Dynamic Characterization of Civil Engineering Structures with Wireless MEMS Accelerometers
Abstract
1. Introduction
2. Proposed Wireless Sensor Network (WSN) Architecture Supporting Wireless MEMS Accelerometers
2.1. Overview of Key Characteristics
2.2. WSN Communication
2.3. Synchronization of the Acceleration Measurements
3. Validation Tests Carried out in a Laboratory Environment
3.1. Description of Validation Tests
3.2. Impact Load Tests (ILTs)
3.3. Ambient Vibration Tests (AVTs)
4. Validation Tests Carried out on a Tall Building
4.1. Overview of the Selected Case Study
4.2. Test Series 1: Ambient Vibration Tests (AVTs) T1 and T2
4.3. Test Series 2: Ambient Vibration Tests (AVTs) T2 Through to T7
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Ke, J. Literature Review on the Structural Health Monitoring (SHM) of Sustainable Civil Infrastructure: An Analysis of Influencing Factors in the Implementation. Buildings 2024, 14, 402. [Google Scholar] [CrossRef]
- Sabato, A.; Niezrecki, C.; Fortino, G. Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: A review. IEEE Sens. J. 2017, 17, 226–235. [Google Scholar] [CrossRef]
- Abdulkarem, M.; Samsudin, K.; Fokhani, F.Z.; Rasid, M.F.A. Wireless sensor network for structural health monitorting: A contemporary review of technologies, challenges and future direction. Struct. EHalth Monit. 2020, 19, 693–735. [Google Scholar] [CrossRef]
- Mishra, M.; Lourenco, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Laflamme, S.; Ubertini, F.; Di Matteo, A.; Pirrotta, A.; Perry, M.; Fu, Y.; Li, J.; Wang, H.; Hoang, T.; Glisic, B.; et al. Roadmap on measurement technologies for next generation structural health monitoring systems. Meas. Sci. Technol. 2023, 34, 093001. [Google Scholar] [CrossRef]
- Hoff, I.; Alovisi, I.; Vliet, A.B.-V.; Darò, P.; Fliegel, F.; Koler, J.; Liljefors, F.; Cuerva Navas, S.; Scibilia, E.; Straus, A.; et al. Analyses of barriers, trends and best practices for better monitoring and maintenance of European transport infrastructure. Transp. Res. Procedia 2023, 72, 343–350. [Google Scholar] [CrossRef]
- Ruggieri, S.; Bruno, G.; Attolico, A.; Uva, G. Assessing the dredging vibrational effects on surrounding structures: The case of port nourishment in Bari. J. Build. Eng. 2024, 96, 110385. [Google Scholar] [CrossRef]
- Garcia-Macias, E.; Ubertini, F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy. Eng. Struct. 2020, 215, 110615. [Google Scholar] [CrossRef]
- Fu, S.; Wu, J.; Zhang, Q.; Xie, B. Automated identification and long-term tracking of modal parameters for a super high-rise building. J. Build. Eng. 2024, 95, 110141. [Google Scholar] [CrossRef]
- Pentaris, F.P.; Stonham, J.; Makris, J.P. A cost effective wireless structural health monitoring network for buildings in earthquake zones. Smart Mater. Struct. 2014, 23, 105010. [Google Scholar] [CrossRef]
- Giordano, P.F.; Iacovino, C.; Quqa, S.; Limongelli, M.P. The value of seismic structural health monitoring for post=earthquale building evacuation. Bull. Go Earthq. Eng. 2022, 20, 4367–4393. [Google Scholar]
- Lorenzoni, F.; Caldon, M.; da Port Francesca Modena, C.; Aoki, C. Post-earthquake controls and damage detection through structural health monitoring: Applications in L’Aquila. J. Civ. Struct. Health Monit. 2018, 8, 217–236. [Google Scholar] [CrossRef]
