Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems
Abstract
1. Introduction
- (1)
- Design and implement a robust data pipeline to manage real-world sensor imperfections.
- (2)
- Perform a comparative analysis of shallow and deep learning models for short-term (real-time) and long-term (proactive) forecasting.
- (3)
- Validate the framework through a year-long deployment in an operational educational building, demonstrating its feasibility and adaptability in a multi-zone environment with varied occupancy and usage patterns.
2. Literature Review
2.1. Digital Twin in the AEC Sector
2.2. Predictive Modeling in Buildings
2.3. Advanced Deep Learning Approaches
2.4. Anomaly Detection in Buildings
2.5. IoT, BIM, and Big Data in DTs
3. Methodology
3.1. Digital Twin Architecture
3.2. Data Acquisition and Case Study Description
3.2.1. Case Study Overview
3.2.2. Data Collection and Initial Preprocessing
3.3. Data Preprocessing and Feature Engineering
3.3.1. Data Preprocessing Pipeline
3.3.2. Feature Engineering and Selection
3.4. Prediction Model Development
3.4.1. Model Selection Strategy
- Forget Gate (): This gate determines which information from the previous cell state (Ct−1) should be discarded.
- Input Gate (): This gate decides which new information from the current input () to store in the cell state.
- Candidate Cell State (): A new candidate vector is created using the current input and previous hidden state.
- Cell State Update (): The cell state is updated by a combination of the previous cell state (scaled by the forget gate) and the new candidate values (scaled by the input gate).
- Output Gate () and Hidden State (): The output gate controls which parts of the cell state will be used to generate the final hidden state ().
3.4.2. Model Training Workflow
3.5. Anomaly Detection Framework
3.6. Model Evaluation
- Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) measure the average squared difference between predicted and actual values, heavily penalizing large errors.
- Mean Absolute Error (MAE) reflects the average magnitude of absolute errors, providing an interpretable measure of typical prediction error.
- Coefficient of Determination (R2) measures the proportion of variance in the observed data that is explained by the model, indicating goodness of fit.
- Percentage of Predictions Within 1 °C Error designed to assess practical utility, this quantifies the proportion of forecasts that fall within a 1 °C tolerance of the actual temperature. It is calculated as:
4. Results and Discussion
4.1. Short-Term Prediction
4.2. Long-Term Prediction
4.3. Anomaly Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DT | Digital Twin |
| LSTM | Long Short-Term Memory |
| RNN | Recurrent Neural Network |
| GRU | Gated Recurrent Unit |
| ANN | Artificial Neural Network |
| XGBoost | Extreme Gradient Boosting |
| RF | Random Forest |
| IQR | Interquartile Range |
| BIM | Building Information Modeling |
| IoT | Internet of Things |
| MSE | Mean Squared Error |
| RMSE | Root Mean Squared Error |
| MAE | Mean Absolute Error |
| Coefficient of Determination |
Appendix A

References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Merino, J.; Moretti, N.; Pauwels, P.; Chang, J.Y.; Parlikad, A. Digital twin enabled fault detection and diagnosis process for building HVAC systems. Autom. Constr. 2023, 146, 104695. [Google Scholar] [CrossRef]
- Hong, T.; Koo, C.; Kim, J.; Lee, M.; Jeong, K. A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase. Appl. Energy 2015, 155, 671–707. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Idahosa, L.O.; Akotey, J.O. A social constructionist approach to managing HVAC energy consumption using social norms—A randomised field experiment. Energy Policy 2021, 154, 112293. [Google Scholar] [CrossRef]
