Stakeholder Perspectives on Policy, Social, and Organizational Challenges of Sustainable Residential, Multi-Storey Building Retrofitting in Germany
Abstract
1. Introduction
1.1. Background and Research Question
1.2. Sustainable Construction and Retrofitting in the German Built Environment
1.3. Organizational, Political, and Social Challenges in Retrofitting
1.4. Linking Structural Challenges to Individual-Level Attitudes and Behaviours
2. Materials and Methods
2.1. Data Collection
2.2. Study Population and Sampling
2.3. Key Variables and Their Operationalization
2.3.1. Perceived Challenges to Sustainable Retrofitting
2.3.2. Environmental Attitude
2.3.3. Professional Background
2.3.4. Engagement Profile
2.3.5. Age Group
2.4. Data Preparation and Analysis Approach
3. Results
3.1. Descriptive Overview of the Sample
3.2. Use of Sustainable Retrofitting Measures
3.3. Challenge Perception and Environmental Attitude
3.4. Spearman Correlation
3.5. Group Comparisons with Kruskal–Wallis Omnibus and Post Hoc Dunn–Holm
3.5.1. Profession
3.5.2. Profile
- Organizational challenges: H(2) = 13.19, p = 0.001, ε2_H = 0.13;
- Policy challenges: H(2) = 17.22, p < 0.001, ε2_H = 0.18;
- Social challenges: H(2) = 13.10, p = 0.001, ε2_H = 0.13.
3.6. Regression Results
Main Model: Interaction Analysis with Age Group and Attitude
4. Discussion
4.1. Discussion of the Results
4.2. Limitations and Future Research
4.3. Implications and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIM | Building Information Modelling |
Appendix A
Outcome | Model | n | Adj. R2 | ΔAdj. R2 vs. M1 | AIC | BIC | BP p | Normality p | Max VIF | Profile Block F p |
---|---|---|---|---|---|---|---|---|---|---|
Organizational | M2 (M1 + C(profile3)) | 86 | 0.709 | −0.006 | 150.5 | 165.2 | 0.494 | 0.63 | 4.02 | 0.789 |
Organizational | M3 (M1 excl. High) | 63 | 0.708 | −0.007 | 107.0 | 115.6 | 0.281 | 0.849 | 4.92 | |
Organizational | OL1 (Ordered Logit, full) | 86 | 164.1 | 181.3 | ||||||
Organizational | OL3 (Ordered Logit, excl. High) | 63 | 117.5 | 132.5 | ||||||
Policy | M2 (M1 + C(profile3)) | 86 | 0.566 | 0.002 | 152.9 | 167.7 | 0.804 | 0.068 | 4.02 | 0.371 |
Policy | M3 (M1 excl. High) | 63 | 0.588 | 0.025 | 106.7 | 115.3 | 0.409 | 0.027 | 4.92 | |
Policy | OL1 (Ordered Logit, full) | 86 | 164.3 | 179.1 | ||||||
Policy | OL3 (Ordered Logit, excl. High) | 63 | 120.4 | 133.2 | ||||||
Social | M2 (M1 + C(profile3)) | 86 | 0.649 | −0.002 | 210.6 | 225.4 | 0.455 | 0.003 | 4.02 | 0.564 |
Social | M3 (M1 excl. High) | 63 | 0.664 | 0.013 | 139.8 | 148.3 | 0.394 | 0.0 | 4.92 | |
Social | OL1 (Ordered Logit, full) | 86 | 178.2 | 195.4 | ||||||
Social | OL3 (Ordered Logit, excl. High) | 63 | 118.9 | 133.9 |
References
- Ajayi, S.O.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Owolabi, H.A.; Alaka, H.A.; Kadiri, K.O. Reducing Waste to Landfill: A Need for Cultural Change in the UK Construction Industry. J. Build. Eng. 2016, 5, 185–193. [Google Scholar] [CrossRef]
- Andersen, C.E.; Hoxha, E.; Nygaard Rasmussen, F.; Grau Sørensen, C.; Birgisdóttir, H. Evaluating the Environmental Performance of 45 Real-Life Wooden Buildings: A Comprehensive Analysis of Low-Impact Construction Practices. Build. Environ. 2024, 250, 111201. [Google Scholar] [CrossRef]
- Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection. BMUV Waste Management in Germany 2023—Facts, Data, Figures; Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection: Berlin, Germany, 2023. [Google Scholar]
- Mishra, A.; Humpenöder, F.; Churkina, G.; Reyer, C.P.O.; Beier, F.; Bodirsky, B.L.; Schellnhuber, H.J.; Lotze-Campen, H.; Popp, A. Land Use Change and Carbon Emissions of a Transformation to Timber Cities. Nat. Commun. 2022, 13, 4889. [Google Scholar] [CrossRef]
- Passoni, C.; Palumbo, E.; Pinho, R.; Marini, A. The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions. Sustainability 2022, 14, 8860. [Google Scholar] [CrossRef]
- tagesschau.de. 0,7 Prozent: Sanierungsrate Im Gebäudebestand Muss Sich Verdoppeln. Available online: https://vdiv.de/news-details/08-prozent-sanierungsrate-im-gebaeudebestand-muss-sich-verdoppeln (accessed on 14 June 2024).