- Zhou, J.; Li, H.-W.; Wang, Y.-W.; Ni, Y.-Q. Comparative study of earthquake effects on the Canton Tower based on full-scale measurements. J. Build. Eng. 2024, 96, 110430. [Google Scholar] [CrossRef]
- Zhou, K.; Duan, M.-G.; Wu, Z.-L.; Zhi, L.-H.; Hu, F. Dynamic behavior monitoring of twin supertall buildings during Super Typhoon Soksuri using social sensing data. J. Build. Eng. 2024, 95, 110119. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Ni, Y.-Q. Full-scale monitoring of wind effects on a supertall structure during six tropical cyclones. J. Build. Eng. 2022, 45, 103507. [Google Scholar] [CrossRef]
- Yi, Z.; Jinshen, G.; Xu, W. Intelligent settlement monitoring system of high-speed railway bridge. J. Civ. Struct. Health Monit. 2019, 9, 307–323. [Google Scholar] [CrossRef]
- Machelski, C.; Hildebrand, M. Efficiency of monitoring stem of cable-stayed bridge for investigation of live loads and pier settlements. J. Civ. Struct. Health Monit. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Nicoletti, V.; Arezzo, D.; Carbonari, S.; Gara, F. Dynamic monitoring of buildings as a diagnostic tool during construction phases. J. Build. Eng. 2022, 46, 103764. [Google Scholar] [CrossRef]
- Carbonari, S.; Nicoletti, V.; Martini, R.; Gara, F. Dynamics of bridges during proof load tests and determination of mass-normalized mode shapes from OMA. Eng. Struct. 2024, 310, 118111. [Google Scholar] [CrossRef]
- Liu, W.; Yang, N.; Bai, F.; Law, S.-S.; Abruzzese, D. An improved automated framework for operational modal analysis with multi-stage clustering and modal quality evaluation. Mech. Syst. Signal Process. 2024, 212, 111235. [Google Scholar] [CrossRef]
- Nicoletti, V.; Quarchioni, S.; Amico, L.; Gara, F. Assessment of different optimal sensor placement methods for dynamic monitoring of civil structures and infrastructures. Struct. Infrastruct. Eng. 2024. [Google Scholar] [CrossRef]
- Zhou, G.-D.; Yi, T.-H.; Xie, M.-X.; Li, H.-N.; Xu, J.-H. Optimal wireless sensor placement in structural health monitoring emphasizing information effectiveness and network performance. J. Aerosp. Eng. (ASCE) 2021, 34, 04020112. [Google Scholar] [CrossRef]
- Ereiz, S.; Jimenez-Alonso, J.F.; Gallegos-Calderon, C.; Duvnjak, I.; Limongelli, M.P. Vibration based single-objective finite element model updating using cooperative game theory approach. Mech. Syst. Signal Process. 2024, 212, 111316. [Google Scholar] [CrossRef]
- Ciambella, J.; Ranzi, G.; Romeo, F. The Pier Luigi Nervi’s concrete structure of Palazzetto dello Sport: Modeling and dynamic characterization. Struct. Concr. 2024, 1–13. [Google Scholar] [CrossRef]
- Hernandez-Gonzalez, I.A.; Garcia-Macias, E.; Costante, G.; Ubertini, F. AI-driven blind source separation for fast operational modal analysis of structures. Mech. Syst. Signal Process. 2024, 211, 111267. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, W.; Chen, X.; Zhang, S.; Xiao, W. Deep reinforcement learning approach with hybrid action space for mobile charging in wireless rechargeable sensor networks. Expert Syst. Appl. 2024, 249, 123752. [Google Scholar] [CrossRef]
- Reuland, Y.; Martakis, P.; Chatzi, E. A Comparative Study of Damage-Sensitive Features for Rapid Data-Driven Seismic Structural Health Monitoring. Appl. Sci. 2023, 13, 2708. [Google Scholar] [CrossRef]
- Ruccolo, A.; Gentile, C.; Canali, F. Monitoring an iconic heritage structure with OMA: The Main Spire of the Milan Cathedral. Smart Struct. Syst. Int. J. 2021, 27, 305–318. [Google Scholar] [CrossRef]