- Papadopoulos, S.; Kontokosta, C.E.; Vlachokostas, A.; Azar, E. Rethinking HVAC temperature setpoints in commercial buildings: The potential for zero-cost energy savings and comfort improvement in different climates. Build. Environ. 2019, 155, 350–359. [Google Scholar] [CrossRef]
- Marocco, M.; Garofolo, I. Integrating disruptive technologies with facilities management: A literature review and future research directions. Autom. Constr. 2021, 131, 103917. [Google Scholar] [CrossRef]
- Motamedi, A.; Hammad, A.; Asen, Y. Knowledge-assisted BIM-based visual analytics for failure root cause detection in facilities management. Autom. Constr. 2014, 43, 73–83. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Prušková, K. BIM technology and changes in traditional design process, reliability of data from related registers. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 960, p. 032049. [Google Scholar]
- Lu, Q.; Xie, X.; Parlikad, A.K.; Schooling, J.M. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Shafto, M.; Conroy, M.; Doyle, R.; Gleassgen, E.; Kemp, C.; LeMoigne, J.; Wang, L. Draft modeling, simulation, information technology & processing roadmap. Technol. Area 2010, 11, 1–32. [Google Scholar]
- Grieves, M.W. Product lifecycle management: The new paradigm for enterprises. Int. J. Prod. Dev. 2005, 2, 71–84. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Florida Inst. Technol.: Melbourne, FL, USA, 2017; pp. 85–113. [Google Scholar]
- VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021, 145, 113524. [Google Scholar] [CrossRef]
- Boukaf, M.; Fadli, F.; Meskin, N. A Comprehensive Review of Digital Twin Technology in Building Energy Consumption Forecasting. IEEE Access 2024, 12, 187778–187799. [Google Scholar] [CrossRef]
- Arsecularatne, B.; Rodrigo, N.; Chang, R. Digital Twins for Reducing Energy Consumption in Buildings: A Review. Sustainability 2024, 16, 9275. [Google Scholar] [CrossRef]
- Zahedi, F.; Alavi, H.; Sardroud, J.M.; Dang, H. Digital Twins in the Sustainable Construction Industry. Buildings 2024, 14, 3613. [Google Scholar] [CrossRef]
- Huang, J.; Wu, P.; Li, W.; Zhang, J.; Xu, Y. Exploring the Applications of Digital Twin Technology in Enhancing Sustainability in Civil Engineering: A Review. Struct. Durab. Health Monit. (SDHM) 2024, 18. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Z.; Court, S.; Yang, L.; Wang, S.; Thirunavukarasu, A.; Zhao, Y. A Review of Digital Twin Technologies for Enhanced Sustainability in the Construction Industry. Buildings 2024, 14, 1113. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Shen, M.; Peh, L.C. Transition from building information modeling (BIM) to integrated digital delivery (IDD) in sustainable building management: A knowledge discovery approach based review. J. Clean. Prod. 2021, 291, 125223. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Iliuţă, M.-E.; Moisescu, M.-A.; Pop, E.; Ionita, A.-D.; Caramihai, S.-I.; Mitulescu, T.-C. Digital Twin—A Review of the Evolution from Concept to Technology and Its Analytical Perspectives on Applications in Various Fields. Appl. Sci. 2024, 14, 5454. [Google Scholar] [CrossRef]
- Yeom, S.; Kim, J.; Kang, H.; Jung, S.; Hong, T. Digital twin (DT) and extended reality (XR) for building energy management. Energy Build. 2024, 323, 114746. [Google Scholar] [CrossRef]
- Francisco, A.; Mohammadi, N.; Taylor, J.E. Smart city digital twin–enabled energy management: Toward real-time urban building energy benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, J.; Yoon, S. DT-BEMS: Digital twin-enabled building energy management system for information fusion and energy efficiency. Energy 2025, 326, 136162. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Nielsen, H.K.; Kraniotis, D.; Svennevig, P.R.; Svidt, K. Improving building occupant comfort through a digital twin approach: A Bayesian network model and predictive maintenance method. Energy Build. 2023, 288, 112992. [Google Scholar] [CrossRef]
