Implementing Zero-Carbon Buildings: A Technological Index and an Innovative Strategic Roadmap
Abstract
1. Introduction
- -
- What is the technological index for implementing ZCBs?
- -
- What is the roadmap that can be used to reduce the technological index in order to implement ZCBs?
2. Research Background
2.1. Concept and Definition of ZCBs
2.2. An Overview of Implementing ZCBs
2.3. Role of Technology in Implementing ZCBs
2.4. Technological Barriers for Implementing ZCBs
2.5. Developed Indexes in Building Construction
2.6. Developed Indexes Using Fuzzy Synthetic Evaluation in Construction Studies
2.7. Roadmaps in Building Construction
2.8. Points of Departure
- Implementing ZCBs is a sustainable practice to address the negative impacts on the environment and society.
- Implementing technology in building construction is a promising solution. However, there is a research gap in addressing the technological barriers slowing the global population, particularly developing regions, from implementing ZCBs.
- Several indexes were developed in the field of building construction. However, there is a research gap in developing a technological index for implementing ZCBs.
- Previous studies advocated that FSE is an optimal technique to develop indexes.
- Previous studies lack a strategic roadmap to advance the implementation of ZCBs.
3. Methodology
3.1. Survey Development
3.2. Pilot Test
3.3. Data Collection
3.4. Data Analysis
4. Results
4.1. Demographic Information
4.2. Principal Component Analysis
4.3. Fuzzy Synthetic Evaluation
4.4. Sensitivity Assessment of the Technological Index
5. Discussion
5.1. Inadequate Technical Support (Developed Index: 3.55)
5.2. Inadequate Research and Practical Effort (Developed Index: 3.54)
5.3. Insufficient Knowledge and Infrastructure (Developed Index: 3.51)
5.4. Poor Resources and Immaturity (Developed Index: 3.35)
6. An Innovative Strategic Roadmap to Reduce the Technological Index
7. Implications
7.1. Theoretical Implications
7.2. Practical Implications
7.3. Policy Implications
7.4. Managerial Implications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ZCBs | Zero-Carbon Buildings |
| ZCB | Zero-Carbon Building |
| OECD | Organization for Economic Co-operation and Development |
| BIM | Building Information Modeling |
| LCA | Life-Cycle Assessment |
| CO2 | Carbon Dioxide |
| FSE | Fuzzy Synthetic Evaluation |
| UNEP | United Nations Environment Programme |
| UK | United Kingdom |
| MENA | Middle East and North Africa |
| PCA | Principal Component Analysis |
| KMO | Kaiser–Meyer–Olkin |
References
- United Nations Environment Programme (UNEP). 2022 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2022. [Google Scholar]
- Jacobs, M. Reflections on COP26: International Diplomacy, Global Justice and the Greening of Capitalism. Polit. Q. 2022, 93, 270–277. [Google Scholar] [CrossRef]
- OECD. Zero-Carbon Buildings in Cities: A Whole Life-Cycle Approach; OECD Urban Studies; OECD Publishing: Paris, France, 2025; ISBN 9789264826861. [Google Scholar]
- Shahzad, S.; Faheem, M.; Muqeet, H.A.; Waseem, M. Charting the UK’s Path to Net Zero Emissions by 2050: Challenges, Strategies, and Future Directions. IET Smart Grid 2024, 7, 716–736. [Google Scholar] [CrossRef]
- Le, A.; Rodrigo, N.; Domingo, N.; Senaratne, S. Policy Mapping for Net-Zero-Carbon Buildings: Insights from Leading Countries. Buildings 2023, 13, 2766. [Google Scholar] [CrossRef]
- Lou, H.-L.; Hsieh, S.-H. Towards Zero: A Review on Strategies in Achieving Net-Zero-Energy and Net-Zero-Carbon Buildings. Sustainability 2024, 16, 4735. [Google Scholar] [CrossRef]
- Omer, M.M.; Masrom, A.N.; Moyo, T.; Adhbeea, N.A.; Osuizugbo, I.C. A Technical Support Model for the Construction of Zero-Carbon Buildings. Clean. Waste Syst. 2025, 11, 100312. [Google Scholar] [CrossRef]
- Osuizugbo, I.C.; Omer, M.M.; Oshodi, O.S.; Yuan, H.; Rahman, R.A.; Orekan, A.A. Emerging Technologies for Mitigating Air Pollution in Buildings: Systematic Review and Meta-Analysis. Built Environ. Proj. Asset Manag. 2025, 15, 951–973. [Google Scholar] [CrossRef]
- Fouly, S.E.A.; Abdin, A.R. A Methodology towards Delivery of Net Zero Carbon Building in Hot Arid Climate with Reference to Low Residential Buildings—The Western Desert in Egypt. J. Eng. Appl. Sci. 2022, 69, 46. [Google Scholar] [CrossRef]
- Xu, Y.; Yeung, J.F.Y.; Chan, A.P.C.; Chan, D.W.M.; Wang, S.Q.; Ke, Y. Developing a Risk Assessment Model for PPP Projects in China-A Fuzzy Synthetic Evaluation Approach. Autom. Constr. 2010, 19, 929–943. [Google Scholar] [CrossRef]
- Wuni, I.Y. Developing a Multidimensional Risk Assessment Model for Sustainable Construction Projects. Eng. Constr. Archit. Manag. 2025, 32, 4155–4173. [Google Scholar] [CrossRef]
- Twinn, R.; Desai, K.; Box, P. Net Zero Carbon Buildings: A Framework Definition; UK Green Building Council: London, UK, 2019. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2021; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar]