- Rosso, M.M.; Aloisio, A.; Parol, J.; Marano, G.C.; Quaranta, G. Intelligent automatic operational modal analysis. Mech. Syst. Signal Process. 2023, 201, 110669. [Google Scholar] [CrossRef]
- Pasca, D.P.; Aloisio, A.; Rosso, M.M.; Sotiropoulos, S. PyOMA and PyOMA GUI: A Python module and software for Operational Modal Analysis. SoftwareX 2022, 20, 101216. [Google Scholar] [CrossRef]
- Garcia-Macias, E.; Ubertini, F. MOVA/MOSS: Two integrated software solutions for comprehensive Structural Health Monitoring of structures. Mech. Syst. Signal Process. 2020, 143, 106830. [Google Scholar] [CrossRef]
- Moreu, F.; Li, X.; Li, S.; Zhang, D. Technical specifications of structural health monitoring for highway bridges: New Chinese structural health monitoring code. Front. Built Environ. 2018, 4, 10. [Google Scholar] [CrossRef]
- Italian Ministry of Infrastructures and for the Sustainable Mobility (MIMS). Adjournment of «Technical Code for Constructions»; NTC2018. Decree 17/01/2018; Italian Ministry of Infrastructures and for the Sustainable Mobility (MIMS): Rome, Italy, 2018; n. 42. (In Italian) [Google Scholar]
- Italian Ministry of Infrastructures and for the Sustainable Mobility (MIMS). Guidelines for the Risk Classification and Management, Safety Assessment and Monitoring of Existing Bridges; Guidelines 2022. Decree 1/07/2022; Italian Ministry of Infrastructures and for the Sustainable Mobility (MIMS): Rome, Italy, 2022; n. 204. (In Italian) [Google Scholar]
- Italian National Agency for Railway, Road and Motorway Infrastructure Safety (ANSFISA). Operative Instructions for the Application of the Guidelines on Risk Classification and Management, Safety Assessment and Monitoring of Existing Bridges; Italian National Agency for Railway, Road and Motorway Infrastructure Safety (ANSFISA): Rome, Italy, 2022. (In Italian) [Google Scholar]
- Avitabile, P. Modal Testing: A Practitioner’s Guide; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Brincker, R.; Ventura, C. Introduction to Operational Modal Analysis; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ewins, D.J. Modal Testing: Theory, Practice and Application, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis in Civil Engineering Structures; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhu, L.; Fu, Y.; Chow, R.; Spencer, B.F., Jr.; Park, J.W.; Mechitov, K. Development of a high-sensitivity wireless accelerometer for structural health monitoring. Sensors 2018, 18, 262. [Google Scholar] [CrossRef]
- Nagayama, T.; Spencer, B.F., Jr.; Rice, J.A. Structural health monitoring utilising Intel’s Imote2 wireless sensor platform. Proc. SPIE 2007, 6529, 652943–652953. [Google Scholar]
- Bocca, M.; Eriksson, L.M.; Mahmood, A.; Jantti, R.; Jullaa, J. A synchronised wireless sensor network for experimental modal analysis in structural health monitoring. Comput. Aided Civ. Infrastruct. Eng. 2011, 26, 452–499. [Google Scholar] [CrossRef]
- Yu, X.; Fu, Y.; Li, J.; Mao, J.; Hoang, T.; Wang, H. Recent advances in wireless sensor networks for structural health monitoring of civil infrastructure. J. Infrastruct. Intell. Resil. 2024, 3, 100066. [Google Scholar] [CrossRef]
- Sofi, A.; Jane Regita, J.; Rane, B.; Lau, H.H. Structural health monitoring using wireless smart sensor network—An overview. Mech. Syst. Signal Process. 2022, 163, 108113. [Google Scholar] [CrossRef]
