Vitality-Oriented Commercial Street Design Strategies: A Multi-Dimensional Quantitative Analysis of Chunxi Road, Chengdu, China
Abstract
1. Introduction
1.1. Pedestrian Flow as a Core Indicator of Urban Vitality
1.2. Multi-Dimensional Factors Influencing Pedestrian Flow
1.2.1. Accessibility
1.2.2. Public Space for Pedestrians
1.2.3. Diverse Commercial Activities
1.3. Research Objective—To Establish a Quantitative Evaluation Model for Commercial District Vitality
2. Methodology and Data
2.1. Pedestrian Flow Statistics
2.2. Analysis of the Spatial Structure of Commercial Blocks
2.3. Evaluation of Public Space Features
2.4. Measure of Commercial Business
2.5. Establishment of the Vitality Model in Chunxi Road
3. Result
3.1. Correlation Analysis Between Factors and Vitality
3.2. Principal Component Extraction of Vitality-Related Factors
3.3. Multiple Linear Regression
3.4. Curve Analysis of Excluded Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PSPL | Public Space Public Life Survey |
| SPSS | Statistical Product and Service Solutions |
| PCA | Principal Component Analysis |
Appendix A

| Sections | Pedestrian Flow | Sections | Pedestrian Flow | Sections | Pedestrian |
|---|---|---|---|---|---|
| A1 | 12,720 | B10 | 5790 | E1 | 33,465 |
| A2 | 6661 | C1 | 100,095 | E2 | 47,535 |
| A3 | 13,380 | C2 | 33,045 | E3 | 9210 |
| A4 | 2745 | C3 | 36,840 | E4 | 4425 |
| A5 | 13,485 | C4 | 114,165 | E5 | 44,190 |
| A6 | 14,461 | C5 | 173,835 | E6 | 7170 |
| A7 | 6195 | C6 | 121,470 | E7 | 88,890 |
| A8 | 4935 | C7 | 49,020 | E8 | 107,820 |
| A9 | 610 | C8 | 95,940 | E9 | 40,935 |
| A10 | 16,861 | C9 | 27,750 | F1 | 21,075 |
| A11 | 6240 | D1 | 63,720 | F2 | 840 |
| B1 | 1950 | D2 | 9975 | F3 | 21,330 |
| B2 | 1155 | D3 | 82,695 | F4 | 7455 |
| B3 | 2655 | D4 | 7965 | F5 | 22,980 |
| B4 | 1995 | D5 | 88,740 | F6 | 26,625 |
| B5 | 17,461 | D6 | 94,815 | F7 | 6270 |
| B6 | 8175 | D7 | 65,130 | F8 | 30,645 |
| B7 | 3361 | D8 | 75,330 | F9 | 15,990 |
| B8 | 14,925 | D9 | 111,015 | F10 | 10,185 |
| B9 | 2220 | D10 | 45 | F11 | 7185 |
| Sections | Length (m) | Commercial Formats | Total |
|---|---|---|---|
| A1, A3, A5 | 156 | R1, R4, R6, C1, C2 | 5 |
| A11 | 62 | C1, C2 | 2 |
| A2 | 61 | L2, C1 | 2 |
| A4 | 63 | R6, C1, C2 | 3 |
| A6, A10 | 113 | R1, R6, L1, L2, L5, C1, C2, C5 | 8 |
| A7, A8 | 148 | R1, C1 | 2 |
| A9 | 100 | None | 0 |
| B1, B3, B4, | 133 | R1, R6 | 2 |
| B10 | 90 | C1 | 1 |
| B2 | 80 | None | 0 |
| B5, C2 | 90 | R1, R2, R4, R6, L4, L5, C2, C4, C5, C6 | 10 |
| B6 | 77 | C1, C2 | 2 |
| B7 | 103 | R1, R6, C1 | 3 |
| B8 | 89 | R3, R4, R6, R7, C2, C5 | 6 |
| B9 | 64 | None | 0 |
| C1 | 130 | R1, R2, R4, R7, C3, C4, C5 | 7 |
| C3 | 130 | R1, R2, R3, R4, R5, L6, C1, C2, C3, C4, C5 | 11 |
| C4, C5 | 164 | R1, R2, R3, R4, L4, L5, L6, L7, C2, C4, C5, C6 | 12 |
| C6, D7 | 79 | R1, R2, R3, R4, L5, L6 | 6 |
| C7 | 140 | R1, R2, R3, R4, R5, R7, L1, L6, C1, C2, C3, C4, C5 | 13 |
| C8 | 114 | R1, R2, R3, R4, R5, R7, L3, C1, C2, C3, C4, C5 | 12 |
| C9, D8 | 78 | R1, R2, R3, R4, L5, L6 | 6 |
| D1, D3 | 132 | R1, R2, R3, R4, C1, C3, C4 | 7 |
| D2, D10, D11, F2 | 130 | L5, C1, C5 | 3 |
| D4 | 112 | R1, L6, C5 | 3 |
| D5, D6 | 167 | R1, R2, R3, R4, R7, C2, C3, C4, C5, C6 | 10 |
| D9 | 108 | R1, R2, C2, C3, C5 | 5 |
| E1 | 86 | R6, R7, L7, C1, C2, C4, C5 | 7 |