- Geng, L.; Li, S.; Farsangi, E.N.; Xu, X.; Tam, V.W.Y. How Do Digital Technologies Reduce Carbon Emissions in the Construction Industry? A Systematic Review. Energy Build. 2026, 350, 116605. [Google Scholar] [CrossRef]
- Khan, S.; Zhang, L.; Yuan, H.; Hussain, M. Policy Pathways to Carbon Neutrality: The Role of Urbanization and ICT in Achieving SDG-13 through Linear and Nonlinear Dynamics. J. Clean. Prod. 2025, 522, 146295. [Google Scholar] [CrossRef]
- Alawag, A.M.; Alaloul, W.S.; Liew, M.S.; Al-Awag, E.A.; Baarimah, A.O.; Omer, M.M. Incorporating the Applications of Building Information Modeling (BIM) Technology in the Sustainable Retrofitting of Heritage Buildings: A Systematic Review. In Proceedings of the 2023 International Conference on Sustaining Heritage: Innovative and Digital Approaches (ICSH), Sakhir, Bahrain, 18–19 June 2023; IEEE: New York, NY, USA, 2023; pp. 125–130. [Google Scholar]
- Falana, J.; Osei-Kyei, R.; Tam, V.W. Towards Achieving a Net Zero Carbon Building: A Review of Key Stakeholders and Their Roles in Net Zero Carbon Building Whole Life Cycle. J. Build. Eng. 2024, 82, 108223. [Google Scholar] [CrossRef]
- Kayaçetin, N.C.; Hozatlı, B. Whole Life Carbon Assessment of Representative Building Typologies for Nearly Zero Energy Building Definitions. J. Build. Eng. 2024, 95, 110214. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, W.; Lu, W. Business Model Innovation for Delivering Zero Carbon Buildings. Sustain. Cities Soc. 2016, 27, 253–262. [Google Scholar] [CrossRef]
- Liang, H.; Bian, X.; Dong, L. Towards Net Zero Carbon Buildings: Accounting the Building Embodied Carbon and Life Cycle-Based Policy Design for Greater Bay Area, China. Geosci. Front. 2024, 15, 101760. [Google Scholar] [CrossRef]
- Weerasinghe, L.N.K.; Darko, A.; Chan, A.P.C.; Blay, K.B.; Edwards, D.J. Measures, Benefits, and Challenges to Retrofitting Existing Buildings to Net Zero Carbon: A Comprehensive Review. J. Build. Eng. 2024, 94, 109998. [Google Scholar] [CrossRef]
- Akhmetov, Y.; Fedotova, E.; Frysztacki, M.M. Flattening the Peak Demand Curve through Energy Efficient Buildings: A Holistic Approach towards Net-Zero Carbon. Appl. Energy 2025, 384, 125421. [Google Scholar] [CrossRef]
- Ohama, V.; Tiokpat, M.; Ekung, S. Cost Factors in Zero-Carbon Technologies Applied in Buildings: Nigeria s Perspective. J. Sustain. Constr. Mater. Technol. 2020, 5, 484–493. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, K. Toward Next-Generation Buildings: A Review of Renewable Energy Integration and Intelligent Building Energy Management Technologies. In Proceedings of the International Conference on Life System Modeling and Simulation 2024, Suzhou, China, 13–15 September 2024; Springer: Singapore, 2024; pp. 37–51. [Google Scholar]
- Wang, B.; Lu, W.; Wu, L.; Gao, Y.; Peng, Z.; Kristof, C. FB-GAT: A Graph Neural Networks (GNNs) Approach to Assessing Facades’ Buildability. Adv. Eng. Inform. 2026, 69, 103898. [Google Scholar] [CrossRef]
- Farouk, A.M.; Naganathan, H.; Rahman, R.A.; Kim, J. Exploring the Economic Viability of Virtual Reality in Architectural, Engineering, and Construction Education. Buildings 2024, 14, 2655. [Google Scholar] [CrossRef]
- Shafei, H.; Radzi, A.R.; Algahtany, M.; Rahman, R.A. Construction 4.0 Technologies and Decision-Making: A Systematic Review and Gap Analysis. Buildings 2022, 12, 2206. [Google Scholar] [CrossRef]
- Radzi, A.R.; Azmi, N.F.; Kamaruzzaman, S.N.; Rahman, R.A.; Papadonikolaki, E. Relationship between Digital Twin and Building Information Modeling: A Systematic Review and Future Directions. Constr. Innov. 2024, 24, 811–829. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, W. Delivering Zero Carbon Buildings: The Role of Innovative Business Models. Procedia Eng. 2015, 118, 404–411. [Google Scholar] [CrossRef]
- Wei, J.; Li, J.; Zhao, J.; Wang, X. Hot Topics and Trends in Zero-Energy Building Research—A Bibliometrical Analysis Based on CiteSpace. Buildings 2023, 13, 479. [Google Scholar] [CrossRef]
- Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al. Overview and Future Challenges of Nearly Zero Energy Buildings (NZEB) Design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar] [CrossRef]
- Mishra, R.; Singh, R.; Govindan, K. Net-Zero Economy Research in the Field of Supply Chain Management: A Systematic Literature Review and Future Research Agenda. Int. J. Logist. Manag. 2023, 34, 1352–1397. [Google Scholar] [CrossRef]
- Souaid, C.; van der Heijden, H.; Elsinga, M. Institutional Barriers to Near Zero-Energy Housing: A Context Specific Approach. Sustainability 2021, 13, 7135. [Google Scholar] [CrossRef]
- Alsabbagh, M.; Alnaser, W.E. Transitioning to Carbon Neutrality in Bahrain: A Policy Brief. Arab Gulf J. Sci. Res. 2022, 40, 25–33. [Google Scholar] [CrossRef]
- Kempton, J. Asset Management of Low-Zero Carbon Technology in Social Housing. Struct. Surv. 2014, 32, 14–31. [Google Scholar] [CrossRef]