- Hassani, S.; Dackermann, U. A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Lee, D.H.; Spencer, B.F., Jr. Development and full-scale validation of high-fidelity data acquisition on a next-generation wireless smart sensor platform. Adv. Struct. Eng. 2019, 22, 3512–3533. [Google Scholar] [CrossRef]
- BeanAir. BeanDevice WILOW AX-3D, Product Data Sheet; BeanAir: Berlin, Germany, 2024. [Google Scholar]
- Microstrain. G-Link-200: Ruggedized Wireless Triaxial Accelerometer Node Product Data Sheet; MicroStrain HBK: Williston, VT, USA, 2024. [Google Scholar]
- Adler, R.; Flanigan, M.; Huang, J.; Kling, R.; Kushalnagar, N.; Nachman, L.; Wan, C.-Y.; Yarvis, M. Intel mote 2: An advanced platform for demanding sensor network applications. In Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, San Diego, CA, USA, 2–4 November 2005; ACM: New York, NY, USA, 2005; p. 298. [Google Scholar]
- Shajihan, S.A.V.; Chow, R.; Mechitov, K.; Fu, Y.; Hoang, T.; Spencer, B.F., Jr. Development of synchronised high-sensitivity wireless accelerometer for structural health monitoring. Sensors 2020, 20, 4169. [Google Scholar] [CrossRef]
- M-A352AD10; High Accuracy Three Axis Accelerometer, Datasheet. Epson: Suwa, Japan, 2022.
- Lee, J.; Bang, G.; Lee, Y.; Heo, G. Design and validation of the MANTiS-32 wireless monitoring system and real-time performance-based structural assessment. Appl. Sci. 2025, 15, 8394. [Google Scholar] [CrossRef]
- Zanelli, F.; Debattisti, N.; Mauri, M.; Argentino, A.; Belloli, M. Development and field validation of wireless sensors for railway bridge model identification. Appl. Sci. 2023, 13, 3620. [Google Scholar] [CrossRef]
- Pei, Q.; Qi, P.; Lu, Y.; Qin, L. Development and verification of wireless vibration sensors. Buildings 2023, 13, 1648. [Google Scholar] [CrossRef]
- Prabatama, N.A.; Hornych, P.; Mariani, S.; Laheurte, M. Development of a Zigbee-based wireless sensor network of MEMS accelerometers for pavement monitoring. Eng. Proc. 2023, 58, 29. [Google Scholar]
- Crognale, M.; Rinaldi, C.; Potenza, F.; Gattulli, V.; Colarieti, A.; Franchi, F. Developing and testing high-performance SHM sensors mounting low-noise MEMS accelerometers. Sensors 2024, 24, 2435. [Google Scholar] [CrossRef] [PubMed]
- Bono, F.M.; Polinelli, A.; Radicioni Benedetti, L.; Castelli-Dezza, F.; Cinquemani, S.; Belloli, M. Wireless accelerometer architecture for bridge SHM: From sensor design to system development. Future Internet 2025, 17, 29. [Google Scholar] [CrossRef]
- InvenSense. MPU-6000 and MPU-6050 Product Specification Revision 3.4; Document Number PS-MPU-6000A-00; InvenSense: San Jose, CA, USA, 2013. [Google Scholar]
- TDK InvenSense. IIM-42351 Datasheet; Document Number DS-000441; TDK InvenSense: San Jose, CA, USA, 2022. [Google Scholar]
- Analog Devices. ADXL354/ADXL355 Data Sheet; Analog Devices: Wilmington, MA, USA, 2024. [Google Scholar]
- Phanish, D.; Garver, P.; Matalkah, G.; Landes, T.; Shen, F.; Dumond, J.; Abler, R.; Zhu, D.; Dong, X.; Wang, Y.; et al. A wireless sensor network for monitoring the structural health of a football stadium. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; IEEE: New York, NY, USA, 2015; pp. 471–477. [Google Scholar] [CrossRef]