- Iwuanyanwu, O.; Gil-Ozoudeh, I.; Okwandu, A.C.; Ike, C.S. Retrofitting Existing Buildings for Sustainability: Challenges and Innovations. Eng. Sci. Technol. J. 2024, 5, 2616–2631. [Google Scholar] [CrossRef]
- Panakaduwa, C.; Coates, P.; Munir, M. Identifying Sustainable Retrofit Challenges of Historical Buildings: A Systematic Review. Energy Build. 2024, 313, 114226. [Google Scholar] [CrossRef]
- Cucca, R.; Friesenecker, M.; Thaler, T. Green Gentrification, Social Justice, and Climate Change in the Literature: Conceptual Origins and Future Directions. Urban Plan. 2023, 8, 283–295. [Google Scholar] [CrossRef]
- Dwaikat, L.N.; Ali, K.N. Green Buildings Cost Premium: A Review of Empirical Evidence. Energy Build. 2016, 110, 396–403. [Google Scholar] [CrossRef]
- Hassler, U.; Kohler, N. Resilience in the Built Environment. Build. Res. Inf. 2014, 42, 119–129. [Google Scholar] [CrossRef]
- García-Lamarca, M.; Anguelovski, I.; Cole, H.V.S.; Connolly, J.J.T.; Pérez-del-Pulgar, C.; Shokry, G.; Triguero-Mas, M. Urban Green Grabbing: Residential Real Estate Developers Discourse and Practice in Gentrifying Global North Neighborhoods. Geoforum 2022, 128, 1–10. [Google Scholar] [CrossRef]
- Knuth, S. Cities and Planetary Repair: The Problem with Climate Retrofitting. Environ. Plan. Econ. Space 2019, 51, 487–504. [Google Scholar] [CrossRef]
- Menassa, C.C.; Baer, B. A Framework to Assess the Role of Stakeholders in Sustainable Building Retrofit Decisions. Sustain. Cities Soc. 2014, 10, 207–221. [Google Scholar] [CrossRef]
- Fernández-Solís, J.L. The Systemic Nature of the Construction Industry. Archit. Eng. Des. Manag. 2008, 4, 31–46. [Google Scholar] [CrossRef]
- Adabre, M.A.; Chan, A.P.C.; Darko, A.; Edwards, D.J.; Yang, Y.; Issahaque, S. No Stakeholder Is an Island in the Drive to This Transition: Circular Economy in the Built Environment. Sustainability 2024, 16, 6422. [Google Scholar] [CrossRef]
- Abdelaal, F.; Guo, B.H.W. Knowledge, Attitude and Practice of Green Building Design and Assessment: New Zealand Case. Build. Environ. 2021, 201, 107960. [Google Scholar] [CrossRef]
- Herazo, B.; Lizarralde, G. Understanding Stakeholders’ Approaches to Sustainability in Building Projects. Sustain. Cities Soc. 2016, 26, 240–254. [Google Scholar] [CrossRef]
- Bahadorestani, A.; Naderpajouh, N.; Sadiq, R. Planning for Sustainable Stakeholder Engagement Based on the Assessment of Conflicting Interests in Projects. J. Clean. Prod. 2020, 242, 118402. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy Mechanism in Human Agency. Am. Psychol. 1982, 37, 122–147. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Sang, P.; Chen, P.-H.; Li, C. Stakeholder Studies of Green Buildings: A Literature Review. J. Build. Eng. 2022, 54, 104667. [Google Scholar] [CrossRef]
- Dauda, J.A.; Ajayi, S.O. Understanding the Impediments to Sustainable Structural Retrofit of Existing Buildings in the UK. J. Build. Eng. 2022, 60, 105168. [Google Scholar] [CrossRef]
- BMWSB Dimensionen Und Schutzziele Des Nachhaltigen Bauens-Informationsportal Nachhaltiges Bauen. Available online: https://www.nachhaltigesbauen.de/hintergrund/dimensionen-und-schutzziele-des-nachhaltigen-bauens/ (accessed on 26 March 2025).
