Risk Assessment and Mitigation Strategies in Green Building Construction Projects: A Global Empirical Study
Abstract
1. Introduction
- To identify a thorough list of risk variables linked to GBCP by conducting a systematic literature review.
- To empirically assess the identified risk factors by collecting data from GBCP stakeholders worldwide, enabling a global perspective on the significance and impact of these risks.
- To offer strategies for GBCP risk reduction, ultimately aiming to promote the successful worldwide implementation of sustainable building practices.
2. Research Methodology
2.1. Stage 1: Identification of Relevant Sources and Risk Factors
2.1.1. PRISMA Protocol for Articles Retrieval
2.1.2. GBCP Risk Factors
No. | Risk Category | Factor | Code | Reference |
---|---|---|---|---|
R1 | Technical | Limited availability and dependability of subcontractors for green building | F-01 | [42,44] |
Lack of an experienced and competent project crew | F-02 | [44,45] | ||
Reliability and accessibility issues with green building subcontractors | F-03 | [46,47] | ||
Lack of suppliers of environmentally friendly items and materials | F-04 | [30,48] | ||
R2 | Financial | Lack of resources and funding for the client | F-05 | [49] |
Price fluctuations and inflation for labour and green building supplies | F-06 | [50,51] | ||
Additional expenses for green building design and construction | F-07 | [52,53] | ||
Expensive green equipment and materials | F-08 | [53,54] | ||
Extra expenses for reassessing and certifying eco-friendly goods and products | F-09 | [55,56] | ||
Inaccurate payback term or ROI (return on investment) prediction for the project | F-10 | [57,58] | ||
Lack of market demand | F-11 | [59,60] | ||
R3 | Material, Equipment, and Technology | Approved green technology, techniques, and materials are scarce and lacking. | F-12 | [61,62] |
Unconfirmed quality of new eco-friendly technology, equipment, materials, and products | F-13 | [62,63] | ||
New green technology, equipment, materials, and products with inadequate or inaccurate green specifications | F-14 | [54,58] | ||
Insufficient utilisation of eco-friendly resources, equipment, and technology | F-15 | [32,35] | ||
R4 | Design Risks | Insufficient and inaccurate design data | F-16 | [64,65] |
Frequent design changes and variations | F-17 | [66,67] | ||
Insufficient incorporation of sustainability into green building design | F-18 | [68,69] | ||
R5 | Schedule and Planning | The green construction process’s delay | F-19 | [70,71] |
Unreasonably strict timeline for environmentally friendly building | F-20 | [72,73] | ||
Not obtaining supplies or equipment in the allotted period | F-21 | [74,75] | ||
In sustainable building, a poorly defined scope and an ambiguous role distribution | F-22 | [69,70,76,77] | ||
R6 | Regulatory and Legal | Complex green building approval processes, codes, and restrictions | F-23 | [78,79] |
Modifications to municipal laws and policies | F-24 | [80,81] | ||
Modifying the rules and certification procedure for green buildings | F-25 | [82,83] | ||
The project parties’ contractual duties and responsibilities are not adequately defined. | F-26 | [84,85] | ||
Uncertain terms and conditions in green building contracts | F-27 | [78,80,86] | ||
In construction, litigation, court cases, and prosecutions for failing to meet client expectations | F-28 | [79,87] | ||
R7 | Communication and Awareness | Project team members’ poor cooperation, communication, and information sharing | F-29 | [88,89] |
Weak collaboration among supply chain partners, the project team, and the client | F-30 | [90,91] | ||