- Nidhin, B.K.S.N.; Domingo, N.; Bui, T.T.P.; Wilkinson, S. Construction Stakeholders’ Knowledge on Zero Carbon Initiatives in New Zealand. Int. J. Build. Pathol. Adapt. 2023, 43, 512–527. [Google Scholar] [CrossRef]
- Clarke, L.; Sahin-Dikmen, M.; Winch, C. Transforming Vocational Education and Training for Nearly Zero-Energy Building. Build. Cities 2020, 1, 650–661. [Google Scholar] [CrossRef]
- Hewa Welege, N.M.; Pan, W.; Kumaraswamy, M. Stakeholder Collaboration to Mitigate Constraints to Delivering Low-Carbon Buildings: Insights from High-Rise High-Density Cities. Eng. Constr. Archit. Manag. 2023, 31, 4439–4461. [Google Scholar] [CrossRef]
- Van Nguyen, M.; Ha, K.D. A Corporate Social Responsibility Implementation Index for Architectural Design Firms in Vietnam. Archit. Eng. Des. Manag. 2024, 20, 65–78. [Google Scholar] [CrossRef]
- Alnaser, N.W.; Flanagan, R.; Alnaser, W.E. Model for Calculating the Sustainable Building Index (SBI) in the Kingdom of Bahrain. Energy Build. 2008, 40, 2037–2043. [Google Scholar] [CrossRef]
- Li, J.; Ding, Z.; Mi, X.; Wang, J. A Model for Estimating Construction Waste Generation Index for Building Project in China. Resour. Conserv. Recycl. 2013, 74, 20–26. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Zheng, W.; Liu, T.; Zhang, X.; Liu, J. A Novel Building Energy Efficiency Evaluation Index: Establishment of Calculation Model and Application. Energy Convers. Manag. 2018, 166, 522–533. [Google Scholar] [CrossRef]
- Afshar Ali, M.; Alam, K.; Taylor, B. Incorporating Affordability, Efficiency, and Quality in the ICT Development Index: Implications for Index Building and ICT Policymaking. Inf. Soc. 2020, 36, 71–96. [Google Scholar] [CrossRef]
- Hong, J.; Kang, H.; Jung, S.; Sung, S.; Hong, T.; Park, H.S.; Lee, D.-E. An Empirical Analysis of Environmental Pollutants on Building Construction Sites for Determining the Real-Time Monitoring Indices. Build. Environ. 2020, 170, 106636. [Google Scholar] [CrossRef]
- O’Grady, T.; Minunno, R.; Chong, H.-Y.; Morrison, G.M. Design for Disassembly, Deconstruction and Resilience: A Circular Economy Index for the Built Environment. Resour. Conserv. Recycl. 2021, 175, 105847. [Google Scholar] [CrossRef]
- Qasem, A.; Almohassen, A.S. A Virtual Reality-Based Constructability Index for Construction Projects. Constr. Innov. 2025, 25, 442–460. [Google Scholar] [CrossRef]
- Seidu, S.; Edwards, D.J.; Owusu-Manu, D.; Chan, D.W.M.; Abdulai, S.F.; Buertey, J.I.T. Achieving Multifunctionality in Green Infrastructure Projects: A Fuzzy Evaluation and Gini Index of Key Drivers in Developing Countries. Environ. Dev. Sustain. 2025. [Google Scholar] [CrossRef]
- Gaur, S.; Tawalare, A. Development of a Performance Index Model for Evaluation of BIM-Based Stakeholder Management Using Fuzzy Synthetic Evaluation. Buildings 2023, 13, 1441. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.M.; Olawumi, T.O.; Saka, A.B. Assessment of Symmetries and Asymmetries on Barriers to Circular Economy Adoption in the Construction Industry towards Zero Waste: A Survey of International Experts. Build. Environ. 2023, 228, 109885. [Google Scholar] [CrossRef]
- Chen, X.; Chang-Richards, A.; Ling, F.Y.Y.; Yiu, T.W.; Pelosi, A.; Yang, N. Developing a Readiness Model and a Self-Assessment Tool for Adopting Digital Technologies in Construction Organizations. Build. Res. Inf. 2023, 51, 241–256. [Google Scholar] [CrossRef]
- Van Nguyen, M.; Ha, K.D.; Nguyen, T.T. Developing a Climate for Innovation Index for Architectural Design Firms. Eng. Constr. Archit. Manag. 2024. [Google Scholar] [CrossRef]
- Tetteh, P.A.; Addy, M.N.; Acheampong, A.; Akomea-Frimpong, I.; Ayidana, E.; Ghansah, F.A. Critical drivers for the adoption of wearable sensing technologies (WSTs) for construction safety monitoring in Ghana: A fuzzy synthetic analysis. Constr. Innov. 2024. [Google Scholar] [CrossRef]
- Moyo, T.; Omer, M.; Chigara, B.; Edwards, D.J. An Innovative Technical Support System for Sustainable Construction Indicators in Zimbabwe. Smart Sustain. Built Environ. 2024. [Google Scholar] [CrossRef]
- Omer, M.M.; Moyo, T.; Alias, A.R.; Rahman, R.A. Development of Workplace Well-Being Indexes at Construction Sites. J. Eng. Des. Technol. 2025, 23, 1111–1136. [Google Scholar] [CrossRef]
- Phaal, R.; Chaskel, C.; Gonzalez Nakazawa, R.; Ross, J. Roadmapping Roadmapping: Strategic Planning for Roadmapping Systems. Front. Eng. Manag. 2024, 11, 516–527. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, W.; Ma, S.; Ma, Y.; Zhou, T.; Wu, Y.; Zhuang, Y.; Luo, L.; Zhang, Y. Barriers to Zero Energy Building Technologies Adoption in Hot Summer Cold Winter Regions: Theoretical Model and Staged Roadmap at the City Scale. J. Clean. Prod. 2025, 522, 146379. [Google Scholar] [CrossRef]
- Kalu Arachchi, K.A.C.S.; Jayasuriya, S.; Raigama Acharige, D.P.; Perera, B.A.K.S. Towards a Circular Economy Integrated Road Map in Achieving Sustainability through Passive Tropical Designs. Smart Sustain. Built Environ. 2025, 1–22. [Google Scholar] [CrossRef]