- Bedon, C.; Bergamo, E.; Izzi, M.; Noè, S. Prototyping and validation of MEMS. accelerometers for structural health monitoring—The case study of the Pietratagliata cable-stayed bridge. J. Sens. Actuator Netw. 2018, 7, 30. [Google Scholar] [CrossRef]
- Hu, X.; Wang, B.; Han, J. A Wireless Sensor Network-Based Structural Health Monitoring System for Highway Bridges. Comput. Aided Civ. Infrastruct. Eng. 2013, 28, 193–209. [Google Scholar] [CrossRef]
- Lynch, J.P.; Wang, Y.; Loh, K.J.; Yi, J.-H.; Yun, C.-B. Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors. Smart Mater. Struct. 2006, 15, 1561. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, E.-J.; Shin, D.H.; Park, J.W.; Sim, S.H. Data fusion-based damage identification for a monopile offshore wind turbine structure using wireless smart sensors. Ocean Eng. 2020, 195, 106728. [Google Scholar] [CrossRef]
- Luo, Y.-Z.; Shen, Y.-B.; Fu, W.; Yun, C.B.; Liu, D.; Yang, P.; Yang, G.; Zhou, G. Implementation of SHM system for Hangzhou East Railway Station using a wireless sensor network. Smart Struct. Systems. Int. J. 2021, 27, 19–33. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, X.; Shen, Y.; Luo, Y. Dynamic wireless sensor network-based structural health monitoring system for retractable roof structure. J. Build. Eng. 2024, 98, 111302. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Gao, Z.; Yu, Z.; Zhang, Y. Research Progress of SHM System for Super High-Rise Buildings Based on Wireless Sensor Network and Cloud Platform. Remote Sens. 2023, 15, 1473. [Google Scholar] [CrossRef]
- Kurata, N.; Suzuki, M.; Saruwatari, S.; Morikawa, H. Application of ubiquitous structural monitoring system by wireless sensor networks to actual high-rise building. In Proceedings of the of the 5th World Conference on Structural Control and Monitoring (5XCSCM), Tokyo, Japan, 12–14 July 2010. [Google Scholar]
- Hu, W.-H.; Xu, Z.-M.; Bian, X.-H.; Tang, D.-H.; Lu, W.; Li, C.; Teng, J.; Cunha, A. Operational modal analysis and continuous dynamic monitoring of high-rise building based on wireless distributed synchronized data acquisition system. Struct. Control Health Monit. 2022, 29, e3063. [Google Scholar] [CrossRef]
- Popovic, N.; Feltrin, G.; Jalsan, K.-E.; Wojtera, M. Event-driven strain cycle monitoring of railway bridges using a wireless sensor network with sentinel nodes. Struct. Control Health Monit. 2017, 24, e1934. [Google Scholar] [CrossRef]
- Sarwar, M.Z.; Saleem, M.R.; Park, J.-W.; Moon, D.-S.; Kim, D.J. Multimetric event-driven system for long-term wireless sensor operation for SHM applications. IEEE Sens. 2020, 20, 5350–5359. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, L.; Hoang, T.; Mechitov, K.; Spencer, J.-B. Demand-based wireless smart sensors for earthquake monitoring of civil infrastructure. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Denver, CO, USA, 27 March 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Lin, J.-F.; Li, X.-Y.; Wang, J.; Wang, L.-X.; Hu, X.-X.; Liu, J.-X. Study of building safety monitoring by using cost-effective MEMS accelerometers for rapid after-earthquake assessment with missing data. Sensors 2021, 21, 7327. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.F.; Sim, S.-H.; Kim, R.E.; Yoon, H. Advances in artificial intelligence for structural health monitoring: A comprehensive review. KSCE J. Civ. Eng. 2025, 29, 100203. [Google Scholar] [CrossRef]