- Benfer, R.; Müller, J. Semantic digital twin creation of building systems through time series based metadata inference—A review. Energy Build. 2024, 321, 114637. [Google Scholar] [CrossRef]
- Iqbal, F.; Mirzabeigi, S. Digital Twin-Enabled Building Information Modeling–Internet of Things (BIM-IoT) Framework for Optimizing Indoor Thermal Comfort Using Machine Learning. Buildings 2025, 15, 1584. [Google Scholar] [CrossRef]
- Arowoiya, V.A.; Moehler, R.C.; Fang, Y. Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. Energy Built Environ. 2024, 5, 641–656. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-physical systems improving building energy management: Digital twin and artificial intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Lin, L.; Wu, S.; Kang, Y.; Sepasgozar, S. Exploring the benefits and limitations of digital twin technology in building energy. Appl. Sci. 2023, 13, 8814. [Google Scholar] [CrossRef]
- Jeong, K.; Koo, C.; Hong, T. An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy 2014, 71, 71–79. [Google Scholar] [CrossRef]
- Arora, S.; Taylor, J.W. Short-term forecasting of anomalous load using rule-based triple seasonal methods. IEEE Trans. Power Syst. 2013, 28, 3235–3242. [Google Scholar] [CrossRef]
- Smarra, F.; Jain, A.; De Rubeis, T.; Ambrosini, D.; D’Innocenzo, A.; Mangharam, R. Data-driven model predictive control using random forests for building energy optimization and climate control. Appl. Energy 2018, 226, 1252–1272. [Google Scholar] [CrossRef]
- Martínez-Comesaña, M.; Eguía-Oller, P.; Martínez-Torres, J.; Febrero-Garrido, L.; Granada-Álvarez, E. Optimisation of thermal comfort and indoor air quality estimations applied to in-use buildings combining NSGA-III and XGBoost. Sustain. Cities Soc. 2022, 80, 103723. [Google Scholar] [CrossRef]
- Huang, Y.; Miles, H.; Zhang, P. A Sequential Modelling Approach for Indoor Temperature Prediction and Heating Control in Smart Buildings. arXiv 2020, arXiv:2009.09847. [Google Scholar] [CrossRef]
- Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network. Build. Environ. 2010, 45, 739–746. [Google Scholar] [CrossRef]
- Ferreira, P.; Ruano, A.; Silva, S.; Conceicao, E. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build. 2012, 55, 238–251. [Google Scholar] [CrossRef]
- Ramadan, L.; Shahrour, I.; Mroueh, H.; Chehade, F.H. Use of machine learning methods for indoor temperature forecasting. Future Internet 2021, 13, 242. [Google Scholar] [CrossRef]
- Boesgaard, C.; Hansen, B.V.; Kejser, U.B.; Mollerup, S.H.; Ryhl-Svendsen, M.; Torp-Smith, N. Prediction of the indoor climate in cultural heritage buildings through machine learning: First results from two field tests. Herit. Sci. 2022, 10, 176. [Google Scholar] [CrossRef]
- Ma, C.; Pan, S.; Cui, T.; Liu, Y.; Cui, Y.; Wang, H.; Wan, T. Energy consumption prediction for office buildings: Performance evaluation and application of ensemble machine learning techniques. J. Build. Eng. 2025, 102, 112021. [Google Scholar] [CrossRef]
- Zhang, L. Data-driven building energy modeling with feature selection and active learning for data predictive control. Energy Build. 2021, 252, 111436. [Google Scholar] [CrossRef]
- Matetić, I.; Štajduhar, I.; Wolf, I.; Ljubic, S. A review of data-driven approaches and techniques for fault detection and diagnosis in HVAC systems. Sensors 2022, 23, 1. [Google Scholar] [CrossRef]