| E2, E5 | 156 | R7, L7, C1, C2, C5 | 5 |
| E3 | 139 | None | 0 |
| E4 | 114 | None | 0 |
| E6 | 83 | None | 0 |
| E7, E8 | 167 | R1, R2, R3, R4, R5, R7, L6, C1, C2, C3, C4, C5 | 12 |
| E9 | 71 | R1, R2, C3, C5 | 4 |
| F1, F3 | 97 | R1, R2, R4, R6, C1, C5 | 6 |
| F11 | 163 | R4, R6 | 2 |
| F4, F7 | 170 | R1, R6, L5, C1, C2, C5, C6 | 7 |
| F5, F6, F8 | 99 | R1, R2, R3, R4, R5, R6, R7, L1, L2, L3, L6, C1, C2, C3, C4, C5 | 16 |
| F9, F10 | 161 | R1, R2, R3, R4, R5, R6, R7, L1, L2, L3, L6, C1, C2, C3, C4, C5 | 16 |
| Sections | Capacity (m2/m) | Sections | Capacity (m2/m) |
|---|---|---|---|
| A1, A3, A5 | 5.13 | C8 | 397.46 |
| A11 | 1.77 | C9, D8 | 48.72 |
| A2 | 5.83 | D1, D3 | 222.65 |
| A4 | 2.70 | D2, D10, D11, F2 | 4.46 |
| A6, A10 | 25.49 | D4 | 3.57 |
| A7, A8 | 4.46 | D5, D6 | 74.91 |
| A9 | 0.00 | D9 | 31.48 |
| B1, B3, B4 | 2.03 | E1 | 47.21 |
| B10 | 2.56 | E2, E5 | 30.64 |
| B2 | 0.00 | E3 | 0.00 |
| B5, C2 | 535.00 | E4 | 0.00 |
| B6 | 1.95 | E6 | 0.00 |
| B7 | 0.68 | E7, E8 | 282.28 |
| B8 | 21.12 | E9 | 21.83 |
| B9 | 0.00 | F1, F3 | 14.23 |
| C1 | 226.00 | F11 | 2.58 |
| C3 | 159.85 | F4, F7 | 17.29 |
| C4, C5 | 218.61 | F5, F6, F8 | 153.74 |
| C6, D7 | 45.57 | F9, F10 | 81.88 |
| C7 | 331.50 | Average | 85.45 |
References
- Jacobs, J. The Death and Life of Great American Cities; Vintage Books: New York, NY, USA, 1961. [Google Scholar]
- Whyte, W.H. The Social Life of Small Urban Spaces; Conservation Foundation: Washington, DC, USA, 1980; Volume 116. [Google Scholar]
- Gehl, J. Life Between Buildings: Using Public Space; Van Nostrand Reinhold: New York, NY, USA, 1987. [Google Scholar]
- Talen, E.; Lee, S. Design for Social Diversity; Routledge: London, UK, 2018. [Google Scholar]
- Li, Z.; Lu, Y.; Zhuang, Y.; Yang, L. Influencing factors of spatial vitality in underground space around railway stations: A case study in Shanghai. Tunn. Undergr. Space Technol. 2024, 147, 105730. [Google Scholar] [CrossRef]
- Liu, S.; Long, Y.; Zhang, L.; Yang, J.; Dong, W. Quantitative measurement of urban spatial vitality by integrating physical built environment and subjective perception dimensions. Environ. Plan. B Urban Anal. City Sci. 2025, 52, 131–149. [Google Scholar] [CrossRef]
- Sun, J. Examining the Impact of the Built Environment on Multidimensional Urban Vitality: Using Milk Tea Shops and Coffee Shops as New Indicators of Urban Vitality. Buildings 2024, 14, 3517. [Google Scholar] [CrossRef]
- Claris, S.; Scopelliti, D.; Arup Ltd. Cities Alive: Towards a Walking World; Arup Ltd.: Mumbai, India, 2016. [Google Scholar]
- Sung, H.; Lee, S. Residential built environment and walking activity: Empirical evidence of Jane Jacobs’ urban vitality. Transp. Res. Part D Transp. Environ. 2015, 41, 318–329. [Google Scholar] [CrossRef]
- Koushki, P.A.; Ali, S.Y. Pedestrian Characteristics and the Promotion of Walking in Kuwait City Center; No. 1396; Transportation Research Board: Washington, DC, USA, 1993; pp. 30–33. [Google Scholar]
- Wang, Y.; Lu, S.; Yu, C.; Wang, X.; Sun, Y. What Characteristics of Urban Parks are Associated with High and Stable Visitor Flow? A Spatiotemporal Exploration Using Mobile Phone Data. Appl. Spat. Anal. Policy 2025, 18, 48. [Google Scholar] [CrossRef]
