.159 | 0.994 | Ca60Z-0 | 0.626 | 0.998 | 0.190 | 0.994 |
| C50Z-1 | 0.642 | 0.999 | 0.151 | 0.965 | Ca60Z-1 | 0.802 | 0.998 | 0.128 | 0.987 |
| C50Z-2 | 0.514 | 0.999 | 0.134 | 0.988 | Ca60Z-2 | 0.652 | 0.999 | 0.140 | 0.998 |
| Sample | Peak Stress | Peak Strain | ||||
|---|---|---|---|---|---|---|
| Test/MPa | Simulation/MPa | Error/% | Test/×10−3 | Simulation/10−3 | Error/% | |
| Ca40-2 | 22.7 | 23.9 | +5.43 | 1.20 | 1.30 | +8.33 |
| Ca45-2 | 19.1 | 18.9 | −1.10 | 0.92 | 1.01 | +9.78 |
| Ca50-2 | 39.0 | 38.2 | −1.93 | 1.49 | 1.37 | −8.05 |
| C50Z-2 | 33.7 | 35.3 | +4.84 | 1.32 | 1.28 | −3.03 |
| Ca50Z-2 | 40.0 | 39.1 | −2.25 | 1.43 | 1.35 | −5.59 |
| Ca60Z-2 | 43.1 | 43.6 | +1.23 | 1.43 | 1.36 | −4.90 |
| Thickness of ITZ Before Corrosion/μm | Thickness of ITZ After Corrosion/μm | |||
|---|---|---|---|---|
| Specimen Number | Aggregate | Fine | Aggregate | Fine |
| Ca40-0 | 60 | 50 | 70 | 60 |
| Ca45-0 | 60 | 50 | 80 | 60 |
| C50Z-0 | 50 | 40 | 60 | 50 |
| Ca50-0 | 50 | 40 | 60 | 50 |
| Ca50Z-0 | 50 | 40 | 60 | 50 |
| Ca60Z-0 | 50 | 50 | 60 | 50 |
| Ca40-1 | 70 | 50 | 80 | 60 |
| Ca45-1 | 70 | 60 | 90 | 70 |
| C50Z-1 | 50 | 40 | 60 | 50 |
| Ca50-1 | 50 | 40 | 60 | 50 |
| Ca50Z-1 | 50 | 40 | 70 | 50 |
| Ca60Z-1 | 50 | 40 | 60 | 50 |
| Ca40-2 | 60 | 60 | 80 | 70 |
| Ca45-2 | 60 | 60 | 90 | 70 |
| C50Z-2 | 50 | 50 | 70 | 60 |
| Ca50-2 | 50 | 40 | 70 | 50 |
| Ca50Z-2 | 50 | 50 | 70 | 60 |
| Ca60Z-2 | 60 | 40 | 70 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Guo, J.; Liu, W.; Yu, H.; Gao, W.; Yan, J.; Tao, Q. The Uniaxial Compressive Constitutive Behavior and Mesoscopic Numerical Simulation of HPC Incorporating ASR Mitigation Measures After Ten Years of Alkali Solution Immersion. Buildings 2025, 15, 4196. https://doi.org/10.3390/buildings15224196
Wang F, Guo J, Liu W, Yu H, Gao W, Yan J, Tao Q. The Uniaxial Compressive Constitutive Behavior and Mesoscopic Numerical Simulation of HPC Incorporating ASR Mitigation Measures After Ten Years of Alkali Solution Immersion. Buildings. 2025; 15(22):4196. https://doi.org/10.3390/buildings15224196
Chicago/Turabian StyleWang, Fang, Juan Guo, Weifeng Liu, Hongfa Yu, Weiquan Gao, Jun Yan, and Qinghua Tao. 2025. "The Uniaxial Compressive Constitutive Behavior and Mesoscopic Numerical Simulation of HPC Incorporating ASR Mitigation Measures After Ten Years of Alkali Solution Immersion" Buildings 15, no. 22: 4196. https://doi.org/10.3390/buildings15224196
APA StyleWang, F., Guo, J., Liu, W., Yu, H., Gao, W., Yan, J., & Tao, Q. (2025). The Uniaxial Compressive Constitutive Behavior and Mesoscopic Numerical Simulation of HPC Incorporating ASR Mitigation Measures After Ten Years of Alkali Solution Immersion. Buildings, 15(22), 4196. https://doi.org/10.3390/buildings15224196