Complex stakeholder composition and requirements | F-31 | [92] | ||
Stakeholders’ unclear obligations in obtaining green certification | F-32 | [92,93] | ||
Insufficient public awareness and knowledge | F-33 | [94,95] | ||
R8 | Performance and Operational | Low labour and equipment productivity | F-34 | [88] |
Insufficient GB upkeep | F-35 | [64,65,66] | ||
Difficulties in operating green solutions | F-36 | [69,71,74] | ||
Not fulfilling the certification requirements for sustainable construction | F-37 | [77,96] | ||
Injuries and accidents during construction | F-38 | [97,98] | ||
R9 | Environmental | Unexpectedly unfavourable site conditions and inadequate construction site investigation | F-39 | [99,100] |
There is a strong need to protect the working environment at green construction sites. | F-40 | [91,101] | ||
Uncertainty in purchasing land | F-41 | [98,102] | ||
Changes in the weather | F-42 | [103,104] |
2.2. Stage 2: Data Collection
2.2.1. Questionnaire Development
2.2.2. Questionnaire Administration
2.2.3. Demographics of the Respondents
2.3. Stage 3: Data Analysis Techniques
2.4. Stage 4: Discussion of Findings
3. Research Findings
3.1. Reliability Analysis
3.2. Descriptive Statistics
3.3. One-Sample t-Test
3.4. Hypothesis Testing and Correlation Analysis
3.5. Additional Risk Factors
3.6. Identified Risk Mitigation Strategies
4. Discussion of the Result
4.1. Critical Risk Factors
4.2. Risk Perception Between Different Groups
4.2.1. Developed and Developing Nations in Comparison
4.2.2. Large-Size Versus Non-Large-Size Company
4.3. Top Risk Mitigation Strategies
5. Implications and Significance
5.1. Theoretical Implications
5.2. Practical Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhao, N.; Yin, X.; Wu, C.; Chen, M.; Jiao, Y.; Yue, T. Global future population exposure to heatwaves. Environ. Int. 2023, 178, 108049. [Google Scholar] [CrossRef]
- Amir, M.; Deshmukh, R.G.; Khalid, H.M.; Said, Z.; Raza, A.; Muyeen, S.; Nizami, A.-S.; Elavarasan, R.M.; Saidur, R.; Sopian, K. Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies. J. Energy Storage 2023, 72, 108694. [Google Scholar] [CrossRef]
- Adhikari, S.; Halden, R.U. Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals. Environ. Int. 2022, 163, 107217. [Google Scholar] [CrossRef]
- Ferrante, T.; Maestosi, P.C.; Villani, T.; Romagnoli, F. A Portfolio of Building Solutions Supporting Positive Energy District Transition: Assessing the Impact of Green Building Certifications. Sustainability 2025, 17, 400. [Google Scholar] [CrossRef]
- Kazemi, A.; Mehrani, S.; Homayoun, S. Risk in Sustainability Reporting: Designing a DEMATEL-Based Model for Enhanced Transparency and Accountability. Sustainability 2025, 17, 549. [Google Scholar] [CrossRef]
- Tröger, D.; Araneda, A.A.B.; Busnelli, R.; Yajnes, M.; Williams, F.; Braun, A.C. Exploring eco-industrial development in the global south: Recognizing informal waste-picking as urban-industrial symbiosis? Clean. Waste Syst. 2023, 5, 100096. [Google Scholar] [CrossRef]
- Settembre-Blundo, D.; González-Sánchez, R.; Medina-Salgado, S.; García-Muiña, F.E. Flexibility and Resilience in Corporate Decision Making: A New Sustainability-Based Risk Management System in Uncertain Times. Glob. J. Flex. Syst. Manag. 2021, 22, 107–132. [Google Scholar] [CrossRef]
- Zhang, Y. Application of intensive construction technology in the grand Paris express project: A review. Front. Struct. Civ. Eng. 2025, 19, 488–501. [Google Scholar] [CrossRef]