- Rice, J.L.; Cohen, D.A.; Long, J.; Jurjevich, J.R. Contradictions of the Climate-Friendly City: New Perspectives on Eco-Gentrification and Housing Justice. Int. J. Urban Reg. Res. 2020, 44, 145–165. [Google Scholar] [CrossRef]
- Miller, B.; Mössner, S. Urban Sustainability and Counter-Sustainability: Spatial Contradictions and Conflicts in Policy and Governance in the Freiburg and Calgary Metropolitan Regions. Urban Stud. 2020, 57, 2241–2262. [Google Scholar] [CrossRef]
- Weinsziehr, T.; Grossmann, K.; Gröger, M.; Bruckner, T. Building Retrofit in Shrinking and Ageing Cities: A Case-Based Investigation. Build. Res. Inf. 2017, 45, 278–292. [Google Scholar] [CrossRef]
- Charef, R. Is Circular Economy for the Built Environment a Myth or a Real Opportunity? Sustainability 2022, 14, 16690. [Google Scholar] [CrossRef]
- Conte, E. The Era of Sustainability: Promises, Pitfalls and Prospects for Sustainable Buildings and the Built Environment. Sustainability 2018, 10, 2092. [Google Scholar] [CrossRef]
- Passer, A.; Ouellet-Plamondon, C.; Kenneally, P.; John, V.; Habert, G. The Impact of Future Scenarios on Building Refurbishment Strategies towards plus Energy Buildings. Energy Build. 2016, 124, 153–163. [Google Scholar] [CrossRef]
- Anastasiades, K.; Blom, J.; Buyle, M.; Audenaert, A. Translating the Circular Economy to Bridge Construction: Lessons Learnt from a Critical Literature Review. Renew. Sustain. Energy Rev. 2020, 117, 109522. [Google Scholar] [CrossRef]
- Nasir, M.H.A.; Genovese, A.; Acquaye, A.A.; Koh, S.C.L.; Yamoah, F. Comparing Linear and Circular Supply Chains: A Case Study from the Construction Industry. Int. J. Prod. Econ. 2017, 183, 443–457. [Google Scholar] [CrossRef]
- BMWK Hauseigentümer. Available online: https://www.energiewechsel.de/KAENEF/Navigation/DE/Foerderprogramme/Hauseigentuemer/hauseigentuemer.html (accessed on 26 March 2025).