- Bahgat, R.; Elnabawi Mahgoub, M.; Ahmed, T.M.F. A Comprehensive Life Cycle Roadmap for Net-Zero Built Environment in the MENA Region. Archnet-IJAR Int. J. Archit. Res. 2025, 1–24. [Google Scholar] [CrossRef]
- Öberg, V.; Jockwer, R.; Goto, Y. Design for Structural Adaptation in Timber Buildings: Industry Perspectives and Implementation Roadmap for Sweden and Australia. J. Build. Eng. 2024, 98, 111413. [Google Scholar] [CrossRef]
- Heidari, M.; Rahdar, M.H.; Dutta, A.; Nasiri, F. An Energy Retrofit Roadmap to Net-Zero Energy and Carbon Footprint for Single-Family Houses in Canada. J. Build. Eng. 2022, 60, 105141. [Google Scholar] [CrossRef]
- Nasirzadeh, F.; Rostamnezhad, M.; Carmichael, D.G.; Khosravi, A.; Aisbett, B. Labour Productivity in Australian Building Construction Projects: A Roadmap for Improvement. Int. J. Constr. Manag. 2022, 22, 2079–2088. [Google Scholar] [CrossRef]
- Skarning, G.C.J.; Hviid, C.A.; Svendsen, S. Roadmap for Improving Roof and Façade Windows in Nearly Zero-Energy Houses in Europe. Energy Build. 2016, 116, 602–613. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- van Teijlingen, E.; Hundley, V. The Importance of Pilot Studies. Nurs. Stand. 2002, 16, 33–36. [Google Scholar] [CrossRef]
- Ahmad, M.; Wilkins, S. Purposive Sampling in Qualitative Research: A Framework for the Entire Journey. Qual. Quant. 2025, 59, 1461–1479. [Google Scholar] [CrossRef]
- Wright, B.; Schwager, P.H. Online Survey Research: Can Response Factors Be Improved? J. Internet Commer. 2008, 7, 253–269. [Google Scholar] [CrossRef]
- Lakens, D. Sample Size Justification. Collabra Psychol. 2022, 8, 33267. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Osuizugbo, I.C.; Adenuga, O.A. Decisive Factors for Decision-Making to Achieving Sustainable Procurement in Construction Projects. Int. J. Build. Pathol. Adapt. 2024, 42, 1185–1202. [Google Scholar] [CrossRef]
- Mundfrom, D.J.; Shaw, D.G.; Ke, T.L. Minimum Sample Size Recommendations for Conducting Factor Analyses. Int. J. Test. 2005, 5, 159–168. [Google Scholar] [CrossRef]
- Omer, M.M.; Eze, E.; Yuan, H.; Ameyaw, E.; Sofolahan, O. Mitigating Construction Waste in Nigeria: The Role of Building Information Modeling (BIM) at Design and Pre-Contract Stages. Clean. Waste Syst. 2025, 11, 100252. [Google Scholar] [CrossRef]
- Omer, M.M.; Rahman, R.A.; Fauzi, M.A.; Almutairi, S. Key Competencies for Identifying Construction Activities That Produce Recyclable Materials: A Competency Gap Analysis. Built Environ. Proj. Asset Manag. 2025, 15, 699–716. [Google Scholar] [CrossRef]
- Moyo, T.; Omer, M.; Chigara, B. Overlapping Sustainable Construction Indicators for Construction Organisations in Zimbabwe. J. Eng. Des. Technol. 2024. [Google Scholar] [CrossRef]
- Moyo, T.; Mudombo, M.V.; Omer, M.M.; Moyo, C. Barriers to the Adoption of Sustainable Construction Materials in Zimbabwe. Int. J. Build. Pathol. Adapt. 2024. [Google Scholar] [CrossRef]
- Farouk, A.M.; Radzi, A.R.; Romali, N.S.; Farouk, M.; Elgamal, M.; Hassan, R.; Omer, M.M.; Rahman, R.A. Performance Indicators for Assessing Environmental Management Plan Implementation in Water Projects. Sustainability 2024, 16, 3146. [Google Scholar] [CrossRef]
- Radzi, A.R.; Farouk, A.M.; Romali, N.S.; Farouk, M.; Elgamal, M.; Rahman, R.A. Assessing Environmental Management Plan Implementation in Water Supply Construction Projects: Key Performance Indicators. Sustainability 2024, 16, 600. [Google Scholar] [CrossRef]
- Bartlett, M.S. A Note on the Multiplying Factors for Various χ2 Approximations. J. R. Stat. Soc. Ser. B 1954, 16, 296–298. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Kline, P. An Easy Guide to Factor Analysis; Routledge: New York, NY, USA, 2014; ISBN 9781317725602. [Google Scholar]
- Pan, W. System Boundaries of Zero Carbon Buildings. Renew. Sustain. Energy Rev. 2014, 37, 424–434. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Cai, Q.; Zhou, W.; Lu, X. Assessment of Risks Impeding Sustainable Mining in Pakistan Using Fuzzy Synthetic Evaluation. Resour. Policy 2020, 69, 101820. [Google Scholar] [CrossRef]
- Wu, Y.; Tao, Y.; Deng, Z.; Zhou, J.; Xu, C.; Zhang, B. A Fuzzy Analysis Framework for Waste Incineration Power Plant Comprehensive Benefit Evaluation from Refuse Classification Perspective. J. Clean. Prod. 2020, 258, 120734. [Google Scholar] [CrossRef]
- Farouk, A.M.; Omer, M.M.; Rahman, R.; Romali, N.S. Effective Approaches to Water Distribution Network Rehabilitation: Fuzzy Synthetic Evaluation. In AIP Conference Proceedings, Proceedings of the World Sustainable Construction Conference Series, Kuantan, Malaysia, 15–16 October 2021; AIP Publishing: Melville, NY, USA, 2023; Volume 2688. [Google Scholar]
- Nguyen, H.D.; Macchion, L. A Comprehensive Risk Assessment Model Based on a Fuzzy Synthetic Evaluation Approach for Green Building Projects: The Case of Vietnam. Eng. Constr. Archit. Manag. 2023, 30, 2837–2861. [Google Scholar] [CrossRef]