- Lawal, O.; Shajihan, S.A.V.; Mechitov, K.; Spencer, B.F. Edge integration of artificial intelligence into wireless smart sensor platforms for railroad bridge impact detection. Sensors 2024, 24, 5633. [Google Scholar] [CrossRef]
- Hidalgo-Fort, E.; Blanco-Carmona, P.; Munoz-Chavero, F.; Torralba, A.; Castro-Triguero, R. Low-cost. low-power edge conputing system for structural health monitoring in an IoT framework. Sensors 2024, 24, 5078. [Google Scholar] [CrossRef]
- Bhatta, S.; Dang, J. Use pf IoT for structural health monitoring of civil engineering structures: A state-of-the-art review. Urban Lifeline 2024, 2, 17. [Google Scholar]
- Wang, T.; Cui, T.; Qi, X.; Huan, X. Urban viaduct structural health monitoring: A review of wireless sensor approaches. Buildings 2025, 15, 1619. [Google Scholar] [CrossRef]
- Lorusso, A.; Guida, D. IoT System for Structural Monitoring. In New Technologies, Development and Application V; Karabegović, I., Kovačević, A., Mandžuka, S., Eds.; NT 2022. Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 472. [Google Scholar] [CrossRef]
- Casillo, M.; Cecere, L.; Colace, F.; Lorusso, A.; Santaniello, D.; Tucker, A. Machine Learning Techniques for Structural Health Monitoring. In Intelligent Sustainable Systems; Nagar, A., Jat, D.S., Mishra, D., Joshi, A., Eds.; Worlds4 2024. Lecture Notes in Networks and Systems; Springer: Singapore, 2025; Volume 1178. [Google Scholar] [CrossRef]
- Park, J.W.; Sim, S.H.; Jung, H.J.; Spencer, J.-B.F. Development of a wireless displacement measurement system using acceleration responses. Sensors 2013, 13, 8377–8392. [Google Scholar] [CrossRef]
- Hoang, T.; Fu, Y.; Mechitov, K.; Gomez Sanchez, F.; Kim, J.R.; Zhang, D.; Spencer, B.F. Autonomous end-to-end wireless monitoring system for railroad bridges. Adv. Bridge Eng. 2020, 1, 17. [Google Scholar] [CrossRef]
- Perez-Solano, J.J.; Soriano-Asensi, A.; Felici-Castel, S.; Segura-Garcia, J. Improving the precision of time synchronization protocols in ultra-wideband networks estimating the time of flight of the radio signal. Comput. Commun. 2024, 223, 44–54. [Google Scholar] [CrossRef]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Memon, S.A.; Spencer, B.F. Efficient and high-precision time synchronization for wireless monitoring of civil infrastructure subjected to sudden events. Struct. Control. Health Monit. 2020, e2643. [Google Scholar] [CrossRef]
- Hu, X.; Olgun, G.; Assaad, R.H. An intelligent BIM-enabled digital twin framework for real-time structural health monitoring using wireless IoT sensing, digital signal processing, and structural analysis. Expert Syst. Appl. 2024, 252, 124204. [Google Scholar] [CrossRef]
- Tronci, E.M.; Nagabuko, S.; Hieda, H.; Feng, M.Q. Long-range low-power multi-hop wireless sensor network for monitoring the vibration response of long-span bridges. Sensors 2022, 22, 3916. [Google Scholar] [CrossRef]
- Martín, C.; Garrido, D.; Llopis, L.; Rubio, B.; Díaz, M. Facilitating the monitoring and management of structural health in civil infrastructures with an Edge/Fog/Cloud architecture. Comput. Stand. Interfac. 2022, 81, 103600. [Google Scholar] [CrossRef]
- Srivastava, A.; Bharti, M.R. Hybrid machine learning model for anomaly detection in unlabelled data of wireless sensor networks. Wirel. Pers. Commun. 2023, 129, 2693–2710. [Google Scholar] [CrossRef]
- Icons. Available online: www.flaticon.com (accessed on 20 October 2025).