- Adams, K.T.; Osmani, M.; Thorpe, T.; Thornback, J. Circular Economy in Construction: Current Awareness, Challenges and Enablers. Proc. Inst. Civ. Eng.-Waste Resour. Manag. 2017, 170, 15–24. [Google Scholar] [CrossRef]
- Hart, J.; Adams, K.; Giesekam, J.; Tingley, D.D.; Pomponi, F. Barriers and Drivers in a Circular Economy: The Case of the Built Environment. Procedia CIRP 2019, 80, 619–624. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular Economy and the Construction Industry: Existing Trends, Challenges and Prospective Framework for Sustainable Construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, K.I.A.; Thaheem, M.J.; Nasir, A.R. Current State and Barriers to the Circular Economy in the Building Sector: Towards a Mitigation Framework. J. Clean. Prod. 2020, 276, 123250. [Google Scholar] [CrossRef]
- Charef, R.; Emmitt, S. Uses of Building Information Modelling for Overcoming Barriers to a Circular Economy. J. Clean. Prod. 2021, 285, 124854. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for Green Buildings: A Critical Review and Future Directions. Autom. Constr. 2017, 83, 134–148. [Google Scholar] [CrossRef]
- Weniger, A.; Del Rosario, P.; Backes, J.G.; Traverso, M. Consumer Behavior and Sustainability in the Construction Industry—Relevance of Sustainability-Related Criteria in Purchasing Decision. Buildings 2023, 13, 638. [Google Scholar] [CrossRef]
- Jagarajan, R.; Abdullah Mohd Asmoni, M.N.; Mohammed, A.H.; Jaafar, M.N.; Lee Yim Mei, J.; Baba, M. Green Retrofitting—A Review of Current Status, Implementations and Challenges. Renew. Sustain. Energy Rev. 2017, 67, 1360–1368. [Google Scholar] [CrossRef]
- Mata, É.; Peñaloza, D.; Sandkvist, F.; Nyberg, T. What Is Stopping Low-Carbon Buildings? A Global Review of Enablers and Barriers. Energy Res. Soc. Sci. 2021, 82, 102261. [Google Scholar] [CrossRef]
- Krueger, K.; Stoker, A.; Gaustad, G. “Alternative” Materials in the Green Building and Construction Sector: Examples, Barriers, and Environmental Analysis. Smart Sustain. Built. Environ. 2019, 8, 270–291. [Google Scholar] [CrossRef]
- Die Zeit Nachhaltiges Bauen: Der Traum vom Wiederverwendbaren Haus. Available online: https://www.zeit.de/wirtschaft/2023-06/nachhaltigkeit-bauen-recycling-the-cradle-architektur/seite-2 (accessed on 18 November 2024).
- Bundesrepublik Deutschland. § 172 Erhaltung Baulicher Anlagen und Der Eigenart von Gebieten (Erhaltungssatzung); Bundesrepublik Deutschland: Berlin, Germany, 2024. [Google Scholar]
- Maqbool, R.; Saiba, M.R.; Altuwaim, A.; Rashid, Y.; Ashfaq, S. The Influence of Industrial Attitudes and Behaviours in Adopting Sustainable Construction Practices. Sustain. Dev. 2023, 31, 893–907. [Google Scholar] [CrossRef]
- Rasheed, A.S.; Booth, C.A.; Horry, R.E. Stakeholder Perceptions of the Benefits and Barriers of Implementing Environmental Management Systems in the Maldivian Construction Industry. J. Hous. Built Environ. 2023, 38, 2821–2850. [Google Scholar] [CrossRef]
- Furnham, A. Sustainability Skepticism: Attitudes to, and Beliefs about, Climate Change. Sustainability 2024, 16, 8164. [Google Scholar] [CrossRef]
- Tokbolat, S.; Karaca, F.; Durdyev, S.; Calay, R.K. Construction Professionals’ Perspectives on Drivers and Barriers of Sustainable Construction. Environ. Dev. Sustain. 2020, 22, 4361–4378. [Google Scholar] [CrossRef]
- Häkkinen, T.; Belloni, K. Barriers and Drivers for Sustainable Building. Build. Res. Inf. 2011, 39, 239–255. [Google Scholar] [CrossRef]
- Okoye, P.U.; Odesola, I.A.; Okolie, K.C. Barriers to Sustainable Construction Practices. Int. J. Archite. Urban Dev. 2021, 11, 5–20. [Google Scholar]
- Reinecke, J.; Baur, N. Grundlagen der standardisierten Befragung. In Handbuch Methoden der empirischen Sozialforschung; Baur, N., Blasius, J., Eds.; Springer VS: Wiesbaden, Germany, 2014. [Google Scholar] [CrossRef]
- Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Adm. Policy Ment. Health Ment. Health Serv. Res. 2015, 42, 533–544. [Google Scholar] [CrossRef]
- Akremi, L. Stichprobenziehung in der qualitativen Sozialforschung. In Handbuch Methoden der empirischen Sozialforschung; Baur, N., Blasius, J., Eds.; Springer VS: Wiesbaden, Germany, 2022; ISBN 978-3-658-37984-1. [Google Scholar] [CrossRef]
- Amoah, C.; Smith, J. Barriers to the Green Retrofitting of Existing Residential Buildings. J. Facil. Manag. 2024, 22, 194–209. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach, 1st ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-45461-9. [Google Scholar]
- Alexis, D. Dunn.Test: Dunn’s Test of Multiple Comparisons Using Rank Sums, Version 1.3.6; R Core Team: Vienna, Austria, 2014. Available online: https://CRAN.R-project.org/package=dunn.test (accessed on 22 August 2025).