- Omer, M.M.; Rahman, R.A.; Almutairi, S. Strategies for Enhancing Construction Waste Recycling: A Fuzzy Synthetic Evaluation. Constr. Res. Congr. 2022, 2022, 676–685. [Google Scholar] [CrossRef]
- Omer, M.M.; Rahman, R.A.; Fauzi, M.A.; Almutairi, S. Key Competencies for Identifying Construction Activities That Produce Recyclable Materials: An Exploratory Study. Int. J. Build. Pathol. Adapt. 2025, 43, 855–876. [Google Scholar] [CrossRef]
- Lattin, J.; Carroll, J.D.; Green, P.E. Principal Components Analysis and Exploratory Factor Analysis. In Analyzing Multivariate Data; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2003. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis. In Vectors; Pearson: London, UK, 2010. [Google Scholar]
- Hinton, P.; McMurray, I.; Brownlow, C. SPSS Explained; Routledge: New York, NY, USA, 2014; ISBN 9781317753117. [Google Scholar]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- El Hassani, S.; Charai, M.; Moussaoui, M.A.; Mezrhab, A. Towards Rural Net-Zero Energy Buildings through Integration of Photovoltaic Systems within Bio-Based Earth Houses: Case Study in Eastern Morocco. Sol. Energy 2023, 259, 15–29. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; He, B.-J.; Olanipekun, A.O. Examining Issues Influencing Green Building Technologies Adoption: The United States Green Building Experts’ Perspectives. Energy Build. 2017, 144, 320–332. [Google Scholar] [CrossRef]
- Siva, J.; Gajendran, T.; Toinpre, O.; Vaughan, J. Driving the Zero-Carbon Construction Strategy: Key Barriers and Enablers. Built Environ. Proj. Asset Manag. 2024, 15, 380–398. [Google Scholar] [CrossRef]
- Yoon, J.H.; Arshid, S.R. Technology-Enabled Carbon Emissions Regulations for Achieving Net Zero Carbon Built Environment: A Comprehensive Framework. Carbon Manag. 2025, 16. [Google Scholar] [CrossRef]
- Szaruga, E.; Frankowska, M.; Drela, K. Spatial Autocorrelation of Power Grid Instability in the Context of Electricity Production from Renewable Energy Sources in Polish Regions. Energy Rep. 2022, 8, 276–284. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M. Concomitant Impediments to the Implementation of Smart Sustainable Practices in the Built Environment. Sustain. Prod. Consum. 2020, 21, 239–251. [Google Scholar] [CrossRef]
- Myint, N.N.; Shafique, M.; Zhou, X.; Zheng, Z. Net Zero Carbon Buildings: A Review on Recent Advances, Knowledge Gaps and Research Directions. Case Stud. Constr. Mater. 2025, 22, e04200. [Google Scholar] [CrossRef]
- Jiang, W.; Ju, Z.; Tian, H.; Liu, Y.; Arıcı, M.; Tang, X.; Li, Q.; Li, D.; Qi, H. Net-Zero Energy Retrofit of Rural House in Severe Cold Region Based on Passive Insulation and BAPV Technology. J. Clean. Prod. 2022, 360, 132198. [Google Scholar] [CrossRef]
- Too, J.; Hui, F.K.P.; Ejohwomu, O.A.; Herath, N.; Duffield, C. A Framework for Prioritising Decisions in Zero Carbon Building Design. J. Clean. Prod. 2025, 512, 145627. [Google Scholar] [CrossRef]
- Bui, T.T.P.; MacGregor, C.; Wilkinson, S.; Domingo, N. Towards Zero Carbon Buildings: Issues and Challenges in the New Zealand Construction Sector. Int. J. Constr. Manag. 2023, 23, 2709–2716. [Google Scholar] [CrossRef]
- Weerasinghe, L.N.K.; Darko, A.; Chan, A.P.C.; Xiao, B. Digital Twin for Sustainable Decision-Making in Building Net Zero Carbon Retrofitting: A Systematic Review. Built Environ. Proj. Asset Manag. 2025, 1–17. [Google Scholar] [CrossRef]
- Long, Y.; Xin, J.; Huang, B.; Wang, Y.; He, X.; Song, Q. Status and Challenges of Building Carbon-Neutral Pathways: Comparative Analysis in Major World Economies. Environ. Impact Assess. Rev. 2025, 112, 107825. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, Q.; Cheok, M.Y.; Kubiczek, J.; Iqbal, N. Does Green Finance Improve Energy Efficiency? New Evidence from Developing and Developed Economies. Econ. Chang. Restruct. 2022, 55, 485–509. [Google Scholar] [CrossRef]
- Pan, W.; Pan, M. Drivers, Barriers and Strategies for Zero Carbon Buildings in High-Rise High-Density Cities. Energy Build. 2021, 242, 110970. [Google Scholar] [CrossRef]
- Ibrahim, M.; Harkouss, F.; Biwole, P.; Fardoun, F.; Ouldboukhitine, S. Building Retrofitting towards Net Zero Energy: A Review. Energy Build. 2024, 322, 114707. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das Bhusan, B.; Adak, D. Roadmap to a Net-Zero Carbon Cement Sector: Strategies, Innovations and Policy Imperatives. J. Environ. Manag. 2024, 359, 121052. [Google Scholar] [CrossRef]
- Ohene, E.; Chan, A.P.C.; Darko, A.; Nani, G. Navigating toward Net Zero by 2050: Drivers, Barriers, and Strategies for Net Zero Carbon Buildings in an Emerging Market. Build. Environ. 2023, 242, 110472. [Google Scholar] [CrossRef]
- Raza, M.H.; Zhong, R.Y. A Sustainable Roadmap for Additive Manufacturing Using Geopolymers in Construction Industry. Resour. Conserv. Recycl. 2022, 186, 106592. [Google Scholar] [CrossRef]