- Arwansyah; Suryani; Sy, H.; Faizal; Alam, S.; Piu, S.; Usman; Tamsir, N.; Djafar, I. Deep sequence models for time series data: A comparative study and parameter fine-tuning approach. In Proceedings of the 2024 11th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 26–27 September 2024; pp. 703–709. [Google Scholar]
- Somu, N.; MR, G.R.; Ramamritham, K. A hybrid model for building energy consumption forecasting using long short term memory networks. Appl. Energy 2020, 261, 114131. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Cho, S.-B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Cui, B.; Im, P.; Bhandari, M.; Lee, S. Performance analysis and comparison of data-driven models for predicting indoor temperature in multi-zone commercial buildings. Energy Build. 2023, 298, 113499. [Google Scholar] [CrossRef]
- Xing, T.; Sun, K.; Zhao, Q. MITP-Net: A deep-learning framework for short-term indoor temperature predictions in multi-zone buildings. Build. Environ. 2023, 239, 110388. [Google Scholar] [CrossRef]
- Jiang, B.; Gong, H.; Qin, H.; Zhu, M. Attention-LSTM architecture combined with Bayesian hyperparameter optimization for indoor temperature prediction. Build. Environ. 2022, 224, 109536. [Google Scholar] [CrossRef]
- Elmaz, F.; Eyckerman, R.; Casteels, W.; Latré, S.; Hellinckx, P. CNN-LSTM architecture for predictive indoor temperature modeling. Build. Environ. 2021, 206, 108327. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, C.-J. Short-term prediction for indoor temperature control using artificial neural network. Energies 2023, 16, 7724. [Google Scholar] [CrossRef]
- Fang, Z.; Crimier, N.; Scanu, L.; Midelet, A.; Alyafi, A.; Delinchant, B. Multi-zone indoor temperature prediction with LSTM-based sequence to sequence model. Energy Build. 2021, 245, 111053. [Google Scholar] [CrossRef]
- Norouzi, P.; Maalej, S.; Mora, R. Applicability of deep learning algorithms for predicting indoor temperatures: Towards the development of digital twin HVAC systems. Buildings 2023, 13, 1542. [Google Scholar] [CrossRef]
- Yu, W.; Nakisa, B.; Ali, E.; Loke, S.W.; Stevanovic, S.; Guo, Y. Sensor-based indoor air temperature prediction using deep ensemble machine learning: An Australian urban environment case study. Urban Clim. 2023, 51, 101599. [Google Scholar] [CrossRef]
- Borda, D.; Bergagio, M.; Amerio, M.; Masoero, M.C.; Borchiellini, R.; Papurello, D. Development of anomaly detectors for HVAC systems using machine learning. Processes 2023, 11, 535. [Google Scholar] [CrossRef]
- Hodavand, F.; Ramaji, I.J.; Sadeghi, N. Digital twin for fault detection and diagnosis of building operations: A systematic review. Buildings 2023, 13, 1426. [Google Scholar] [CrossRef]
- Cicero, S.; Guarascio, M.; Guerrieri, A.; Mungari, S. A deep anomaly detection system for iot-based smart buildings. Sensors 2023, 23, 9331. [Google Scholar] [CrossRef]
- Mirdula, S.; Roopa, M. MUD enabled deep learning framework for anomaly detection in IoT integrated smart building. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 5, 100186. [Google Scholar]
- Song, Y.; Kuang, S.; Huang, J.; Zhang, D. Unsupervised anomaly detection of industrial building energy consumption. Energy Built Environ. 2024. [Google Scholar] [CrossRef]
- Shahid, Z.K.; Saguna, S.; Ahlund, C.; Mitra, K. Anomaly Detection using Transfer Learning for Electricity Consumption in School Buildings: A Case of Northern Sweden. Energy Build. 2025, 346, 116129. [Google Scholar] [CrossRef]
- Abdollah, M.A.F.; Scoccia, R.; Aprile, M. Transformer encoder based self-supervised learning for HVAC fault detection with unlabeled data. Build. Environ. 2024, 258, 111568. [Google Scholar] [CrossRef]
- Floris, A.; Porcu, S.; Girau, R.; Atzori, L. An iot-based smart building solution for indoor environment management and occupants prediction. Energies 2021, 14, 2959. [Google Scholar] [CrossRef]