- Field, A.P. Discovering Statistics Using SPSS: (And Sex, Drugs and Rock’n’roll); SAGE Publication Ltd: London, UK, 2005. [Google Scholar]
- Norman, G. Likert Scales, Levels of Measurement and the “Laws” of Statistics. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata; Stata Press: College Station, TX, USA, 2001; ISBN 978-1-881228-62-2. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Hayes, A.F. An Index and Test of Linear Moderated Mediation. Multivar. Behav. Res. 2015, 50, 1–22. [Google Scholar] [CrossRef]
- Wurm, L.H.; Reitan, M. Mean Centering Is Not Necessary in Regression Analyses, and Probably Increases the Risk of Incorrectly Interpreting Coefficients. Front. Psychol. 2025, 16, 1634152. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Z.; Zhang, Z. How Environmental Policy Perception and Social Media Use Impact Pro-Environmental Behavior: A Moderated Mediation Model Based on the Theory of Planned Behavior. Sustainability 2024, 16, 7587. [Google Scholar] [CrossRef]
- Lützkendorf, T.; Balouktsi, M. Assessing a Sustainable Urban Development: Typology of Indicators and Sources of Information. Procedia Environ. Sci. 2017, 38, 546–553. [Google Scholar] [CrossRef]
- Li, X.; Dai, J.; Zhu, X.; Li, J.; He, J.; Huang, Y.; Liu, X.; Shen, Q. Mechanism of Attitude, Subjective Norms, and Perceived Behavioral Control Influence the Green Development Behavior of Construction Enterprises. Humanit. Soc. Sci. Commun. 2023, 10, 266. [Google Scholar] [CrossRef]
- Alshukri, T.; Seun Ojekemi, O.; Öz, T.; Alzubi, A. The Interplay of Corporate Social Responsibility, Innovation Capability, Organizational Learning, and Sustainable Value Creation: Does Stakeholder Engagement Matter? Sustainability 2024, 16, 5511. [Google Scholar] [CrossRef]
- James, M.; Ambrose, M. Retrofit or Behaviour Change? Which Has the Greater Impact on Energy Consumption in Low Income Households? Procedia Eng. 2017, 180, 1558–1567. [Google Scholar] [CrossRef]
- Lacher, S. Promoting Equal Access in German Adult Education: Navigating Resource Mobilisation and the Commitment to “Leaving No One Behind”. Andrag. Spoznanja 2024, 30, 81–99. [Google Scholar] [CrossRef]
- Winter, J. Business Model Innovation in the German Industry: Case Studies from the Railway, Manufacturing and Construction Sectors. J. Innov. Manag. 2023, 11, 1–17. [Google Scholar] [CrossRef]
- Pfnür, A.; Wagner, B. Transformation of the Real Estate and Construction Industry: Empirical Findings from Germany. J. Bus. Econ. 2020, 90, 975–1019. [Google Scholar] [CrossRef]
- Brucker Juricic, B.; Galic, M.; Marenjak, S. Review of the Construction Labour Demand and Shortages in the EU. Buildings 2021, 11, 17. [Google Scholar] [CrossRef]
- Wijkman, A.; Rockström, J. Bankrupting Nature; Routledge: London, UK, 2012. [Google Scholar]
- Köhler, J.; Geels, F.W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F.; et al. An Agenda for Sustainability Transitions Research: State of the Art and Future Directions. Environ. Innov. Soc. Transit. 2019, 31, 1–32. [Google Scholar] [CrossRef]