- Wang, Y.; You, Y.; Huang, J.; Yue, X.; Sun, G. Differences in urban daytime and night block vitality based on mobile phone signaling data: A case study of Kunming’s urban district. Open Geosci. 2024, 16, 20220596. [Google Scholar] [CrossRef]
- Wu, J.; Ta, N.; Song, Y.; Lin, J.; Chai, Y. Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing. Cities 2018, 74, 100–108. [Google Scholar] [CrossRef]
- Marti, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. Social Media data: Challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 2019, 74, 161–174. [Google Scholar] [CrossRef]
- Qin, J.; Wang, Z.; Sheng, Y.; Xue, L.; Cai, X.; Zhang, K. Relationship between the built environment and urban vitality of Nanjing’s central urban area based on multi-source data. Environ. Plan. B Urban Anal. City Sci. 2025, 52, 168–185. [Google Scholar] [CrossRef]
- Long, Y.; Zhou, Y. Quantitative Evaluation on Street Vibrancy and Its Impact Factors: A Case Study of Chengdu. New Archit. 2016, 52–57. [Google Scholar]
- Abdelghany, A.F.; Abdelghany, K.F.; Mahmassani, H.S.; Al-Zahrani, A. Dynamic Simulation Assignment Model for Pedestrian Movements in Crowded Networks. Transp. Res. Rec. 2018, 2316, 95–105. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2018, 69, 45–57. [Google Scholar] [CrossRef]
- Davies, R.L.; Bennison, D.J. Retailing in the city centre: The characters of shopping streets. Tijdschr. Voor Econ. Soc. Geogr. 1977, 69, 270–285. [Google Scholar] [CrossRef]
- Hillier, B.; Tzortzi, K. Space Syntax. In A Companion to Museum Studies; Blackwell Pub: Malden, MA, USA, 2007. [Google Scholar]
- Lee, S.; Seo, K.W. Combining Space Syntax with GIS-based Built Environment Measures in Pedestrian Walking Activity. In Proceedings of the 9th International Space Syntax Symposium, Seoul, Republic of Korea, 31 October–3 November 2013. [Google Scholar]
- Chen, H.; Shi, Y. Spatial Structure of Commodity Market Based on Space Syntax: The Case of Yiwu International Trade Mart. Acta Geogr. Sin. 2011, 66, 805–812. [Google Scholar]
- Carpio-Pinedo, J. Urban Bus Demand Forecast at Stop Level: Space Syntax and Other Built Environment Factors. Evidence from Madrid. Procedia Soc. Behav. Sci. 2014, 160, 205–214. [Google Scholar] [CrossRef]
- Hass-Klau, C. Solving traffic problems in city centres: The European experience. Proc.-ICE-Munic. Eng. 1997, 121, 86–96. [Google Scholar] [CrossRef]
- Gehl, J.; Svarre, B. Public space, public life: An interaction. In How to Study Public Life; Island Press: Washington, DC, USA, 2013; pp. 1–8. [Google Scholar]
- Gehl, J.; Gemzøe, L. Chapter 2. Public spaces, public life. In How to Study Public Life; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Zacharias, J. Pedestrian Behavior Pedestrian Behavior and Perception in Urban Walking Environments. J. Plan. Lit. 2001, 16, 3–18. [Google Scholar] [CrossRef]
- Oppewal, H.; Timmermans, H. Modeling consumer perception of public space in shopping centers. Environ. Behav. 1999, 31, 45–65. [Google Scholar] [CrossRef]
- Li, D.; Han, H.; Wang, J.; Xiao, X. Explaining Urban Vitality Through Interpretable Machine Learning: A Big Data Approach Using Street View Images and Environmental Factors. Sustainability 2025, 17, 4926. [Google Scholar] [CrossRef]