- David, L.O.; Nwulu, N.; Aigbavboa, C.; Adepoju, O. Towards global water security: The role of cleaner production. Clean. Eng. Technol. 2023, 17, 100695. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.-L.; Min, Y.-T.; Chen, S.; Yang, W.; Gu, J.-T.; Feng, W.-J.; Li, Y.; Hong, C.; Du, J.; et al. Fukushima Contaminated Water Risk Factor: Global Implications. Environ. Sci. Technol. 2025, 59, 3703–3712. [Google Scholar] [CrossRef]
- He, W.; Zhang, Y.; Kong, D.; Li, S.; Wu, Z.; Zhang, L.; Liu, P. Promoting green-building development in sustainable development strategy: A multi-player quantum game approach. Expert Syst. Appl. 2024, 240, 122218. [Google Scholar] [CrossRef]
- Lian, N.; Ji, W.; Chen, J. Research on the Safety Risk Analysis Framework and Control System for Multi-Type New Energy Storage Technologies. Energies 2025, 18, 798. [Google Scholar] [CrossRef]
- Khaing, M.M.; Yin, S. Lifecycle Management of Hydrogen Pipelines: Design, Maintenance, and Rehabilitation Strategies for Canada’s Clean Energy Transition. Energies 2025, 18, 240. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zeng, S.; Ma, H.; Zheng, R. Unveiling the social responsibility factors in new infrastructure construction. Eng. Constr. Arch. Manag. 2023, 32, 2272–2298. [Google Scholar] [CrossRef]
- Omrany, H.; Al-Obaidi, K.M.; Ghaffarianhoseini, A.; Chang, R.D.; Park, C.; Rahimian, F. Digital twin technology for education, training and learning in construction industry: Implications for research and practice. Eng. Constr. Arch. Manag. 2025, ahead of print. [Google Scholar] [CrossRef]
- Charette-Castonguay, A.; Gautam, D.; Shrestha, B.; Ojha, H.C.; Sharma, B.K.; Upadhayaya, M.; Rana, S.; Shrestha, R.; Chaudhary, L.B.; Kandel, B.; et al. Development of a zoonotic influenza distribution assessment and ranking system (ZIDAR): Technical application in Nepal to support cross-sectoral risk-based surveillance. One Health 2025, 20, 100975. [Google Scholar] [CrossRef]
- Pal, A.; Lin, J.J.; Hsieh, S.H.; Golparvar-Fard, M. Automated vision-based construction progress monitoring in built environment through digital twin. Dev. Built Environ. 2023, 16, 100247. [Google Scholar] [CrossRef]
- Kineber, A.F.; Singh, A.K.; Fazeli, A.; Mohandes, S.R.; Cheung, C.; Arashpour, M.; Ejohwomu, O.; Zayed, T. Modelling the relationship between digital twins implementation barriers and sustainability pillars: Insights from building and construction sector. Sustain. Cities Soc. 2023, 99, 104930. [Google Scholar] [CrossRef]
- Waqar, A.; Gultom, M.H.; Qureshi, A.H.; Tanjung, L.E.; Almujibah, H.R. Complexities to the deployment of cloud computing for sustainability of small construction projects: Evidence from Pakistan. Ain Shams Eng. J. 2023, 14, 102559. [Google Scholar] [CrossRef]
- Azadnia, A.H.; McDaid, C.; Andwari, A.M.; Hosseini, S.E. Green hydrogen supply chain risk analysis: A european hard-to-abate sectors perspective. Renew. Sustain. Energy Rev. 2023, 182, 113371. [Google Scholar] [CrossRef]
- Aziz, K.M.A.; Daoud, A.O.; Singh, A.K.; Alhusban, M. Integrating digital mapping technologies in urban development: Advancing sustainable and resilient infrastructure for SDG 9 achievement—A systematic review. Alex. Eng. J. 2025, 116, 512–524. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Z.; Li, Q.; He, H. A novel risk assessment method for advanced and environmentally friendly construction technologies integrating RBM and I-OPA. Alex. Eng. J. 2025, 113, 648–660. [Google Scholar] [CrossRef]
- Sagan, J.; Mach, A. Construction waste management: Impact on society and strategies for reduction. J. Clean. Prod. 2025, 486, 136369. [Google Scholar] [CrossRef]
- Pons-Valladares, O.; Casanovas-Rubio, M.d.M.; Armengou, J.; de la Fuente, A. Approach for sustainability assessment for footbridge construction technologies: Application to the first world D-shape 3D-Printed fiber-reinforced mortar footbridge in Madrid. J. Clean. Prod. 2023, 394, 136369. [Google Scholar] [CrossRef]