Challenge Group | Challenge Items |
---|---|
Political Challenges | Lack of legal requirements, outdated or restrictive DIN standards, lack of government funding, rental price regulations, and regulations in social conservation areas. |
Organizational Challenges | Lack of skilled labour, higher project acquisition and planning costs, product and services warranty and liability concerns, limited sustainable solutions, lack of information on materials and application, technical unsuitability of sustainable materials, other stakeholders’ lack of interest and awareness of sustainable practices, and absence of collaboration between stakeholders. |
Social Challenges 1 | Rental price regulations and regulations in social conservation areas. |
Profile ID | Collapsed Subgroup | Label | Coding Logic |
---|---|---|---|
1 | High | High Engagement | Selected ≥ 6 distinct measures |
2 | Medium | CE-Oriented | Selected ≥ 3 from CE_DfD, CE_Reuse, CE_Recycle, CE_Reduce |
3 | Medium | Bio and Energy Adopter | Selected ≥ 1 Bio and Energy = 1, total categories = 2–3 |
4 | Medium | Material-Focused | Selected ≥ 3 Material_Bio, not in other groups |
5 | Low | Energy Only | Energy = 1, and total selected = 1 |
6 | Low | Tech-Enabled | Digital = 1, total selected = 1–2, not in other groups |
7 | Low | Low/No Engagement | Selected ≤ 1 measure or “none” |
8 | Medium | Other | No profile matches measures ticked |
Gender | Count | % | Profession | Count | % | ||
Female Male | 45 41 | 52.3 47.7 | Architects/Engineers Project Planners Builders/Developers Site Managers | 33 21 17 15 | 38.4 24.4 19.8 17.4 | ||
Age Group | Count | % | User Profile | Count | % | ||
18–29 30–39 40–55 56+ | 15 21 27 23 | 17.4 24.4 31.4 26.7 | 1—High Engagement 7—Low/Now Engagement 3—Bio and Energy Adopter 8—Other 5—Energy Only | 23 22 18 13 10 | 26.7 25.6 20.9 15.1 11.6 | ||
Variables | Mode | Median | Mean | Std. Dev. | Min. | Max. | |
Organizational Challenges Policy Challenges Social Challenges Sustainable Retrofit Attitude Ease of Implementation Measure Usage Frequency Measure Count | 3.88 5.00 5.00 5.00 2.00 2.00 1.00 | 3.56 4.00 4.00 4.00 2.00 2.00 2.00 | 3.34 3.86 3.50 3.84 2.41 2.69 3.37 | 1.04 0.86 1.34 1.03 1.01 1.14 3.13 | 1.00 1.67 1.00 1.67 1.00 1.00 0.00 | 5.00 5.00 5.00 5.00 5.00 5.00 17.00 |
ID | Short Description | Code (Used to Create Profiles) | Count | Selected (%) |
---|---|---|---|---|
M1 | Switch to sustainable heating (e.g., heat pumps and solar) | Energy | 56 | 65.1 |
M2 | Use of modular/pre-fab components | CE_DfD (Design for Disassembly) | 6 | 7 |
M3 | Use of deconstructable building parts/materials | CE_DfD | 2 | 2.3 |
M4 | Use of rain/grey water for irrigation/toilets | NBS (Nature-based solutions) | 25 | 29.1 |
M5 | Replace taps with water-saving models | CE_Reduce | 10 | 11.6 |
M6 | Reuse of previously used construction material | CE_Reuse | 10 | 11.6 |
M7 | Reuse of previous construction elements | CE_Reuse | 9 | 10.5 |
M8 | Façade and roof greening | NBS | 28 | 32.6 |
