Effect of Metakaolin and Biosilica on the Mechanical Properties of Cementitious Mortars
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Fine Aggregate (Sand)
2.1.2. Ordinary Portland Cement
2.1.3. Metakaolin
2.1.4. Biosilica (BS)
2.1.5. Superplasticizer
2.2. Mix Design
2.3. Analytical Methods
2.3.1. Particle Size
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Setting Time
2.3.5. Water Absorption and Density
2.3.6. Flexural Strength Test
2.3.7. Compressive Strength Test
3. Results
3.1. Particle Size Distribution of MK and BS
3.2. FTIR Analysis of Cement Mortars Partially Replaced with MK and BS
3.3. SEM Analysis of Mortars
3.4. Influence of MK and BS as Partial Cement Replacements on Setting Times
3.5. Water Absorption and Density
3.6. Flexural Strength
3.7. Compressive Strength
4. Conclusions
- The partial replacement of cement with MK significantly accelerated the mortar setting time from 12% to 64.7% owing to its high pozzolanic reactivity and fine particle size.
- Incorporating BS alongside MK slightly delayed setting compared to MK-only blends from 7.7% to 40%, owing to its high surface area and differing reactivity, which moderated hydration kinetics.
- The addition of polycarboxylate ether-based superplasticizer Mf considerably extended the setting times from 78.6% to 89.3% owing to improved dispersion and delayed nucleation of hydration products.
- The water absorption of the mortars decreased substantially from 12.21% to 9.8% with increasing MK and BS contents, indicating enhanced pore structure refinement and improvements in mortar density and microstructure. Density reductions of up to 15.3% were observed, reflecting the lower specific gravity of MK and BS.
- Flexural strength of all modified mortars exceeded that of the control mix: from 10.0% to 89.9% at 7 days, and from 4.7% to 50.4% at 28 days.
- The compressive strength improved markedly with MK and BS incorporation, from 20.8% to 51.3% at 7 days and from 9.7% to 35.2% at 28 days compared to the control sample.
- FTIR analysis confirmed enhanced pozzolanic activity, evidenced by intensified C–S–H bands and reduced portlandite (Ca(OH)2) peaks in the MK- and BS-containing mortars.
- The synergistic use of MK, BS, Mf, and ultrasonic dispersion is a promising strategy for producing durable, mechanically robust, and environmentally friendly cementitious composites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbhuiya, S.; Kanavaris, F.; Das, B.B.; Idrees, M. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. J. Build. Eng. 2024, 86, 108861. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef]
- Zhuang, W.; Li, S.; Yu, Q. The effect of supplementary cementitious material systems on dynamic compressive properties of ultra-high performance concrete paste. Constr. Build. Mater. 2022, 321, 126361. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; Yousuf, M.M.; Ahalawat, S. Beneficial role of nanosilica in cement-based materials—A review. Constr. Build. Mater. 2013, 47, 1069–1077. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Abdulkareem, O.A.; Ramli, M.; Matthews, J. Production of geopolymer mortar system containing high calcium biomass wood ash as a partial substitution to fly ash: An early age evaluation. Compos. Part B Eng. 2019, 174, 106941. [Google Scholar] [CrossRef]