- Nathvani, R.; Cavanaugh, A.; Suel, E.; Bixby, H.; Clark, S.N.; Metzler, A.B.; Nimo, J.; Moses, J.B.; Baah, S.; Arku, R.E.; et al. Measurement of urban vitality with time-lapsed street-view images and object-detection for scalable assessment of pedestrian-sidewalk dynamics. ISPRS J. Photogramm. Remote Sens. 2025, 221, 251–264. [Google Scholar] [CrossRef]
- Wang, M.; Vermeulen, F. Life between buildings from a street view image: What do big data analytics reveal about neighbourhood organisational vitality? Urban Stud. 2020, 58, 3118–3139. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, B.; Liu, D. PSPL Survey: The Evaluation Method for Quality of Public Space and Public Life—The Study on Jan Gehl’s Theory and Method for Public Space Design (Part 3). Chin. Landsc. Archit. 2012, 28, 34–38. [Google Scholar]
- Xu, G.; He, Y.; Bi, Y. The Evaluation and Optimization Strategy of Communities’ Small Open Space Based on Public Space and Public Life (PSPL) Survey: Taking Wuhan Ganghua 120-Community as an Example. Huazhong Archit. 2018, 36, 108–115. [Google Scholar]
- Lv, S.; Ding, B. Public Space Quality Evaluation of Xiqin Road from the Perspective of PSPL Research Method. IOP Conf. Ser. Earth Environ. Sci. 2021, 714, 022072. [Google Scholar] [CrossRef]
- Chu, Q.; Tang, C. Improvement of Urban Public Space Based on PSPL Research Method: Taking Qilin Garden in Qujing City as an Example. Value Eng. 2018, 37, 192–193. [Google Scholar]
- Uhlig, K. Pedestrian Areas: From Malls to Complete Networks; Architectural Book Publishing: New York, NY, USA, 1984. [Google Scholar]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Zhou, D.; Zhong, W.; Zhou, T.; Qi, J. Assessment on urban mixed land use and analysis of its influencing factors based on POI data: A case of the main districts of Hangzhou City. China Land Sci. 2021, 35, 96–106. [Google Scholar]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B-Plan. Des. 2006, 33, 727–748. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Chen, Y. Discussion on the Boundary Attributes of Pedestrian Streets—A Case Study of Chunxi Road Pedestrian Commercial Street. Urban Constr. Theory Res. 2012, 1–4. [Google Scholar]
- Sugie, Y.; Zhang, J.; Fujiwara, A. A weekend shopping activity participation model dependent on weekday shopping behavior. J. Retail. Consum. Serv. 2003, 10, 335–343. [Google Scholar] [CrossRef]
- Chen, Y. Application of Depthmap software in spatial structure analysis of garden. Exp. Technol. Manag. 2009, 26, 87–89. [Google Scholar]
- Dimililer, R.; Akyuz, U. Towards a Multi-Disciplinary Approach in Urban Design Education: Art and Software (Depthmap) Use in Urban Design of Public Spaces. Eurasia J. Math. Sci. Technol. Educ. 2018, 14, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.C.; Han, X.Y.; Liu, Z.Y.; Zheng, L.Q. Research on Public Space Reconstruction Design of Teaching Building of University Design College Based on Depthmap Software. In Proceedings of the International Conference on Innovation Design and Digital Technology, Zhenjing, China, 5–6 December 2020. [Google Scholar]
- Soltani, A.; Lee, C.L. The non-linear dynamics of South Australian regional housing markets: A machine learning approach. Appl. Geogr. 2024, 166, 103248. [Google Scholar] [CrossRef]







| Factors | Details |
|---|---|
| Paving | Scored 1–5 according to the design and quality of pavement |
| Greening | Scored 1–5 according to greening rate and diversity |