M9 | Use of BIM software | Digital | 4 | 4.7 |
M10 | Use of material passports | Digital | 1 | 1.2 |
M11 | Involving renters during planning | Social | 6 | 7 |
M12 | Use of recycled concrete | CE_Recycle | 15 | 17.4 |
M13 | Use of wood for façades, ceilings, and roofs | Material_Bio | 31 | 36 |
M14 | Use of wood-hybrid structures | Material_Bio | 14 | 16.3 |
M15 | Use of clay plasters or bricks | Material_Bio | 5 | 5.8 |
M16 | Straw or wood-based wall construction | Material_Bio | 18 | 20.9 |
M17 | Natural floor coverings (linoleum, cork) | Material_Bio | 54 | 62.8 |
M18 | None of the above | None | 9 | 10.5 |
Challenge | Challenge ID and Category | Median | Mean | Std. Dev. |
---|---|---|---|---|
Higher costs for sustainable construction, incl. planning | C8, Organizational | 5 | 4.38 | 0.90 |
Insufficient public funding opportunities | C4, Policy | 5 | 4.36 | 0.84 |
Lack of awareness and interest in sustainable construction of other stakeholders | C13, Organizational | 4 | 4.19 | 1.03 |
Lack of tax relief | C1, Policy | 4 | 4.09 | 0.98 |
Insufficient regulations to apply sustainable construction practices and material | C2, Policy | 4.5 | 4.02 | 1.22 |
Outdated and restrictive DIN norms and regulations | C3, Policy | 4 | 3.69 | 1.12 |
Rent price regulations, such as rent cap | C5, Policy, Social | 4 | 3.57 | 1.32 |
Regulations to protect social conservation areas (Miliueschutz) | C6, Policy, Social | 4 | 3.43 | 1.43 |
Lack of providers for sustainable materials and services | C10, Organizational | 4 | 3.31 | 1.43 |
Lack of skilled labour for sustainable construction | C7, Organizational | 3.5 | 3.24 | 1.43 |
Lack of warranties for sustainable material and service provision | C9, Organizational | 5 | 3.17 | 1.36 |
Technical unsuitability of sustainable construction material and practices | C12, Organizational | 3 | 2.98 | 1.39 |
Lack of access to information about sustainable materials and their application | C11, Organizational | 3 | 2.95 | 1.48 |
Absence of collaboration between stakeholders | C14, Organizational | 2 | 2.48 | 1.29 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Attitude | |||||||||||
2. Profile | −0.366 ** | ||||||||||
3. Profession | 0.076 | −0.210 † | |||||||||
4. Gender | −0.207 † | 0.183 | 0.118 | ||||||||
5. Age | −0.539 *** | 0.187 | −0.122 | 0.193 | |||||||
6. Ease | 0.512 *** | −0.341 ** | 0.076 | −0.002 | −0.172 | ||||||
7. Measure_count | 0.559 *** | −0.614 *** | 0.176 | −0.111 | −0.152 | 0.604 *** | |||||
8. Usage_freq | 0.535 *** | −0.416 *** | −0.016 | −0.073 | −0.087 | 0.742 *** | 0.759 *** | ||||
9. Org_avg | −0.747 *** | 0.231 † | −0.085 | 0.139 | 0.634 *** | −0.493 *** | −0.417 *** | −0.421 *** | |||
10. Pol_avg | −0.657 *** | 0.233 † | −0.062 | −0.007 | 0.517 *** | −0.459 *** | −0.519 *** | −0.492 *** | 0.796 *** | ||
11. Soc_avg | −0.610 *** | 0.350 ** | −0.289 * | 0.090 | 0.613 *** | −0.249 * | −0.410 *** | −0.264 * | 0.743 *** | 0.841 *** |
Outcome | Organizational Challenges | Policy Challenges | Social Challenges | Attitude | |