- Ahmad, S.; Hakeem, I.; Maslehuddin, M. Development of an optimum mixture of ultra-highperformance concrete. Eur. J. Environ. Civ. Eng. 2016, 20, 1106–1126. [Google Scholar] [CrossRef]
- Commeh, M.; Thiedeitz, M.; Acheampong, B.; Ashley, N.N.K.; Gafah, G.; Tsitsi, J.M.; Acheampong, S.; Tsekpo, E.; Van Ess, R.N.; Barnor-Arthur, J.O. Utilization of rice husk waste as biochar and pozzolanic ashes in cementitious blends. Discov. Civ. Eng. 2025, 2, 23. [Google Scholar] [CrossRef]
- Li, J.; Jin, Q.; Zhang, W.; Li, C.; Monteiro, P. Microstructure and durability performance of sustainable cementitious composites containing high-volume regenerative biosilica. Resour. Conserv. Recycl. 2022, 178, 106038. [Google Scholar] [CrossRef]
- Muradyan, N.; Arzumanyan, A.; Kalantaryan, M.; Vardanyan, Y.; Yeranosyan, M.; Ulewicz, M.; Laroze, D.; Barseghyan, M. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials 2023, 16, 5516. [Google Scholar] [CrossRef]
- Gupta, S.; Krishnan, P.; Kashani, A.; Kua, H. Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr. Build. Mater. 2020, 262, 120688. [Google Scholar] [CrossRef]
- Hou, P.; Kawashima, S.; Wang, K.-J.; Corr, D.; Qian, J.; Shah, S. Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cem. Concr. Compos. 2013, 35, 12–22. [Google Scholar] [CrossRef]
- Siddique, R.; Klaus, J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Yuan, H.; Shi, Y.; Xu, Z.; Lu, C.; Ni, Y.; Lan, X. Influence of nano-ZrO2 on the mechanical and thermal properties of high temperature cementitious thermal energy storage materials. Constr. Build. Mater. 2013, 48, 6–10. [Google Scholar] [CrossRef]
- Al-Jabri, K.; Shoukry, H. Influence of nano metakaolin on thermo-physical, mechanical and icrostructural properties of high-volume ferrochrome slag mortar. Constr. Build. Mater. 2018, 177, 210–221. [Google Scholar] [CrossRef]
- Pera, P. Metakaolin and Calcined Clays. Cement and Concrete Composites; Elsevier: Amsterdam, The Netherlands, 2001; pp. 441–520. Available online: https://www.sciencedirect.com/journal/cement-and-concrete-composites/vol/23/issue/6 (accessed on 31 December 2001).
- Zunino, F.; Scrivener, K. Reactivity of kaolinitic clays calcined in the 650 °C–1050 °C temperature range: Towards a robust assessment of overcalcination. Cem. Concr. Compos. 2024, 146, 105380. [Google Scholar] [CrossRef]
- Guo, H.; Huang, Z.; Pantongsuk, T.; Yu, T.; Zhang, B.; Luo, J.; Yuan, P. Utilisation of Biosilica as Active Silica Source for Metakaolin-Based Geopolymers. Minerals 2024, 14, 816. [Google Scholar] [CrossRef]
- EN 933-1:2012; Tests for Geometrical Properties of Aggregates. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 196-3-2002; Methods of Testing Cement. Part 3. Determination of Setting Time and Soundness. European Committee for Standardization: Brussels, Belgium, 2002. Available online: https://www.armstandard.am/en/standards/1 (accessed on 4 October 2025).
- EN 196-2-2002; Methods of Testing Cement. Part 2. Chemical Analysis of Cement. European Committee for Standardization: Brussels, Belgium, 2002. Available online: https://www.armstandard.am/en/standards/1 (accessed on 4 October 2025).
- EN 196-1-2002; Methods of Testing Cement. Part 1. Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2002. Available online: https://www.armstandard.am/en/standards/1 (accessed on 4 October 2025).