- Scown, M.W.; Dunn, F.E.; Dekker, S.C.; van Vuuren, D.P.; Karabil, S.; Sutanudjaja, E.H.; Santos, M.J.; Minderhoud, P.S.; Garmestani, A.S.; Middelkoop, H. Global change scenarios in coastal river deltas and their sustainable development implications. Glob. Environ. Change 2023, 82, 102736. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zhang, Q.B. A modular automated modelling framework for cut-and-cover excavations in mixed ground conditions. Tunn. Undergr. Space Technol. 2025, 158, 106384. [Google Scholar] [CrossRef]
- Abdelalim, A.M.; Salem, M.; Sabah, R.A.; Said, S.O.; ElShafei, H.M.; Badawy, M.G. Optimizing claim management process groups to enhance construction project success. Int. J. Constr. Manag. 2025, 25, 1583–1595. [Google Scholar] [CrossRef]
- Torres, A.; Simoni, M.U.; Keiding, J.K.; Müller, D.B.; zu Ermgassen, S.O.; Liu, J.; Jaeger, J.A.; Winter, M.; Lambin, E.F. Sustainability of the global sand system in the Anthropocene. One Earth 2021, 4, 639–650. [Google Scholar] [CrossRef]
- Adabre, M.A.; Chan, A.P.C.; Edwards, D.J.; Adinyira, E. Assessing critical risk factors (CRFs) to sustainable housing: The perspective of a sub-Saharan African country. J. Build. Eng. 2021, 41, 102385. [Google Scholar] [CrossRef]
- Ogbu, A.D.; Eyo-Udo, N.L.; Adeyinka, M.A.; Ozowe, W.; Ikevuje, A.H. A conceptual procurement model for sustainability and climate change mitigation in the oil, gas, and energy sectors. World J. Adv. Res. Rev. 2023, 20, 1935–1952. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Ma, N.; Li, Q. Risk Perception of the ‘Belt and Road’ Countries Based on Global Media Data GDELT. In Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 330–337. [Google Scholar] [CrossRef]
- Maqbool, R.; Bhuvaneswaran, M.; Rashid, Y.; Altuwaim, A.; Ashfaq, S. A Decision Approach for Analysing the Role of Modern Methods, Project Management and Integrated Approaches in Environmentally Sustainable Construction Projects. KSCE J. Civ. Eng. 2023, 27, 3175–3191. [Google Scholar] [CrossRef]
- Afework, A.; Tamene, A.; Gashaw, M. Magnitude of self-reported non-fatal work-related injuries and associated factors among construction workers in Aleta Wondo, Sidama, Ethiopia. Sci. Rep. 2025, 15, 4339. [Google Scholar] [CrossRef]
- Ochoa, W.A.A.; Neto, A.I.; Junior, P.C.V.; Calabokis, O.P.; Ballesteros-Ballesteros, V. The Theory of Complexity and Sustainable Urban Development: A Systematic Literature Review. Sustainability 2024, 17, 3. [Google Scholar] [CrossRef]
- Dedasht, G.; Zin, R.M.; Ferwati, M.S.; Abdullahi, M.M.; Keyvanfar, A.; McCaffer, R. DEMATEL-ANP risk assessment in oil and gas construction projects. Sustainability 2017, 9, 1420. [Google Scholar] [CrossRef]
- Mercogliano, M.; Spatari, G.; Noviello, C.; Di Serafino, F.; Mormile, M.E.; Granvillano, G.; Iagnemma, A.; Mimmo, R.; Schenone, I.; Raso, E.; et al. Building evidences in Public Health Emergency Preparedness (‘BePHEP’ Project)—A systematic review. Int. J. Equity Health 2025, 24, 41. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, L.; Vasileiadis, S.; Kourentis, L.; Bogogiannidou, Z.; Voulgaridi, I.; Nichols, G.; Kalala, F.; Speletas, M.; Hadjichristodoulou, C.; Mouchtouri, V.A. Scoping review of infectious disease prevention, mitigation and management in passenger ships and at ports: Mapping the literature to develop comprehensive and effective public health measures. Trop. Med. Health 2025, 53, 3. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Ramírez, M.; Niño-Barrero, Y.; DiBella, J. Lessons from the Implementation of the Sendai Framework for Disaster Risk Reduction from Latin America and the Caribbean. Int. J. Disaster Risk Sci. 2025, 16, 72–83. [Google Scholar] [CrossRef]