---|---|---|---|---|---|
Factor | |||||
Age (18–29, 30–39, 40–55, 56+) | H(3) = 54.63 *, ε2_H = 0.61 ** | H(3) = 46.14 *, ε2_H = 0.51 ** | H(3) = 40.57 *, ε2_H = 0.44 ** | H(3) = 44.19 *, ε2_H = 0.49 ** | |
Profile (High, Low, Medium) | H(2) = 13.19 **, ε2_H = 0.13 | H(2) = 17.22 *, ε2_H = 0.18 | H(2) = 13.10 **, ε2_H = 0.13 | H(2) = 23.46 *, ε2_H = 0.25 | |
Profession (1. Builders/Developers, 2. Architects/Engineers, 3. Project Planners, 4. Site Managers) | H(3) = 4.78, n.s. | H(3) = 0.35, n.s. | H(3) = 9.09 *, ε2_H = 0.07 | H(3) = 6.76, n.s. |
Model 1. Outcome: Organizational Challenges | Model 1. Outcome: Social Challenges | ||||||
---|---|---|---|---|---|---|---|
Variables | β (HC3) | SE (HC3) | 95% CI | Variables | β (HC3) | SE (HC3) | 95% CI |
Intercept (Age 18–40) | 2.961 *** | 0.193 | [2.583, 3.338] | Intercept (Age 18–40) | 3.557 *** | 0.246 | [3.074, 4.039] |
Attitude (mean-centred) | −0.725 *** | 0.201 | [−1.119, −0.332] | Attitude (mean-centred) | −1.471 *** | 0.238 | [−1.939, −1.004] |
Age: 41–56+ (vs. 18–40) | 0.896 *** | 0.221 | [0.463, 1.329] | Age: 41–56+ (vs. 18–40) | 0.744 ** | 0.28 | [0.196, 1.292] |
Interaction (Attitude × Age 41–56+) | 0.42 | 0.22 | [−0.011, 0.851] | Interaction (Attitude × Age 41–56+) | 1.438 *** | 0.264 | [0.920, 1.955] |
Adj. R2 = 0.715, BP p = 0.33, Normality p = 0.603, Max VIF = 3.11, n = 86 | Adj. R2 = 0.651, BP p = 0.511, Normality p = 0.0 Max VIF = 3.11, n = 86 | ||||||
Model 1. Outcome: Policy Challenges | |||||||
Variables | β (HC3) | SE (HC3) | 95% CI | ||||
Intercept (Age 18–40) | 3.655 *** | 0.164 | [3.335, 3.976] | ||||
Attitude (mean-centred) | −0.624 *** | 0.152 | [−0.923, −0.326] | ||||
Age: 41–56+ (vs. 18–40) | 0.606 ** | 0.2 | [0.214, 0.997] | ||||
Interaction (Attitude × Age 41–56+) | 0.432 * | 0.176 | [0.088, 0.777] | ||||
Adj. R2 = 0.563, BP p = 0.432, Normality p = 0.07, Max VIF = 3.11, n = 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, I.; Kratzer, J.; Reimer, C. Stakeholder Perspectives on Policy, Social, and Organizational Challenges of Sustainable Residential, Multi-Storey Building Retrofitting in Germany. Buildings 2025, 15, 3566. https://doi.org/10.3390/buildings15193566
Wolf I, Kratzer J, Reimer C. Stakeholder Perspectives on Policy, Social, and Organizational Challenges of Sustainable Residential, Multi-Storey Building Retrofitting in Germany. Buildings. 2025; 15(19):3566. https://doi.org/10.3390/buildings15193566
Chicago/Turabian StyleWolf, Ines, Jan Kratzer, and Clara Reimer. 2025. "Stakeholder Perspectives on Policy, Social, and Organizational Challenges of Sustainable Residential, Multi-Storey Building Retrofitting in Germany" Buildings 15, no. 19: 3566. https://doi.org/10.3390/buildings15193566
APA StyleWolf, I., Kratzer, J., & Reimer, C. (2025). Stakeholder Perspectives on Policy, Social, and Organizational Challenges of Sustainable Residential, Multi-Storey Building Retrofitting in Germany. Buildings, 15(19), 3566. https://doi.org/10.3390/buildings15193566