- Eneyew, D.D.; Capretz, M.A.; Bitsuamlak, G.T. Toward smart-building digital twins: BIM and IoT data integration. IEEE Access 2022, 10, 130487–130506. [Google Scholar] [CrossRef]
- ElArwady, Z.; Kandil, A.; Afiffy, M.; Marzouk, M. Modeling Indoor Thermal Comfort in Buildings using Digital Twin and Machine Learning. Dev. Built Environ. 2024, 19, 100480. [Google Scholar] [CrossRef]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The role of ai, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access 2021, 9, 32030–32052. [Google Scholar] [CrossRef]
- Zhang, M.; Tao, F.; Huang, B.; Liu, A.; Wang, L.; Anwer, N.; Nee, A. Digital twin data: Methods and key technologies. Digit. Twin 2022, 1, 2. [Google Scholar] [CrossRef]
- Afroz, Z.; Urmee, T.; Shafiullah, G.; Higgins, G. Real-time prediction model for indoor temperature in a commercial building. Appl. Energy 2018, 231, 29–53. [Google Scholar] [CrossRef]
- Afroz, Z.; Shafiullah, G.; Urmee, T.; Higgins, G. Modeling techniques used in building HVAC control systems: A review. Renew. Sustain. Energy Rev. 2018, 83, 64–84. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Trees vs. Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy Build. 2017, 147, 77–89. [Google Scholar] [CrossRef]
- Attoue, N.; Shahrour, I.; Younes, R. Smart building: Use of the artificial neural network approach for indoor temperature forecasting. Energies 2018, 11, 395. [Google Scholar] [CrossRef]
- Bandara, K.; Shi, P.; Bergmeir, C.; Hewamalage, H.; Tran, Q.; Seaman, B. Sales Demand Forecast in E-commerce Using a Long Short-Term Memory Neural Network Methodology. Neural Inf. Process. 2019, 462–474. [Google Scholar] [CrossRef]
- Shakhovska, N.; Mochurad, L.; Caro, R.; Argyroudis, S. Innovative machine learning approaches for indoor air temperature forecasting in smart infrastructure. Sci. Rep. 2025, 15, 47. [Google Scholar] [CrossRef]
- Shrestha, R.; Mohammadi, M.; Sinaei, S.; Salcines, A.; Pampliega, D.; Clemente, R.; Sanz, A.L.; Nowroozi, E.; Lindgren, A. Anomaly detection based on lstm and autoencoders using federated learning in smart electric grid. J. Parallel Distrib. Comput. 2024, 193, 104951. [Google Scholar] [CrossRef]
- Noh, S.-H.; Moon, H.J. Anomaly detection based on lstm learning in iot-based dormitory for indoor environment control. Buildings 2023, 13, 2886. [Google Scholar] [CrossRef]









| Feature | Description |
|---|---|
| Temperature | This feature shows the temperature in Celsius degrees. |
| Humidity | This feature shows the humidity as a percentage. |
| Temperature | This feature is likely the same as temperature, but to avoid repetition, the name “Temperature” is used. |
| Temperature 1 h ago | This feature shows the temperature 1 h ago in Celsius degrees. |
| Temperature 24 h ago | This feature shows the temperature 24 h ago in Celsius degrees. |
| Temperature 168 h ago | This feature shows the temperature 168 h ago (i.e., 7 days ago) in Celsius degrees. |
| Temperature 336 h ago | This feature shows the temperature 336 h ago (i.e., 14 days ago) in Celsius degrees. |
| Weekly Temperature Trend | This feature shows the trend of temperature changes over a week. Its unit is Celsius degrees. |
| Daily Temperature Trend | This feature shows the trend of temperature changes over a day. Its unit is Celsius degrees. |
| Seasonal Temperature | This feature shows the seasonal temperature in Celsius degrees. |
| External Seasonal Temperature | A precise explanation regarding the settings applied to this seasonal temperature feature is available in the relevant documents. For better understanding, it is recommended to refer to the data sources. Its unit is Celsius degrees. |
| Seasonal Humidity | This feature shows the seasonal humidity as a percentage. |