- PCB Piezotronics. Sensors for Seismic Testing; Series 393; PCB Piezotronics: Depew, NY, USA, 2021. [Google Scholar]














| Parameter | Value |
|---|---|
| Output range | ±15 g |
| Size | 48 mm × 24 mm × 16 mm |
| Weight | 25 g |
| Noise density | 0.2 µg/√Hz, rms |
| Resolution | 0.06 µg/LSB |
| Bandwidth | 460 Hz (max) |
| Data output rate | 1000 sps (max) |
| Operating temperature range | −30° to +85 °C |
| Power consumption | 13.2 mA (typ) @3.3 V |
| Output mode selection (each axis) | Acceleration, tilt angle |
| Mode * Wireless/ (Wired) | Frequency [Hz] | Δf [%] | Damping Ratio [%] | Δξ [%] | MAC | MCF [%] | ||
|---|---|---|---|---|---|---|---|---|
| Wireless | Wired PCB | Wireless | Wired PCB | |||||
| 2nd/(1st) | 7.56 | 7.56 | 0.0 | 0.25 | 0.26 | 3.8 | 0.99 | 0.01 |
| 3rd/(2nd) | 9.16 | 9.16 | 0.0 | 0.82 | 0.76 | 7.9 | - | 0.01 |
| 4th/(3rd) | 18.68 | 18.68 | 0.0 | 0.90 | 1.04 | 13.5 | - | 1.09 |
| 5th/(4th) | 24.25 | 24.27 | 0.1 | 0.46 | 0.51 | 9.8 | 0.96 | 0.02 |
| Mode * Wireless/ (Wired) | Frequency [Hz] | Δf [%] | Damping Ratio [%] | Δξ [%] | MAC | MCF [%] | ||
|---|---|---|---|---|---|---|---|---|
| Wireless | Wired PCB | Wireless | Wired PCB | |||||
| 2nd/(1st) | 7.56 | 7.56 | 0.0 | 0.23 | 0.24 | 4.2 | 0.99 | 0.01 |
| 3rd/(2nd) | 9.18 | 9.15 | 0.3 | 0.94 | 0.80 | 17.5 | - | 0.01 |
| 4th/(3rd) | 18.65 | 18.70 | 0.3 | 0.95 | 1.08 | 12.0 | - | 1.09 |
| 5th/(4th) | 24.27 | 24.29 | 0.1 | 0.52 | 0.55 | 5.5 | 0.96 | 0.02 |
| Test Series | Test | Sensor’s Typology | Reference Level | Tested Level | Frequency Sampling |
|---|---|---|---|---|---|
| 1 | T1 | Wireless + Wired PCB | 57 | 57 | 100 Hz wireless 1024 Hz wired PCB |
| 1 & 2 | T2 | Wireless + Wired PCB | 42 | 42 | 100 Hz wireless 1024 Hz wired PCB |
| 2 | T3 | Wireless | 42 | 57 | 100 Hz |
| 2 | T4 | Wireless | 42 | 50 | 100 Hz |
| 2 | T5 | Wireless | 42 | 35 | 100 Hz |
| 2 | T6 | Wireless | 42 | 28 | 100 Hz |
| 2 | T7 | Wireless | 42 | 21 | 100 Hz |
| Mode | Test T1 (at Floor 57) | Test T2 (at Floor 42) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f [Hz] Wireless | f [Hz] Wired PCB | f [%] | MAC | MCF [%] Wireless | MCF [%] Wired PCB | f [Hz] Wireless | f [Hz] Wired PCB | f [%] | MAC | MCF [%] Wireless | MCF [%] Wired PCB | |
| 1 | 0.17 | 0.17 | 0.27 | 1.00 | 0.03 | 0.17 | 0.17 | 0.17 | 0.05 | 1.00 | 0.01 | 0.20 |