- Dugbartey, A.N. Systemic financial risks in an era of geopolitical tensions, climate change, and technological disruptions: Predictive analytics, stress testing and crisis response strategies. Int. J. Sci. Res. Arch. 2025, 14, 1428–1448. [Google Scholar] [CrossRef]
- Oso, O.B.; Alli, O.I.; Babarinde, A.O.; Ibeh, A.I. Advanced financial modeling in healthcare investments: A framework for optimizing sustainability and impact. Gulf J. Adv. Bus. Res. 2025, 3, 561–589. [Google Scholar] [CrossRef]
- Acs, S.; Leite, J.C.; Sanyé-Mengual, E.; Caivano, A.; Catarino, R.; Druon, J.-N.; Di Marcantonio, F.; De Jong, B.; Guerrero, I.; Gurría, P.; et al. Towards sustainable food systems: Developing a monitoring framework for the EU. Front. Sustain. Food Syst. 2024, 8, 1502081. [Google Scholar] [CrossRef]
- Fitriawijaya, A.; Taysheng, J. Empowering Digital Twin Through BIM—Blockchain for Carbon Disclosure of Certified Green Buildings. Comput. Des. Appl. 2024, 22, 180–202. [Google Scholar] [CrossRef]
- Amin, F.A.; Patriadi, A.; Sajiyo, S. Identification and Mitigation of Risk Factors in the Implementation of the Probolinggo-Banyuwangi Toll Road Project Package 2. J. World Sci. 2025, 4, 1844–1854. [Google Scholar] [CrossRef]
- Ding, G.K.C. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Faraji, F. Integrating Smart Polymers, Digital Twins, and AI for Corrosion Mitigation and Structural Health Monitoring in Large-Scale Infrastructure: A Case Study on the Golden Gate Bridge Ra. Available online: https://www.researchgate.net/publication/389317352 (accessed on 5 September 2025).
- Judijanto, L.; Hindarto, D.; Wahjono, S.I.; Djunarto, A. Edge of Enterprise Architecture in Addressing Cyber Security Threats and Business Risks. Int. J. Softw. Eng. Comput. Sci. 2023, 3, 386–396. [Google Scholar] [CrossRef]
- Calik, I.; Koc, K.; Şahin, O. Life Cycle Risk Management for Improving Labor Productivity in Construction Projects in Türkiye. Buildings 2025, 15, 484. [Google Scholar] [CrossRef]
- Singla, H.K.; Phadtare, M. Risk management practices in construction projects: A qualitative exploration of MSMEs in India. J. Adv. Manag. Res. 2025, ahead of print. [Google Scholar] [CrossRef]
- Fathalizadeh, A.; Hosseini, M.R.; Vaezzadeh, S.S.; Edwards, D.J.; Martek, I.; Shooshtarian, S. Barriers to sustainable construction project management: The case of Iran. Smart Sustain. Built Environ. 2022, 11, 717–739. [Google Scholar] [CrossRef]
- Isang, I.W.; Ebiloma, D.O.; Ukpong, E. Stakeholders’ engagement for advancing a sustainable Nigerian construction industry: A sustainable development goal-driven approach. Smart Sustain. Built Environ. 2025, ahead of print. [Google Scholar] [CrossRef]
- Willar, D.; Waney, E.V.Y.; Pangemanan, D.D.G.; Mait, R.E.G. Sustainable construction practices in the execution of infrastructure projects: The extent of implementation. Smart Sustain. Built Environ. 2021, 10, 106–124. [Google Scholar] [CrossRef]
- Deng, B.; Lv, X.; Du, Y.; Li, X.; Yin, Y. Critical risk factors for construction supply chain in China: A fuzzy synthetic evaluation analysis. Eng. Constr. Archit. Manag. 2023, 32, 483–506. [Google Scholar] [CrossRef]
- Javid, D. Sustainable Finance and RegTech: Building Resilience in Financial Security and Energy Policy. ResearchGate. 2025. Available online: https://www.researchgate.net/publication/388615846_Sustainable_Finance_and_RegTech_Building_Resilience_in_Financial_Security_and_Energy_Policy?channel=doi&linkId=679ee13c52b58d39f2639d47&showFulltext=true (accessed on 5 September 2025).