| Decoration | Scored 1–5 based on decorations like sculptures and building facades |
| Facilities | Scored 1–5 based on benches, umbrellas, trash bins and so on |
| Width | <6 m (1–3 points), 6–20 m (3–9 points), >20 m (10 points) |
| Sidewalk | With Vehicles (1–9 points), Pedestrian only (10 points) |
| H/W ratio | >4 or <0.5 (1–3 points), 2–4 or 0.5–1 (4–7 points), 1–2 (8–10 points) |
| Vision | <100 m (1–3 points), 100–500 m (4–9 points), >500 m (10 points) |
| Apartment | Uses | Apartment | Uses |
|---|---|---|---|
| Retail (R) | Clothing (R1) | Entertainment (E) | KTV (E1) |
| Suitcase and Bags (R2) | internet café (E2) | ||
| Cosmetics (R3) | Party (E3) | ||
| Jewelry (R4) | Sports (E4) | ||
| Digital products (R5) | Massage (E5) | ||
| Convenience store (R6) | Salon (E6) | ||
| Local Specialty store (R7) | Cinema (E7) | ||
| Catering (C) | Chinese fast food (C1) | ||
| Chinese meal (C2) | |||
| Western fast food (C3) | |||
| Western meal (C4) | |||
| Coffee & Drink (C5) | |||
| Tea house (C6) |
| Aspects | Factors | Correlation | Sig. |
|---|---|---|---|
| Street Accessibility | Integration (R500) | 0.703 ** | 0.000 |
| Total Length (R500) | 0.677 ** | 0.000 | |
| Depth to Bus/Metro | −0.495 ** | 0.000 | |
| Public Space Features | Paving | 0.551 ** | 0.000 |
| Greening | 0.208 * | 0.033 | |
| Decorations | 0.632 ** | 0.000 | |
| Facilities | 0.630 ** | 0.000 | |
| Width | 0.610 ** | 0.000 | |
| Sidewalk | 0.683 ** | 0.000 | |
| Height-width ratio | 0.554 ** | 0.000 | |
| Vision | 0.517 ** | 0.000 | |
| Commerce | Capacity | 0.478 ** | 0.000 |
| Mixed Uses | 0.521 ** | 0.000 |
| Component | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
|---|---|---|---|---|---|---|
| Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
| 1 | 2.110 | 70.343 | 70.343 | 1.590 | 53.011 | 53.011 |
| 2 | 0.679 | 22.633 | 92.977 | 1.199 | 39.966 | 92.977 |
| 3 (Excluded) | 0.211 | 7.023 | 100.000 | |||
| Component | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
|---|---|---|---|---|---|---|
| Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
| 1 | 5.103 | 72.898 | 72.898 | 3.502 | 50.028 | 50.028 |
| 2 | 1.109 | 15.849 | 88.748 | 2.710 | 38.720 | 88.748 |
| 3 (Excluded) | 0.278 | 3.977 | 92.724 | |||
| 4 (Excluded) | 0.206 | 2.936 | 95.660 | |||
| 5 (Excluded) | 0.139 | 1.983 | 97.643 | |||
| 6 (Excluded) | 0.095 | 1.358 | 99.002 | |||
| 7 (Excluded) | 0.070 | 0.998 | 100.000 | |||
| Component | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
|---|---|---|---|---|---|---|
| Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
| 1 | 1.624 | 81.211 | 81.211 | 1.624 | 81.211 | 81.211 |
| 2 (Excluded) | 0.376 | 18.789 | 100.000 | |||
| Aspects | Street Accessibility | Public Space Features | Commerce | ||
|---|---|---|---|---|---|
| Principal Components | A (70.3%) | B (22.6%) | C (72.9%) | D (15.8%) | E (72.5%) |
| Integration (R500) | 0.793 | −0.499 | |||
| Total Length (R500) | 0.961 | −0.106 | |||
| Depth to Bus/Metro | −0.196 | 0.969 | |||
| Paving | 0.925 | 0.195 | |||
| Decoration | 0.888 | 0.335 | |||
| Facilities | 0.887 | 0.317 | |||
| Sidewalk | 0.849 | 0.438 | |||
| Width | 0.423 | 0.852 | |||
| Height-width ratio | 0.378 | 0.810 | |||
| Vision | 0.169 | 0.941 | |||
| Street Capacity | 0.885 | ||||
| Mixed Uses | 0.829 | ||||
| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics | Durbin–Watson | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| R Square Change | F Change | df1 | df2 | Sig. F Change | ||||||
| 1 | 0.688 a | 0.473 | 0.463 | 29,644.306 | 0.473 | 49.356 | 1 | 55 | <0.001 | |
| 2 | 0.796 b | 0.633 | 0.620 | 24,950.913 | 0.160 | 23.638 | 1 | 54 | <0.001 | |
| 3 | 0.849 c | 0.721 | 0.705 | 21,961.727 | 0.088 | 16.700 | 1 | 53 | <0.001 | 1.718 |
| Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
|---|---|---|---|---|---|---|---|
| B | Std. Error | Beta | Tolerance | VIF | |||
| (Constant) | 34,792.610 | 2911.654 | 11.949 | <0.001 | |||
| Principal Component A | 19,162.741 | 3172.980 | 0.490 | 6.039 | <0.001 | 0.800 | 1.250 |
| Principal Component C | 17,757.075 | 3218.510 | 0.447 | 5.517 | <0.001 | 0.800 | 1.250 |
| Principal Component B | −11,811.614 | 2890.341 | −0.296 | −4.087 | <0.001 | 1.000 | 1.000 |
| Equation | Model Summary | Parameter Estimates | |||||||
|---|---|---|---|---|---|---|---|---|---|
| R Square | F | df1 | df2 | Sig. | Constant | b1 | b2 | b3 | |
| Linear | 0.176 | 12.593 | 1 | 59 | <0.001 | 33,877.869 | 16,699.205 | ||
| Inverse | 0.003 | 0.201 | 1 | 59 | 0.656 | 34,067.085 | 56.920 | ||
| Quadratic | 0.301 | 12.495 | 2 | 58 | <0.001 | 48,056.013 | 18,371.786 | −14,414.446 | |
| Cubic | 0.432 | 14.427 | 3 | 57 | <0.001 | 40,126.420 | 51,509.477 | −4313.733 | −17,571.939 |
| Compound | 0.371 | 34.743 | 1 | 59 | <0.001 | 14,349.080 | 2.609 | ||
| Exponential | 0.371 | 34.743 | 1 | 59 | <0.001 | 14,349.080 | 0.959 | ||
| Logistic | 0.371 | 34.743 | 1 | 59 | <0.001 | 6.969 × 10−5 | 0.383 | ||
| Equation | Model Summary | Parameter Estimates | |||||||
|---|---|---|---|---|---|---|---|---|---|
| R Square | F | df1 | df2 | Sig. | Constant | b1 | b2 | b3 | |
| Linear | 0.276 | 22.497 | 1 | 59 | <0.001 | 33,877.869 | 20,919.562 | ||
| Inverse | 0.018 | 1.056 | 1 | 59 | 0.308 | 35,843.663 | 727.132 | ||
| Quadratic | 0.407 | 19.887 | 2 | 58 | <0.001 | 49,879.127 | 35,521.534 | −16,267.946 | |
| Cubic | 0.413 | 13.387 | 3 | 57 | <0.001 | 47,448.103 | 39,260.060 | −10,770.118 | −3371.563 |
| Compound | 0.364 | 33.785 | 1 | 59 | <0.001 | 14,349.080 | 2.587 | ||
| Exponential | 0.364 | 33.785 | 1 | 59 | <0.001 | 14,349.080 | 0.951 | ||
| Logistic | 0.364 | 33.785 | 1 | 59 | <0.001 | 6.969 × 10−5 | 0.387 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Wang, Y.; Feng, K. Vitality-Oriented Commercial Street Design Strategies: A Multi-Dimensional Quantitative Analysis of Chunxi Road, Chengdu, China. Buildings 2025, 15, 4082. https://doi.org/10.3390/buildings15224082
Yan W, Wang Y, Feng K. Vitality-Oriented Commercial Street Design Strategies: A Multi-Dimensional Quantitative Analysis of Chunxi Road, Chengdu, China. Buildings. 2025; 15(22):4082. https://doi.org/10.3390/buildings15224082
Chicago/Turabian StyleYan, Wei, Yupeng Wang, and Kexin Feng. 2025. "Vitality-Oriented Commercial Street Design Strategies: A Multi-Dimensional Quantitative Analysis of Chunxi Road, Chengdu, China" Buildings 15, no. 22: 4082. https://doi.org/10.3390/buildings15224082
APA StyleYan, W., Wang, Y., & Feng, K. (2025). Vitality-Oriented Commercial Street Design Strategies: A Multi-Dimensional Quantitative Analysis of Chunxi Road, Chengdu, China. Buildings, 15(22), 4082. https://doi.org/10.3390/buildings15224082