| Model | Hyperparameters | Search Space | Achieved Value |
|---|---|---|---|
| LSTM (short-term prediction) | Layers | [1, 2, 3] | 2 |
| Units | [32, 64, 100, 128] | 100 | |
| Dropout rate | [0.1, 0.2, 0.3, 0.4, 0.5] | 0.4 | |
| Learning rate | 1 × 10−6 to 1 × 10−1 (logarithmic scale) | 0.001 | |
| Batch | [32, 64, 128] | 128 | |
| n-step-in | [24, 48, 72, 96, 120, 144, 168] | 168 | |
| LSTM (long-term prediction) | Epoch | [20, 50, 100] | 100 |
| Layers | [1, 2, 3] | 2 | |
| Units | [32, 64, 128] | 128 | |
| Dropout rate | [0.2, 0.3, 0.5] | 0.2 | |
| Learning rate | 1 × 10−6 to 1 × 10−1 (logarithmic scale) | 0.0001 | |
| Batch | [32, 64, 128] | 128 | |
| n-step-in | [24, 48, 72, 96, 120, 144, 168] | 48 | |
| n-step-out | [24, 48, 72, 96, 120, 144, 168] | 24 | |
| Epoch | [20, 50, 100] | 100 | |
| colsample_bytree | [0.5, 1.0] | 0.9301 | |
| gamma | [0.0, 0.2] | 0.0178 | |
| XGBoost | learning_rate | [0.01, 0.3] | 0.1673 |
| max_depth | [3, 10] (integer values only) | 5 | |
| n_estimators | [10, 200] (integer values only) | 10 | |
| subsample | [0.5, 1.0] | 0.7871 |
| Model | Class | MAE | RMSE | R2 | Percentage of Prediction Under 1 Degree |
|---|---|---|---|---|---|
| LSTM | 128 | 0.11 | 0.17 | 0.99 | 99.74 |
| 201 | 0.24 | 0.42 | 0.986 | 97.98 | |
| XGBoost | 128 | 0.2 | 0.57 | 0.96 | 98.98 |
| 201 | 0.42 | 0.82 | 0.96 | 93.6 | |
| RF | 128 | 0.25 | 0.59 | 0.96 | 98.3 |
| 201 | 0.41 | 0.83 | 0.96 | 93.36 | |
| ANN | 128 | 0.19 | 0.3 | 0.96 | 98.85 |
| 201 | 0.53 | 0.6 | 0.95 | 90 | |
| Naive | 128 | 0.88 | |||
| 201 | 1.65 | ||||
| Classroom | MAE | MSE | RMSE | R2 |
|---|---|---|---|---|
| 128 | 0.29 | 0.2 | 0.45 | 0.92 |
| 201 | 0.65 | 1 | 1 | 0.87 |
| Classroom | Actual | Prediction | Anomalies | Time |
|---|---|---|---|---|
| 128 | 23.59 | 24.38 | TRUE | 8/6/2023 3:00 |
| 128 | 23.24 | 24.82 | TRUE | 8/6/2023 4:00 |
| 128 | 28.96 | 25.7 | TRUE | 8/6/2023 5:00 |
| 128 | 22.73 | 24.52 | TRUE | 8/6/2023 6:00 |
| 128 | 23.04 | 23.97 | TRUE | 8/8/2023 5:00 |
| 128 | 22.82 | 21.63 | TRUE | 8/8/2023 23:00 |
| 128 | 21.98 | 22.56 | TRUE | 8/18/2023 16:00 |
| 128 | 21.4 | 20.48 | TRUE | 8/23/2023 13:00 |
| 128 | 21.68 | 22.61 | TRUE | 8/23/2023 14:00 |
| 128 | 22.22 | 23.03 | TRUE | 8/30/2023 13:00 |
| 128 | 24.53 | 23.37 | TRUE | 8/30/2023 14:00 |
| 128 | 22.16 | 23.08 | TRUE | 8/30/2023 15:00 |
| 128 | 19.15 | 19.78 | TRUE | 9/4/2023 11:00 |
| 128 | 20.81 | 20.34 | TRUE | 9/5/2023 10:00 |
| 201 | 24.56 | 27.11 | TRUE | 7/17/2023 3:00 |
| 201 | 25.32 | 28.61 | TRUE | 7/24/2023 11:00 |
| 201 | 23.62 | 26.15 | TRUE | 7/24/2023 12:00 |
| 201 | 28.59 | 31.74 | TRUE | 7/31/2023 2:00 |
| 201 | 24.54 | 27.09 | TRUE | 8/14/2023 11:00 |
| 201 | 23.71 | 26.17 | TRUE | 8/21/2023 11:00 |
| 201 | 26.75 | 24.31 | TRUE | 8/24/2023 0:00 |
| 201 | 23.43 | 26 | TRUE | 9/4/2023 11:00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodavand, F.; Ramaji, I.; Sadeghi, N.; Zandi Goharrizi, S. Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems. Buildings 2025, 15, 4030. https://doi.org/10.3390/buildings15224030
Hodavand F, Ramaji I, Sadeghi N, Zandi Goharrizi S. Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems. Buildings. 2025; 15(22):4030. https://doi.org/10.3390/buildings15224030
Chicago/Turabian StyleHodavand, Faeze, Issa Ramaji, Naimeh Sadeghi, and Sarmad Zandi Goharrizi. 2025. "Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems" Buildings 15, no. 22: 4030. https://doi.org/10.3390/buildings15224030
APA StyleHodavand, F., Ramaji, I., Sadeghi, N., & Zandi Goharrizi, S. (2025). Digital Twin-Enabled Framework for Intelligent Monitoring and Anomaly Detection in Multi-Zone Building Systems. Buildings, 15(22), 4030. https://doi.org/10.3390/buildings15224030