- Giri, O.P.; Sainju, P.R.; Htet, A. Evaluating occupational health and safety practices in an airport construction project in Nepal. Built Environ. Proj. Asset Manag. 2024, 15, 149–164. [Google Scholar] [CrossRef]
- Islam, H. Nexus of economic, social, and environmental factors on sustainable development goals: The moderating role of technological advancement and green innovation. Innov. Green Dev. 2025, 4, 100183. [Google Scholar] [CrossRef]
- Talebi, S.; Wu, S.; Elghaish, F.; McIlwaine, S. Guest editorial: Industry 4.0 and the future of infrastructure operation and maintenance. Int. J. Build. Pathol. Adapt. 2025, 43, 1–3. [Google Scholar] [CrossRef]
- Yu, R.; Mu, Q. Implementation progress of Nature-based Solutions in China: A global comparative review. Nat.-Based Solut. 2023, 4, 100075. [Google Scholar] [CrossRef]
- Baayenda, G.; Mberu, M.; Dodson, S.; Zongo, K.; Syonguvi, J.; Ngondi, J.; Zecarias, A. Eritrea’s blueprint for trachoma elimination: A home-grown model for sustainable impact. Int. J. Infect. Dis. 2025, 152, 107814. [Google Scholar] [CrossRef]
- Pandey, P.; Huidobro, G.; Lopes, L.F.; Ganteaume, A.; Ascoli, D.; Colaco, C.; Xanthopoulos, G.; Giannaros, T.M.; Gazzard, R.; Boustras, G.; et al. A global outlook on increasing wildfire risk: Current policy situation and future pathways. Trees For. People 2023, 14, 100431. [Google Scholar] [CrossRef]
- Nabawy, M.; Ofori, G.; Morcos, M.; Egbu, C. Risk identification framework in construction of Egyptian mega housing projects. Ain Shams Eng. J. 2021, 12, 2047–2056. [Google Scholar] [CrossRef]
- Deveci, M.; Varouchakis, E.A.; Brito-Parada, P.R.; Mishra, A.R.; Rani, P.; Bolgkoranou, M.; Galetakis, M. Evaluation of risks impeding sustainable mining using Fermatean fuzzy score function based SWARA method. Appl. Soft Comput. 2023, 139, 110220. [Google Scholar] [CrossRef]
- Caldeira, D.; Dores, H.; Franco, F.; Baptista, S.B.; Cabral, S.; Cachulo, M.D.C.; Peixeiro, A.; Rodrigues, R.; Santos, M.; Timóteo, A.T.; et al. Global warming and heat wave risks for cardiovascular diseases: A position paper from the Portuguese Society of Cardiology. Rev. Port. Cardiol. 2023, 42, 1017–1024. [Google Scholar] [CrossRef]
- Rafindadi, A.D.; Mikić, M.; Kovačić, I.; Cekić, Z. Global Perception of Sustainable Construction Project Risks. Procedia Soc. Behav. Sci. 2014, 119, 456–465. [Google Scholar] [CrossRef]
- Pihl, D. The Role of Objects in Decision-Making Processes the Case of an Energy Renovation. In Proceedings of the 9th Nordic Conference on Construction Economics and Organization, Göteborg, Sweden, 13–14 June 2017. [Google Scholar]
- Yuan, J.; Li, W.; Guo, J.; Zhao, X.; Skibniewski, M.J. Social risk factors of transportation PPP projects in China: A sustainable development perspective. Int. J. Environ. Res. Public Health 2018, 15, 1323. [Google Scholar] [CrossRef]
- Wibowo, M.A.; Handayani, N.U.; Mustikasari, A. Factors for implementing green supply chain management in the construction industry. J. Ind. Eng. Manag. 2018, 11, 651–679. [Google Scholar] [CrossRef]
- Ogunbiyi, O. Implementation of the Lean Approach in Sustainable Construction: A Conceptual Framework. Ph.D. Thesis, University of Central Lancashire, Preston, UK, 2014. [Google Scholar]
- Dharmaguptha, U.G. Weerasinghe. In Development of a Framework to Assess Sustainability of Building Projects; Library and Archives Canada = Bibliothèque et Archives Canada: Ottawa, ON, Canada, 2013. [Google Scholar]
- Jouan, P.; Hallot, P. Digital twin: Research framework to support preventive conservation policies. ISPRS Int. J. Geoinf. 2020, 9, 228. [Google Scholar] [CrossRef]
- Krzemień, A.; Sánchez, A.S.; Fernández, P.R.; Zimmermann, K.; Coto, F.G. Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. J. Clean. Prod. 2016, 139, 1044–1056. [Google Scholar] [CrossRef]
- Ahmed, A.; Othman, E. Managing Stakeholders’ Needs and Expectations in the Architectural Design Process: A Knowledge Management Approach. 2014. Available online: https://www.researchgate.net/publication/271906814 (accessed on 5 September 2025).