- Olugboyega, O.; Edwards, D.J.; Windapo, A.O.; Omopariola, E.D.; Martek, I. Development of a Conceptual Model for Evaluating the Success of BIM-Based Construction Projects. Smart Sustain. Built Environ. 2021, 10, 681–701. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Fenn, P.; Luo, X.; Liu, Y.; Zhao, L. Adopting BIM to Facilitate Dispute Management in the Construction Industry: A Conceptual Framework Development. J. Constr. Eng. Manag. 2023, 149, 1–15. [Google Scholar] [CrossRef]
- Horry, R.; Booth, C.A.; Mahamadu, A.; Manu, P.; Georgakis, P. Environmental Management Systems in the Architectural, Engineering and Construction Sectors: A Roadmap to Aid the Delivery of the Sustainable Development Goals. Environ. Dev. Sustain. 2022, 24, 10585–10615. [Google Scholar] [CrossRef]
- Karacigan, A.; Caglayan, S.; Tezel, A.; Ozorhon, B. Strategic Roadmap to Achieve Successful Implementation of Blockchain Technology in Construction Contract Management. J. Constr. Eng. Manag. 2025, 151. [Google Scholar] [CrossRef]
- Banfi, F.; Brumana, R.; Salvalai, G.; Previtali, M. Digital Twin and Cloud BIM-XR Platform Development: From Scan-to-BIM-to-DT Process to a 4D Multi-User Live App to Improve Building Comfort, Efficiency and Costs. Energies 2022, 15, 4497. [Google Scholar] [CrossRef]
- Stevenson, F.; Kwok, A. Mainstreaming Zero Carbon: Lessons for Built-Environment Education and Training. Build. Cities 2020, 1, 687–696. [Google Scholar] [CrossRef]
- Shohet, I.M.; Nobili, L. Performance-Based Maintenance of Public Facilities: Principles and Implementation in Courthouses. J. Perform. Constr. Facil. 2016, 30. [Google Scholar] [CrossRef]
- Mancò, G.; Guelpa, E.; Colangelo, A.; Virtuani, A.; Morbiato, T.; Verda, V. Innovative Renewable Technology Integration for Nearly Zero-Energy Buildings within the Re-COGNITION Project. Sustainability 2021, 13, 1938. [Google Scholar] [CrossRef]
- The European Parliament Directive (EU). 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings. In Official Journal of the European Union; The European Parliament Directive: Brussels, Belgium, 2024. [Google Scholar]
- Comello, S.; Reichelstein, S. The U.S. Investment Tax Credit for Solar Energy: Alternatives to the Anticipated 2017 Step-Down. Renew. Sustain. Energy Rev. 2016, 55, 591–602. [Google Scholar] [CrossRef]
- Migliavacca, G.; Rossi, M.; Six, D.; Džamarija, M.; Horsmanheimo, S.; Madina, C.; Kockar, I.; Morales, J.M. SmartNet: H2020 Project Analysing TSO–DSO Interaction to Enable Ancillary Services Provision from Distribution Networks. CIRED Open Access Proc. J. 2017, 2017, 1998–2002. [Google Scholar] [CrossRef]
- Healy, W.M.; Fanney, A.H.; Dougherty, B.P.; Ng, L.; Payne, V.; Ullah, T.; Omar, F. Performance Data from the NIST Net-Zero Energy Residential Test Facility. J. Res. Natl. Inst. Stand. Technol. 2017, 122, 14. [Google Scholar] [CrossRef] [PubMed]
- Jahnel, J.; Hundt, S.; Sprungk, B. Virtual Power Purchase Agreements and Their Value in Decarbonisation Strategies. Corp. Ownersh. Control 2024, 21, 71–82. [Google Scholar] [CrossRef]
- Dall’O’, G.; Bruni, E.; Sarto, L. An Italian Pilot Project for Zero Energy Buildings: Towards a Quality-Driven Approach. Renew. Energy 2013, 50, 840–846. [Google Scholar] [CrossRef]
- Ngagoum Ndalloka, Z.; Vijayakumar Nair, H.; Alpert, S.; Schmid, C. Solar Photovoltaic Recycling Strategies. Sol. Energy 2024, 270, 112379. [Google Scholar] [CrossRef]
- Getuli, V.; Bruttini, A.; Rahimian, F. Parametric Design Methodology for Developing BIM Object Libraries in Construction Site Modeling. Autom. Constr. 2025, 170, 105897. [Google Scholar] [CrossRef]
- Molinari, M.; Anund Vogel, J.; Rolando, D.; Lundqvist, P. Using Living Labs to Tackle Innovation Bottlenecks: The KTH Live-In Lab Case Study. Appl. Energy 2023, 338, 120877. [Google Scholar] [CrossRef]
- Bastian, Z.; Schnieders, J.; Conner, W.; Kaufmann, B.; Lepp, L.; Norwood, Z.; Simmonds, A.; Theoboldt, I. Retrofit with Passive House Components. Energy Effic. 2022, 15, 10. [Google Scholar] [CrossRef]
- Hu, X.; Olgun, G.; Assaad, R.H. An Intelligent BIM-Enabled Digital Twin Framework for Real-Time Structural Health Monitoring Using Wireless IoT Sensing, Digital Signal Processing, and Structural Analysis. Expert Syst. Appl. 2024, 252, 124204. [Google Scholar] [CrossRef]
- Doukari, O.; Kassem, M.; Greenwood, D. A Distributed Collaborative Platform for Multi-Stakeholder Multi-Level Management of Renovation Projects. J. Inf. Technol. Constr. 2024, 29, 219–246. [Google Scholar] [CrossRef]
- Watari, T.; Yamashita, N.; Serrenho, A.C. Net-Zero Embodied Carbon in Buildings with Today’s Available Technologies. Environ. Sci. Technol. 2024, 58, 1793–1801. [Google Scholar] [CrossRef]




| No | Barriers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Sum |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| B01 | Insufficient research on technological applications | ■ | ■ | ■ | 3 | |||||||||
| B02 | Limited access to available technologies | ■ | ■ | ■ | ■ | 4 | ||||||||
| B03 | Elevated maintenance costs for zero-carbon buildings (ZCB) | ■ | ■ | ■ | 3 | |||||||||
| B04 | Insufficient client understanding of technological solutions | ■ | ■ | ■ | ■ | ■ | ■ | 6 | ||||||
