Experimental and Analytical Study of a Segmented Buckling Restrained Brace
Abstract
1. Introduction
2. Design of S-BRB
3. Test Program
3.1. Material
3.2. Test Specimen
3.3. Test Setup and Loading Protocol
4. Test Results
5. Numerical Analysis
5.1. Finite Element Modeling
5.2. Mesh Sensitivity Analysis
5.3. Imperfection Sensitivity Analysis
5.4. Numerical Analysis Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suzuki, A.; Ohno, S.; Kimura, Y. Risk Assessment of Overturning of Freestanding Non-Structural Building Contents in Buckling-Restrained Braced Frames. Buildings 2024, 14, 3195. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X.; Zhao, Y.; Liu, Y. Development of an innovative assembled self-centering dual-stage yield buckling-restrained brace for improving seismic resilience. Eng. Struct. 2025, 329, 119804. [Google Scholar] [CrossRef]
- Kato, S.; Takiuchi, Y.; Abe, K.; Mukaiyama, Y.; Nakazawa, S. Effectiveness of buckling restrained braces for upgrading earthquake resistant capacity of single layer grid dome. Eng. Struct. 2022, 261, 114280. [Google Scholar] [CrossRef]
- Carofilis, W.; Kim, E.K.; Jung, D. Seismic loss and resilience assessment of a steel building retrofitted with self-centering buckling-restrained braces. Earthq. Spectra 2025, 41, 1689–1712. [Google Scholar] [CrossRef]
- Capacci, L.; Lago, D.B. Structural modelling and probabilistic seismic assessment of existing long-span precast industrial buildings. Bull. Earthq. Eng. 2025, 23, 2581–2609. [Google Scholar] [CrossRef]
- Shi, S.; Xin, L.; Huang, C.; Han, G.; Xu, Z.; Chen, X. Seismic retrofit of high-rise buildings using buckling-restrained braces: Design methodology and performance evaluation. Sci. Rep. 2025, 15, 27546. [Google Scholar] [CrossRef]
- Talukdar, D.; Sen, K.M.; Chakravarty, S. Comprehensive Seismic Analysis and Design Strategies for Enhanced Building Resilience: A Comparative Study of Regular and Irregular Structures. J. Inst. Eng. Ser. A 2024, 106, 329–345. [Google Scholar] [CrossRef]
- Akrivi, C.; Dimitrios, V.; Enrique, M.H. Performance-based versus conventional seismic design: Comparative assessment on a 4-story RC moment frame. Bull. Earthq. Eng. 2024, 22, 3031–3053. [Google Scholar] [CrossRef]
- Lia, P.; Li, H.; Zhang, T.; Chen, G.; He, Y.; Li, Z.; Xiong, G. Experimental investigation and numerical study of all-steel buckling-restrained braces. Structures 2025, 77, 109228. [Google Scholar] [CrossRef]
- Hoveidae, N.; Rafezy, B. Overall buckling behavior of all-steel buckling restrained braces. J. Constr. Steel Res. 2012, 79, 151–158. [Google Scholar] [CrossRef]
- Yin, L.; Zhu, Y.; Cai, X.; Xu, Z.; Zhang, J. Seismic performance of self-centering precast concrete buckling-restrained braced frame sub-assembly. J. Build. Eng. 2025, 107, 112690. [Google Scholar] [CrossRef]
- Wu, K.; Wei, G.; Zhang, L.; Yu, W.; Lan, X. Experimental Study on the Seismic Behavior of All-Steel Buckling-Restrained Braces Without an Unbonded Material Layer. Buildings 2025, 15, 1626. [Google Scholar] [CrossRef]
- Wang, M.; Tong, Y. Experimental study on seismic performance of assembled buckling-restrained brace with low yield point steel. Thin-Walled Struct. 2024, 205, 112474. [Google Scholar] [CrossRef]
- Serin, B.; Bozkurt, B.M. Development of replaceable core all-steel buckling-restrained braces. J. Constr. Steel Res. 2025, 226, 109247. [Google Scholar] [CrossRef]
- Chen, H.; Bai, J.; Liu, J. Development of earthquake-resilient precast concrete beam-to-column connections with bottom replaceable buckling-restrained brace dampers. Eng. Struct. 2025, 339, 120660. [Google Scholar] [CrossRef]
- Kuwahara, S.; Tada, M.; Yoneyama, T.; Imai, K. A study on stiffening capacity of double-tube members. J. Struct. Constr. Eng. 1993, 445, 151–158. [Google Scholar]