- Zegeye, A.; Yahaya, S.; Claire, F.; White, M. Refinement of industrial kaolin by microbial removal of iron-bearing impurities. Appl. Clay Sci. 2013, 86, 47–53. [Google Scholar] [CrossRef]
- Kadri, H.; Kenai, S.; Ezziane, K.; Siddique, R.; De Schutter, G. Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar. Appl. Clay Sci. 2011, 53, 704–708. [Google Scholar] [CrossRef]
- San, C.A.; Castello, R.; Luengo, M.M.; Vizvayno, C. Acid activation of mechanically and thermally modified kaolins. Mater. Res. Bull. 2009, 44, 2103–2111. [Google Scholar] [CrossRef]
- Fabbri, B.; Gualtieri, S.; Leonardi, C. Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl. Clay Sci. 2013, 73, 2–10. [Google Scholar] [CrossRef]
- Poon, C.; Kou, S.C.; Lam, L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 2005, 20, 858–865. [Google Scholar] [CrossRef]
- Nandiyanto, A.; Ragadhita, R.; Fiandini, M.; Ijost, I. Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indones. J. Sci. Technol. 2023, 8, 113–126. [Google Scholar] [CrossRef]
- Zhang, M.; Zang, Y.; Shan, L. Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA. Buildings 2024, 14, 586. [Google Scholar] [CrossRef]
- Wang, X.; Schroder, H.; Wiens, M.; Schloßmacher, U.; Muller, W. Chapter five-Biosilica: Molecular Biology, Biochemistry and Function in Demosponges as well as its Applied Aspects for Tissue Engineering1. Adv. Mar. Biol. 2012, 62, 231–271. [Google Scholar] [CrossRef]
- BS EN 772-11:2011; Testing Concrete. Method for Determination of Water Absorption. British Standards Institution: London, UK, 2011.
- EN 1015-2; Methods of Test for Mortar for Masonry. Bulk Sampling of Mortars and Preparation of Test Mortars. European Committee for Standardization: Brussels, Belgium, 1998.
- Giuseppe, M.; Maria Teresa, C.; Letterio, M.; Magazù, S. XRD, FTIR and RAMAN Characterizations of Metakaolin Geopolymers. Mod Concept Mater. Sci. 2024, 5, 620. [Google Scholar] [CrossRef]
- Zhong, C.; Zhang, L.; Mao, W.; Xing, S.; Chen, J.; Zhou, J. An investigation on mechanical properties and durability of metakaolin reinforced modified recycled concrete. Case Stud. Constr. Mater. 2024, 20, e02978. [Google Scholar] [CrossRef]
- Jo, B.-W.; Kim, C.-H.; Lim, J.-H. Characteristics of cement mortar with nano-SiO2 particles. Constr. Build. Mater. 2007, 21, 1351–1355. [Google Scholar] [CrossRef]
- Muthu, M.; Kumar, B.; Ukrainczyk, N.; Sadowski, L.; Koenders, E. Impact of Superplasticizers on the Performance of Low-Grade Limestone-Based Cement Mixes. Materials 2024, 17, 2500. [Google Scholar] [CrossRef]
- Chithiraputhiran, S.; Neithalath, N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr. Build. Mater. 2013, 45, 233–242. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Sun, J.; Han, F. Effect of Ultrafine Metakaolin on the Properties of Mortar and Concrete. Crystals 2021, 11, 665. [Google Scholar] [CrossRef]
- Deveshan, L.; Oladimeji, B.; Awoyera, O.; Rondon, C.; Echeverría, A.; Kolawole, J. A Review of the Engineering Properties of Metakaolin Based Concrete: Towards Combatting Chloride Attack in Coastal/Marine Structures. Adv. Civ. Eng. 2020, 1, 8880974. [Google Scholar] [CrossRef]