| B05 | Limited technical expertise in emerging technologies | ■ | ■ | ■ | ■ | ■ | ■ | ■ | 7 | |||||
| B06 | Inadequate knowledge of renewable technologies | ■ | ■ | ■ | ■ | ■ | 5 | |||||||
| B07 | Limited availability of renewable energy technologies | ■ | ■ | 2 | ||||||||||
| B08 | Insufficient technological infrastructure | ■ | ■ | ■ | ■ | 4 | ||||||||
| B09 | Limited technical knowledge in recent technological advancements | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | 8 | ||||
| B10 | Cost of ZCB technology | ■ | ■ | ■ | ■ | 4 | ||||||||
| B11 | The industry’s capacity to adopt ZCB technologies, including policy initiatives and industry practices | ■ | ■ | ■ | ■ | ■ | ■ | ■ | 7 | |||||
| B12 | Research findings are not effectively transformed into technological innovations | ■ | ■ | 2 | ||||||||||
| B13 | Practical challenges related to the maintainability and operability of ZCB | ■ | 1 | |||||||||||
| B14 | Conflicts with new technologies arising from the current condition of existing buildings | ■ | ■ | 2 | ||||||||||
| B15 | Complexity of ZCB technology | ■ | ■ | ■ | 3 | |||||||||
| B16 | Insufficient space for the installation of on-site renewable energy technologies | ■ | ■ | 2 | ||||||||||
| B17 | Underdeveloped technology | ■ | ■ | 2 |
| Characteristics | Categories | Frequency | Percentage (%) |
|---|---|---|---|
| Professional background | Architect | 45 | 16.5 |
| Structural Engineer | 36 | 13.2 | |
| Mechanical Engineer | 13 | 4.8 | |
| Electrical Engineer | 18 | 6.6 | |
| Builder | 72 | 26.5 | |
| Quantity Surveyor | 54 | 21.3 | |
| Surveyor | 14 | 5.1 | |
| Years of experience | Less than 5 years | 43 | 15.8 |
| 5–10 years | 72 | 26.5 | |
| 11–15 years | 51 | 18.8 | |
| 16–20 years | 28 | 10.3 | |
| 21–25 years | 41 | 15.1 | |
| 26–30 years | 25 | 9.2 | |
| 31 years or above | 12 | 4.3 | |
| Type of organization | Client | 28 | 10.3 |
| Consulting | 111 | 40.8 | |
| Contracting | 133 | 48.9 |
| Kaiser–Meyer–Olkin measure of sampling adequacy | 0.834 | |
| Bartlett’s test of sphericity | Approx. Chi-Square | 1288.913 |
| Df | 136 | |
| Sig. | 0.000 | |
| Code | Subdivisions | Extraction | Factor Loading | Eigenvalues | % of Variance | Cumulative % | Cronbach’s Alpha |
|---|---|---|---|---|---|---|---|
| ― | Inadequate technical support | ― | ― | 5.030 | 29.591 | 29.591 | 0.766 |
| B02 | Lack of accessible technologies | 0.649 | 0.753 | ― | ― | ― | ― |
| B04 | Lack of the client’s understanding of technologies | 0.628 | 0.735 | ― | ― | ― | ― |
| B03 | High cost of maintenance on ZCB | 0.602 | 0.733 | ― | ― | ― | ― |
| B01 | Lack of research in technological applications | 0.594 | 0.572 | ― | ― | ― | ― |
| B05 | Less technical expertise in new technological advancements | 0.488 | 0.559 | ― | ― | ― | ― |
| ― | Insufficient knowledge and infrastructure | ― | ― | 1.648 | 9.693 | 39.284 | 0.678 |
| B07 | Lack of renewable technologies | 0.674 | 0.752 | ― | ― | ― | ― |
| B06 | Poor knowledge on renewable technologies | 0.624 | 0.690 | ― | ― | ― | ― |
| B08 | Lack of technological infrastructure | 0.564 | 0.530 | ― | ― | ― | ― |
| ― | Poor resources and immaturity | ― | ― | 1.312 | 7.715 | 46.999 | 0.680 |
| B16 | Lack of space to install on-site renewable energy technologies | 0.700 | 0.793 | ― | ― | ― | ― |
| B17 | Immature technology | 0.603 | 0.676 | ― | ― | ― | ― |
| B15 | Complexity of ZCB technology | 0.598 | 0.668 | ― | ― | ― | ― |
| ― | Insufficient readiness for ZCB technologies | ― | ― | 1.183 | 6.958 | 53.957 | 0.586 a |
| B10 | Cost of ZCB technology | 0.530 | 0.681 | ― | ― | ― | ― |
| B11 | Industry’s ability to embrace ZCB technologies | 0.563 | 0.658 | ― | ― | ― | ― |
| B09 | Less technical knowledge in new technological advancements | 0.645 | 0.587 | ― | ― | ― | ― |
| ― | Inadequate research and practical effort | ― | ― | 1.100 | 6.468 | 60.425 | 0.657 |
| B12 | Research outcomes are not translated effectively into technology innovations | 0.629 | 0.730 | ― | ― | ― | ― |
| B13 | Maintainability and operability practical problems of ZCB | 0.603 | 0.689 | ― | ― | ― | ― |
| B14 | Incompatibilities with new technologies due to existing building condition | 0.579 | 0.688 | ― | ― | ― | ― |
| Items and Subdivisions | Mean | Weightings | Membership Functions | Classifications | ||||
|---|---|---|---|---|---|---|---|---|
| B2 | 3.43 | 0.19 | 0.07 | 0.08 | 0.31 | 0.41 | 0.12 | Level 3 |
| B4 | 3.61 | 0.20 | 0.04 | 0.10 | 0.25 | 0.42 | 0.19 | Level 3 |
| B3 | 3.64 | 0.21 | 0.05 | 0.09 | 0.24 | 0.40 | 0.21 | Level 3 |
| B5 | 3.73 | 0.21 | 0.04 | 0.06 | 0.26 | 0.40 | 0.23 | Level 3 |
| B1 | 3.35 | 0.19 | 0.11 | 0.12 | 0.26 | 0.35 | 0.16 | Level 3 |
| Inadequate technical support | 17.77 | 0.36 | 0.06 | 0.09 | 0.26 | 0.40 | 0.19 | Level 2 |
| B7 | 3.39 | 0.32 | 0.07 | 0.12 | 0.29 | 0.38 | 0.14 | Level 3 |
| B6 | 3.63 | 0.34 | 0.03 | 0.12 | 0.24 | 0.40 | 0.21 | Level 3 |
| B8 | 3.53 | 0.33 | 0.04 | 0.13 | 0.24 | 0.42 | 0.16 | Level 3 |