- Genna, F.; Gelfi, P. Analysis of the lateral thrust in bolted steel Buckling-Restrained Braces. I: Experimental and numerical results. J. Struct. Eng. 2012, 138, 1231–1243. [Google Scholar] [CrossRef]
- Usami, T.; Wang, C.L.; Funayama, J. Developing high-performance aluminum alloy buckling-restrained braces based on series of low-cycle fatigue tests. Earthq. Eng. Struct. Dyn. 2012, 41, 643–661. [Google Scholar] [CrossRef]
- Hoveidae, N.; Radpour, S. A novel all-steel buckling restrained brace for seismic drift mitigation of steel frames. Bull. Earthq. Eng. 2021, 19, 1537–1567. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, Y.; Takagi, J.; Zhong, G.; He, Z. Experimental and numerical investigation of a novel all-steel assembled core-perforated buckling-restrained brace. J. Constr. Steel Res. 2022, 193, 107288. [Google Scholar]
- Jiang, Z.; Guo, Y.; Zhang, A.; Dou, C.; Zhang, C.-X. Experimental study of the pinned double rectangular tube assembled buckling-restrained brace. J. Zhejiang Univ. Sci. A 2017, 18, 20–32. [Google Scholar] [CrossRef]
- Jia, L.; Ge, H.; Maruyama, R.; Shinohara, K. Development of a novel high-performance all-steel fish-bone shaped buckling-restrained brace. Eng. Struct. 2017, 138, 105–119. [Google Scholar] [CrossRef]
- Azizi, H.; Ahmadi, J. Mitigation of residual deformations in steel braced frames through an innovative Y-shaped hybrid buckling restrained braces. J. Constr. Steel Res. 2025, 229, 109533. [Google Scholar] [CrossRef]
- Hu, B.; Shi, W.; Hu, R.; Xia, W.; Man, H. The experimental research of a new fabricated buckling restrained brace. Earthq. Eng. Eng. Vib. 2015, 35, 132–136. (In Chinese) [Google Scholar]
- Ma, L.; Luo, X.; Ren, Y. Seismic performance analysis of reinforced multi-story frames with external fractal dimension-buckling restrained braces. J. Asian Archit. Build. Eng. 2025, 1–17. [Google Scholar] [CrossRef]
- Takeuchi, T.; Wada, A. Review of buckling-restrained brace design and application to tall buildings. Int. J. High-Rise Build. 2018, 7, 187–195. [Google Scholar]
- Shrif, M.; Al-Sadoon, Z.A.; Habib, A. Seismic performance and configuration assessment of deficient steel frames equipped with buckling-restrained braces. Civ. Eng. J. 2024, 13, 198–217. [Google Scholar]
- Bagheri, M.; Ranjbar Malidarreh, N.; Ghaseminejad, V.; Asgari, A. Seismic resilience assessment of RC superstructures on long–short combined piled raft foundations: 3D SSI modeling with pounding effects. Structures 2025, 81, 110176. [Google Scholar] [CrossRef]
- Xu, S.; Li, L.; Wang, X. A Fully Bolted BRB and Its Preparation Method. CN113565228B, 14 February 2025. [Google Scholar]
- Xu, S.; Hu, Y.; Yin, Y.; Guo, C. Hysteretic behavior of the segmented buckling-resistant braces with LYP160. Eng. Rep. 2024, 6, e12916. [Google Scholar] [CrossRef]
- GB/T 228.3-2019; Metallic Materials—Tensile Testing—Part 3: Method of Test at Low Temperature. National Technical Committee for Steel of Standardization Administration of China. Standards Press of China: Beijing, China, 2019.
- Zhao, J.; Yan, L.; Wang, C.; Zhou, Y.; Chen, R.; Chan, T.-M. Damage-control design and hybrid tests of a full-scale two-story buckling-restrained braced steel moment frame with sliding gusset connections. Eng. Struct. 2023, 275, 115263. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, B. Working mechanism and stability design method of buckling-restrained braces. Earthq. Eng. Eng. Vib. 2009, 29, 131–139. [Google Scholar]
- JGJ/T 101—2015; Specification for Seismic Test of Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). China Architecture & Building Press: Beijing, China, 2015.
- Clough, R.; Penzien, J. Dynamics of Structures; Computers & Structures, Inc.: Berkeley, CA, USA, 1995. [Google Scholar]
- ABAQUS Document Version 2022; Dassault Systems: Paris, France, 2022.