- Zhang, M.H.; Islam, J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr. Build. Mater. 2012, 29, 573–580. [Google Scholar] [CrossRef]
- Collepardi, M. Admixtures used to enhance placing characteristics of concrete. Cem. Concr. Compos. 2001, 23, 209–216. [Google Scholar] [CrossRef]
- Gameiro, A.; Santos, A.; Silva, P.; Faria, P.; Grilo, J.; Branco, T.; Veiga, R.; Velosa, A. Physical and chemical assessment of lime–metakaolin mortars: Influence of binder:aggregate ratio. Cem. Concr. Compos. 2014, 45, 264–271. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Tayeh, B.A. Metakaolin in ultra-high-performance concrete: A critical review of its effectiveness as a green and sustainable admixture. Case Stud. Constr. Mater. 2024, 21, e03967. [Google Scholar] [CrossRef]
- Badalyan, M.M.; Muradyan, N.G.; Shainova, R.S.; Arzumanyan, A.A.; Kalantaryan, M.A.; Sukiasyan, R.R.; Yeranosyan, M.; Laroze, D.; Vardanyan, Y.V.; Barseghyan, M.G. Effect of Silica Fume Concentration and Water–Cement Ratio on the Compressive Strength of Cement-Based Mortars. Buildings 2024, 14, 757. [Google Scholar] [CrossRef]
- Qian, X.; Li, M.; Wang, J.; Wang, L.; Chen, P.; Fang, Y.; Wang, X.; Yang, F. A bio-inspired, plant-derived admixture for metakaolin blended cement mortars. Constr. Build. Mater. 2022, 354, 129185. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Gao, S.; Zheng, Y. Improvement effects of nano-silica on bonding performance of polymer concrete for repairing damaged concrete. Constr. Build. Mater. 2023, 409, 133768. [Google Scholar] [CrossRef]
- Malumyan, S.; Muradyan, N. The Effect of Different Multi-Walled Carbon Nanotubes Aspect Ratio on the Compressive Strength of the Cement-Based Concrete. J. Adv. Eng. Res. 2025, 8, 62–68. [Google Scholar] [CrossRef]
- Arzumanyan, A.; Muradyan, N.; Arzumanyan, A.; Laroze, D.; Barseghyan, M. Non-Cement Building Materials from Volcanic Rock Extraction Waste. Buildings 2024, 14, 1555. [Google Scholar] [CrossRef]
- Nili, M.; Salehi, H. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 2010, 37, 879–886. [Google Scholar] [CrossRef]
- Muradyan, N.; Gyulasaryan, H.; Arzumanyan, A.; Badalyan, M.; Kalantaryan, M.; Vardanyan, V.; Laroze, D.; Manukyan, A.; Barseghyan, M. The Effect of Multi-Walled Carbon Nanotubes on the Compressive Strength of Cement Mortars. Coatings 2022, 12, 1933. [Google Scholar] [CrossRef]









| Characteristics | Unit | Results Obtained |
|---|---|---|
| Specific gravity | kg/m3 | 2540 |
| Bulk Density (Loose) | kg/m3 | 1635.5 |
| Bulk Density (Compact) | kg/m3 | 1787.5 |
| Size Modulus, FM | - | 2.6 |
| Intergranular void ratio | % | 35.6 |
| Characteristics | Unit | Results | ||||||
|---|---|---|---|---|---|---|---|---|
| The residue on 0.08 sieve | % by mass | 2.9 | ||||||
| Specific gravity | kg/m2 | 3100 | ||||||
| Bulk density | kg/m3 | 1205 | ||||||
| Standard consistency | % | 29.5 | ||||||
| Setting time (Initial/Final) | min | 140/305 | ||||||
| Compressive strength (28 days) | MPa | 59.20 | ||||||
| Flexural strength (28 days) | MPa | 6.21 | ||||||