| Insufficient knowledge and infrastructure | 10.55 | 0.22 | 0.05 | 0.12 | 0.25 | 0.40 | 0.17 | Level 2 |
| B16 | 3.11 | 0.31 | 0.18 | 0.13 | 0.24 | 0.30 | 0.15 | Level 3 |
| B17 | 3.55 | 0.35 | 0.07 | 0.09 | 0.27 | 0.36 | 0.21 | Level 3 |
| B15 | 3.40 | 0.34 | 0.07 | 0.13 | 0.28 | 0.36 | 0.16 | Level 3 |
| Poor resources and immaturity | 10.06 | 0.21 | 0.10 | 0.12 | 0.27 | 0.34 | 0.17 | Level 2 |
| B14 | 3.45 | 0.32 | 0.04 | 0.15 | 0.29 | 0.35 | 0.16 | Level 3 |
| B13 | 3.53 | 0.33 | 0.03 | 0.11 | 0.31 | 0.39 | 0.15 | Level 3 |
| B12 | 3.67 | 0.34 | 0.03 | 0.10 | 0.25 | 0.41 | 0.20 | Level 3 |
| Inadequate research and practical effort | 10.64 | 0.22 | 0.03 | 0.12 | 0.28 | 0.39 | 0.17 | Level 2 |
| All subdivisions | 49.02 | − | 0.06 | 0.11 | 0.27 | 0.38 | 0.18 | Level 1 |
| Subdivisions | Coefficient Variance | Ranking Changes | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| −10% | −5% | 0% | +5% | +10% | −10% | −5% | 0% | +5% | +10% | |
| Inadequate technical support | 0.229 | 0.241 | 0.254 | 0.267 | 0.279 | 1 | 1 | 1 | 1 | 1 |
| Insufficient knowledge and infrastructure | 0.227 | 0.239 | 0.252 | 0.265 | 0.277 | 3 | 3 | 3 | 3 | 3 |
| Poor resources and immaturity | 0.216 | 0.228 | 0.240 | 0.252 | 0.264 | 4 | 4 | 4 | 4 | 4 |
| Inadequate research and practical effort | 0.229 | 0.241 | 0.254 | 0.267 | 0.279 | 2 | 2 | 2 | 2 | 2 |
| Subdivisions | Priority | Roadmap Strategies | Actionable Example | Source |
|---|---|---|---|---|
| Inadequate technical support | High | Provide free digital twin and BIM platforms to lower entry barriers for ZCB design and operation | An open-access cloud Digital Twin and BIM-XR platform | 1 |
| Host client-focused workshops and online courses to enhance understanding of ZCB technologies | Transforming built-environment education and training for nearly ZCBs | 2 | ||
| Offer incentives to reduce maintenance costs and establish performance-based service contracts | Performance-based contract | 3 | ||
| Allocate targeted research and development grants for emerging ZCB technologies | Re-COGNITION project | 4 | ||
| Insufficient knowledge and infrastructure | High | Require updated building regulations to incorporate renewable energy systems | Energy Performance of Buildings Directive 2024 | 5 |
| Provide tax incentives and low-interest financing for on-site renewable installations | The United States investment tax credit for solar energy | 6 | ||
| Allocate resources to develop smart-grid capabilities and digital platforms for energy management | SmartNet project | 7 | ||
| Support joint public–private pilot programs that showcase renewable solutions across different climate zones | Net-Zero Energy Residential Test Facility | 8 | ||
| Poor resources and immaturity | Moderate | Promote virtual power purchase agreements and off-site renewable sourcing to bypass on-site space constraints | Virtual power purchase agreements | 9 |
| Sponsor pilot and demonstration projects of emerging ZCB technologies across diverse building types | An Italian pilot project for zero-energy buildings | 10 | ||
| Develop standardized, modular renewable energy kits for easy plug-and-play deployment. | Solar photovoltaic technology | 11 | ||
| Simplify complexity with vetted component libraries and integrated design platforms | BIM object libraries | 12 | ||
| Inadequate research and practical effort | High | Launch Living Labs and technology-transfer offices to speed up turning research into real-world solutions | KTH Live-In Lab | 13 |
| Create clear retrofit guidelines and modular upgrade kits tailored to existing building conditions | EnerPHit Standard | 14 | ||
| Use BIM pre-validation and digital-twin analysis to find and fix operational and maintenance issues | BIM and Digital Twin Integration | 15 | ||
| Build alliances among academia, industry, and policymakers to exchange continuous practical feedback | RINNO Retrofitting Manager platform | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, M.M.; Ali, K.N.; Yuan, H.; Farouk, M.; Almatawa, M.S.; Osuizugbo, I.C. Implementing Zero-Carbon Buildings: A Technological Index and an Innovative Strategic Roadmap. Buildings 2025, 15, 4134. https://doi.org/10.3390/buildings15224134
Omer MM, Ali KN, Yuan H, Farouk M, Almatawa MS, Osuizugbo IC. Implementing Zero-Carbon Buildings: A Technological Index and an Innovative Strategic Roadmap. Buildings. 2025; 15(22):4134. https://doi.org/10.3390/buildings15224134
Chicago/Turabian StyleOmer, Mazen M., Kherun Nita Ali, Hongping Yuan, Mohamed Farouk, Mansour S. Almatawa, and Innocent Chigozie Osuizugbo. 2025. "Implementing Zero-Carbon Buildings: A Technological Index and an Innovative Strategic Roadmap" Buildings 15, no. 22: 4134. https://doi.org/10.3390/buildings15224134
APA StyleOmer, M. M., Ali, K. N., Yuan, H., Farouk, M., Almatawa, M. S., & Osuizugbo, I. C. (2025). Implementing Zero-Carbon Buildings: A Technological Index and an Innovative Strategic Roadmap. Buildings, 15(22), 4134. https://doi.org/10.3390/buildings15224134