| 2 | 0.25 | 0.25 | 0.61 | 1.00 | 0.43 | 0.15 | 0.25 | 0.25 | 0.66 | 1.00 | 0.07 | 0.08 |
| 3 | 0.31 | 0.31 | 0.07 | 1.00 | 0.05 | 0.04 | 0.31 | 0.31 | 0.16 | 1.00 | 0.00 | 0.14 |
| 4 | 0.76 | 0.76 | 0.02 | 1.00 | 0.23 | 0.01 | 0.76 | 0.76 | 0.00 | 1.00 | 0.02 | 0.04 |
| 5 | 0.89 | 0.89 | 0.29 | 1.00 | 0.55 | 0.22 | 0.89 | 0.89 | 0.05 | 1.00 | 0.09 | 0.01 |
| 6 | 0.93 | 0.94 | 0.75 | 0.88 | 11.81 | 13.02 | 0.94 | 0.92 | 2.06 | 0.92 | 13.68 | 15.56 |
| 7 | 1.02 | 1.02 | 0.27 | 1.00 | 0.36 | 0.01 | 1.02 | 1.02 | 0.02 | 1.00 | 0.06 | 0.08 |
| 8 | 1.61 | 1.60 | 0.29 | 0.96 | 0.16 | 0.11 | 1.60 | 1.60 | 0.02 | 1.00 | 0.15 | 0.01 |
| 9 | 1.73 | 1.73 | 0.21 | 1.00 | 3.44 | 0.97 | 1.73 | 1.73 | 0.15 | 1.00 | 2.38 | 0.08 |
| 10 | 2.02 | 2.02 | 0.20 | 0.99 | 0.46 | 0.45 | 2.02 | 2.02 | 0.03 | 1.00 | 0.07 | 0.00 |
| Mode | Frequency [Hz] | [Hz] | Damping Ratios [%] | [%] |
|---|---|---|---|---|
| 1 | 0.17 | 0.0002 | 0.69 | 0.2293 |
| 2 | 0.25 | 0.0036 | 1.21 | 0.4824 |
| 3 | 0.31 | 0.0010 | 0.95 | 0.4042 |
| 4 | 0.76 | 0.0008 | 0.57 | 0.0871 |
| 5 | 0.89 | 0.0011 | 0.67 | 0.0767 |
| 6 | 0.94 | 0.0100 | 1.43 | 1.0252 |
| 7 | 1.02 | 0.0021 | 0.81 | 0.1544 |
| 8 | 1.60 | 0.0012 | 0.79 | 0.0686 |
| 9 | 1.73 | 0.0018 | 0.70 | 0.0823 |
| 10 | 2.02 | 0.0104 | 0.81 | 0.2884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gara, F.; Corneli, A.; D’Aparo, R.D.; Spegni, F.; Ranzi, G. Dynamic Characterization of Civil Engineering Structures with Wireless MEMS Accelerometers. Buildings 2025, 15, 3896. https://doi.org/10.3390/buildings15213896
Gara F, Corneli A, D’Aparo RD, Spegni F, Ranzi G. Dynamic Characterization of Civil Engineering Structures with Wireless MEMS Accelerometers. Buildings. 2025; 15(21):3896. https://doi.org/10.3390/buildings15213896
Chicago/Turabian StyleGara, Fabrizio, Alessandra Corneli, Rocco Davide D’Aparo, Francesco Spegni, and Gianluca Ranzi. 2025. "Dynamic Characterization of Civil Engineering Structures with Wireless MEMS Accelerometers" Buildings 15, no. 21: 3896. https://doi.org/10.3390/buildings15213896
APA StyleGara, F., Corneli, A., D’Aparo, R. D., Spegni, F., & Ranzi, G. (2025). Dynamic Characterization of Civil Engineering Structures with Wireless MEMS Accelerometers. Buildings, 15(21), 3896. https://doi.org/10.3390/buildings15213896