- Nath, N.D.; Chaspari, T.; Professor, A.; Behzadan, A.H. Automated ergonomic risk monitoring using body-mounted sensors and machine learning. Adv. Eng. Inform. 2018, 38, 514–526. [Google Scholar] [CrossRef]
- Jagannathan, R.; Patel, S.A.; Ali, M.K.; Narayan, K.M.V. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr. Diabetes Rep. 2019, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chan, A.P.C.; Xiong, W.; Skibniewski, M.J.; Li, Q. Perception of Residual Value Risk in Public Private Partnership Projects: Critical Review. J. Manag. Eng. 2015, 31, 04014041. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Hui, F.K.P.; Shirowzhan, S.; Foroozanfar, M.; Yang, L.; Aye, L. Lean practices using building information modeling (Bim) and digital twinning for sustainable construction. Sustainability 2021, 13, 161. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ali, Z.H.; Salih, S.Q.; Al-Ansari, N. Prediction of risk delay in construction projects using a hybrid artificial intelligence model. Sustainability 2020, 12, 1514. [Google Scholar] [CrossRef]
- Kara, M.E.; Fırat, S.Ü.O.; Ghadge, A. A data mining-based framework for supply chain risk management. Comput. Ind. Eng. 2020, 139, 105570. [Google Scholar] [CrossRef]
- Krystosik, A.; Njoroge, G.; Odhiambo, L.; Forsyth, J.E.; Mutuku, F.; LaBeaud, A.D. Solid Wastes Provide Breeding Sites, Burrows, and Food for Biological Disease Vectors, and Urban Zoonotic Reservoirs: A Call to Action for Solutions-Based Research. Front. Public Health 2020, 7, 405. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.W. From sustainability accounting to a green financing system: Institutional legitimacy and market heterogeneity in a global financial centre. J. Clean. Prod. 2018, 195, 585–592. [Google Scholar] [CrossRef]
- Gunduz, M.; Almuajebh, M. Critical success factors for sustainable construction project management. Sustainability 2020, 12, 1990. [Google Scholar] [CrossRef]
- Chatterjee, K.; Zavadskas, E.K.; Tamošaitiene, J.; Adhikary, K.; Kar, S. A hybrid MCDM technique for risk management in construction projects. Symmetry 2018, 10, 46. [Google Scholar] [CrossRef]
- Babatunde, S.O.; Perera, S.; Adeniyi, O. Identification of critical risk factors in public-private partnership project phases in developing countries: A case of Nigeria. Benchmarking 2018, 26, 355–2019. [Google Scholar] [CrossRef]
- Ika, L.A.; Donnelly, J. Success conditions for international development capacity building projects. Int. J. Proj. Manag. 2017, 35, 44–63. [Google Scholar] [CrossRef]
- Rosa, L.V.; França, J.E.M.; Haddad, A.N.; Carvalho, P.V.R. A resilience engineering approach for sustainable safety in green construction. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 5, 480–495. [Google Scholar] [CrossRef]
- Zou, P.X.W.; Alam, M.; Sanjayan, J.G.; Wilson, J.L. Managing Risks in Complex Building Retrofit Projects for Energy and Water Efficiency. 2016. Available online: https://www.researchgate.net/publication/308886672 (accessed on 5 September 2025).