| Chemical composition of cement (wt.%) | ||||||||
| SiO2 | Al2O3 | Fe2O3 | MgO | CaO | SO3 | Free CaO | Loss on ignition | Insol. Resid. |
| 21.29 | 3.20 | 2.1 | 5.1 | 59 | 2.8 | 1.21 | 3.1 | 2.2 |
| Characteristics | Unit | Results | ||
|---|---|---|---|---|
| Specific gravity | g/cm3 | 2.3 | ||
| Residue on sieve 45 µm | % | 5.0 | ||
| Chemical composition (wt.%) | ||||
| SiO2 | Al2O3 | Fe2O3 | K2O | MgO |
| 88.92 | 6.1 | 2.8 | 1.34 | 0.84 |
| Group | River Sand, g | Cement, g | Water, mL | MK, g | BS, g | Mf, g | Ultra-Sound, min |
|---|---|---|---|---|---|---|---|
| Control | 2350 | 880 | 415 | - | - | - | - |
| 5MK | 2350 | 836 | 415 | 44 | - | - | - |
| 10MK | 2350 | 800 | 415 | 80 | - | - | - |
| 15MK | 2350 | 748 | 415 | 132 | - | - | - |
| 5MK5BS | 2350 | 800 | 415 | 40 | 40 | - | - |
| 10MK5BS | 2350 | 748 | 415 | 88 | 44 | - | - |
| 15MK5BS | 2350 | 704 | 415 | 132 | 44 | - | - |
| 10MK + Mf | 2350 | 800 | 415 | 80 | - | 0.44 | - |
| 10MK + Mf + ULT | 2350 | 800 | 415 | 80 | - | 0.44 | 30 |
| 10MK5BS + Mf | 2350 | 748 | 415 | 88 | 44 | 0.44 | - |
| 10MK5BS + Mf + ULT | 2350 | 748 | 415 | 88 | 44 | 0.44 | 30 |
| Groups | Density, kg/m3 | Water Absorption, % | Flexural Strength, MPa | Compressive Strength, MPa | ||
|---|---|---|---|---|---|---|
| 28 Days | 28 Days | 7 Days | 28 Days | 7 Days | 28 Days | |
| Control | 2330 | 12.2 | 4.5 | 6.2 | 40.0 | 59.2 |
| 5MK | 2280 | 11.2 | 4.9 | 6.5 | 48.4 | 64.9 |
| 10MK | 2210 | 11.1 | 6.6 | 6.8 | 51.0 | 68.1 |
| 15MK | 2170 | 12.0 | 6.1 | 6.3 | 44.3 | 64.2 |
| 5MK5BS | 2100 | 10.2 | 5.3 | 7.0 | 49.4 | 65.2 |
| 10MK5BS | 2140 | 9.9 | 7.3 | 8.2 | 55.0 | 72.6 |
| 15MK5BS | 2020 | 11.8 | 6.5 | 7.6 | 50.3 | 67.8 |
| 10MK + Mf | 2110 | 10.1 | 7.1 | 8.2 | 56.3 | 71.6 |
| 10MK + Mf + ULT | 2100 | 9.8 | 7.2 | 8.6 | 57.0 | 73.4 |
| 10MK5BS + Mf | 2070 | 11.0 | 8.2 | 9.0 | 58.5 | 76.2 |
| 10MK5BS + Mf + ULT | 2110 | 10.8 | 8.5 | 9.3 | 60.1 | 80.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantaryan, M.; Muradyan, N.; Arzumanyan, A.; Melikyan, Y.; Laroze, D.; Barseghyan, M.; Vardanyan, Y. Effect of Metakaolin and Biosilica on the Mechanical Properties of Cementitious Mortars. Buildings 2025, 15, 3882. https://doi.org/10.3390/buildings15213882
Kalantaryan M, Muradyan N, Arzumanyan A, Melikyan Y, Laroze D, Barseghyan M, Vardanyan Y. Effect of Metakaolin and Biosilica on the Mechanical Properties of Cementitious Mortars. Buildings. 2025; 15(21):3882. https://doi.org/10.3390/buildings15213882
Chicago/Turabian StyleKalantaryan, Marine, Nelli Muradyan, Avetik Arzumanyan, Yeghvard Melikyan, David Laroze, Manuk Barseghyan, and Yeghiazar Vardanyan. 2025. "Effect of Metakaolin and Biosilica on the Mechanical Properties of Cementitious Mortars" Buildings 15, no. 21: 3882. https://doi.org/10.3390/buildings15213882
APA StyleKalantaryan, M., Muradyan, N., Arzumanyan, A., Melikyan, Y., Laroze, D., Barseghyan, M., & Vardanyan, Y. (2025). Effect of Metakaolin and Biosilica on the Mechanical Properties of Cementitious Mortars. Buildings, 15(21), 3882. https://doi.org/10.3390/buildings15213882