- Chaboche, J.L. Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 1986, 2, 149–188. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, M.; Wang, Y. Experimental study of structural steel constitutive relationship under cyclic loading. J. Build. Mater. 2012, 15, 293–300. [Google Scholar]
Length of BRB/mm | Step | Cycle Times | Displacement/mm |
---|---|---|---|
1528 | 1~12 | 3 | 5.1 (L/300) |
13~24 | 3 | 7.6 (L/200) | |
25~36 | 3 | 10.1 (L/150) | |
37~60 | 3 | 15.3 (L/100) | |
61~72 | 3 | 31.5 (L/50) |
Hysteresis Loop | ζeq | |||
---|---|---|---|---|
1 | 1.2 | 0.248 | 0.260 | 0.235 |
2 | 2.5 | 0.253 | 0.260 | 0.245 |
3 | 3.7 | 0.254 | 0.260 | 0.247 |
4 | 5.6 | 0.269 | 0.276 | 0.262 |
5 | 7.6 | 0.270 | 0.276 | 0.264 |
6 | 9.5 | 0.271 | 0.276 | 0.266 |
7 | 12.5 | 0.288 | 0.292 | 0.284 |
8 | 15.5 | 0.287 | 0.291 | 0.284 |
9 | 18.4 | 0.290 | 0.297 | 0.284 |
10 | 24.5 | 0.338 | 0.354 | 0.322 |
11 | 30.7 | 0.337 | 0.352 | 0.322 |
12 | 36.7 | 0.341 | 0.361 | 0.322 |
13 | 51.4 | 0.304 | 0.307 | 0.301 |
14 | 66.6 | 0.306 | 0.307 | 0.305 |
15 | 81.2 | 0.307 | 0.307 | 0.306 |
Type | Advantages | Disadvantages |
---|---|---|
C3D8: An 8-node linear brick. | Suitable for regular-shaped elements, enabling precise integration of polynomials within the stiffness matrix. | Risk of shear locking under bending loads, resulting in overestimated stiffness calculations. |
C3D8R: An 8-node linear brick, reduced integration, hourglass control. | One fewer integration point per direction than fully integral elements, offering computational efficiency and superior adaptability to bending problems with reduced susceptibility to shear locking. | Sensitive to hourglass, potentially yielding excessively soft results. |
C3D8I: An 8-node linear brick, incompatible modes. | Overcomes shear locking by introducing additional degrees of freedom, achieves accuracy close to quadratic elements, and has lower computational cost. | Sensitive to element distortion; unsuitable for contact analysis or large deformation problems. |
Specimen | Q∞/MPa | σ│0/MPa | b | Ck,1/MPa | γ1 | Ck,2/MPa | γ2 | Ck,3/MPa | γ3 | Ck,4/MPa | γ4 |
---|---|---|---|---|---|---|---|---|---|---|---|
Average value | 21 | 380 | 1.2 | 6013 | 173 | 5024 | 120 | 3026 | 32 | 990 | 35 |
Mesh Size | Total Number of Elements | Runtime |
---|---|---|
9 mm | 123822 | 14 h |
12 mm | 102124 | 13.5 h |
15 mm | 84962 | 13 h |
Hysteresis Loop | Experiment | Simulation |
---|---|---|
1 | 0.248 | 0.260 |
2 | 0.253 | 0.286 |
3 | 0.254 | 0.285 |
4 | 0.269 | 0.274 |
5 | 0.270 | 0.277 |
6 | 0.271 | 0.276 |
7 | 0.288 | 0.293 |
8 | 0.287 | 0.296 |
9 | 0.290 | 0.294 |
10 | 0.338 | 0.339 |
11 | 0.337 | 0.345 |
12 | 0.341 | 0.343 |
13 | 0.304 | 0.320 |
14 | 0.306 | 0.308 |
15 | 0.307 | 0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Yin, Y.; Liu, Y.; Wang, X.; Wang, W.; Li, Y. Experimental and Analytical Study of a Segmented Buckling Restrained Brace. Buildings 2025, 15, 3564. https://doi.org/10.3390/buildings15193564
Xu S, Yin Y, Liu Y, Wang X, Wang W, Li Y. Experimental and Analytical Study of a Segmented Buckling Restrained Brace. Buildings. 2025; 15(19):3564. https://doi.org/10.3390/buildings15193564
Chicago/Turabian StyleXu, Shuai, Yuchao Yin, Yanyan Liu, Xiuli Wang, Wei Wang, and Yan Li. 2025. "Experimental and Analytical Study of a Segmented Buckling Restrained Brace" Buildings 15, no. 19: 3564. https://doi.org/10.3390/buildings15193564
APA StyleXu, S., Yin, Y., Liu, Y., Wang, X., Wang, W., & Li, Y. (2025). Experimental and Analytical Study of a Segmented Buckling Restrained Brace. Buildings, 15(19), 3564. https://doi.org/10.3390/buildings15193564