- Elseknidy, M.; Al-Mhdawi, M.K.S.; Qazi, A.; Ojiako, U.; Mahammedi, C.; Pour Rahimian, F. Developing a sustainability-driven risk management framework for green building projects: A literature review. J. Clean. Prod. 2025, 519, 145891. [Google Scholar] [CrossRef]
- Sun, C.; Man, Q.; Wang, Y. Study on BIM-based construction project cost and schedule risk early warning. J. Intell. Fuzzy Syst. 2015, 29, 469–477. [Google Scholar] [CrossRef]
- Iqbal, S.; Choudhry, R.M.; Holschemacher, K.; Ali, A.; Tamošaitienė, J. Risk management in construction projects. Technol. Econ. Dev. Econ. 2015, 21, 65–78. [Google Scholar] [CrossRef]
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The world health organization STEPwise approach to noncommunicable disease risk-factor surveillance: Methods, challenges, and opportunities. Am. J. Public. Health 2016, 106, 74–78. [Google Scholar] [CrossRef]
- Valipour, A.; Yahaya, N.; Noor, N.M.; Antuchevičienė, J.; Tamošaitienė, J. Hybrid SWARA-COPRAS method for risk assessment in deep foundation excavation project: An Iranian case study. J. Civ. Eng. Manag. 2017, 23, 524–532. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.D. Transition towards green banking: Role of financial regulators and financial institutions. Asian J. Sustain. Soc. Responsib. 2020, 5, 5. [Google Scholar] [CrossRef]
- Levin, A.; Tonelli, M.; Bonventre, J.; Coresh, J.; Donner, J.-A.; Fogo, A.B.; Fox, C.S.; Gansevoort, R.T.; Heerspink, H.J.L.; Jardine, M. Global Kidney Health 2017 and beyond: A roadmap for closing gaps in care, research, and policy. Lancet 2017, 390, 1888–1917. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, N. Risk evaluation of a uhv power transmission construction project based on a cloud model and fce method for sustainability. Sustainability 2015, 7, 2885–2914. [Google Scholar] [CrossRef]
- Armenia, S.; Dangelico, R.M.; Nonino, F.; Pompei, A. Sustainable project management: A conceptualization-oriented review and a framework proposal for future studies. Sustainability 2019, 11, 2664. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew. Sustain. Energy Rev. 2014, 34, 409–429. [Google Scholar] [CrossRef]
- Chew, M.Y.L.; Conejos, S.; Asmone, A.S. Developing a research framework for the green maintainability of buildings. Facilities 2017, 35, 39–63. [Google Scholar] [CrossRef]
- Etinay, N.; Egbu, C.; Murray, V. Building Urban Resilience for Disaster Risk Management and Disaster Risk Reduction. In Procedia Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 212, pp. 575–582. [Google Scholar] [CrossRef]
- Ngacho, C.; Das, D. A performance evaluation framework of development projects: An empirical study of Constituency Development Fund (CDF) construction projects in Kenya. Int. J. Proj. Manag. 2014, 32, 492–507. [Google Scholar] [CrossRef]
- Rosa, L.V.; Haddad, A.N.; de Carvalho, P.V.R. Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM). Cogn. Technol. Work 2015, 17, 559–573. [Google Scholar] [CrossRef]
- Chan, A.P.C.; Nwaogu, J.M.; Naslund, J.A. Mental Ill-Health Risk Factors in the Construction Industry: Systematic Review. J. Constr. Eng. Manag. 2020, 146, 04020004. [Google Scholar] [CrossRef]
- Zolfani, S.H.; Pourhossein, M.; Yazdani, M.; Zavadskas, E.K. Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alex. Eng. J. 2018, 57, 357–365. [Google Scholar] [CrossRef]
- Guo, B.H.W.; Yiu, T.W. Developing Leading Indicators to Monitor the Safety Conditions of Construction Projects. J. Manag. Eng. 2016, 32, 04015016. [Google Scholar] [CrossRef]
- Sanchez, A.X.; Lehtiranta, L.; Hampson, K.D.; Kenley, R. Evaluation framework for green procurement in road construction. Smart Sustain. Built Environ. 2014, 3, 153–169. [Google Scholar] [CrossRef]
- Van Der Beek, A.J.; Dennerlein, J.; Huysmans, M.; Mathiassen, S.; Burdorf, A.; van Mechelen, W.; van Dieen, J.; Frings-Dresen, M.; Holtermann, A.; Janwantanakul, P.; et al. A research framework for the development and implementation of interventions preventing work-related musculoskeletal disorders. Scand. J. Work. Env. Health 2017, 43, 526–539. [Google Scholar] [CrossRef]
- Shrivastava, S.V.; Rathod, U. Categorization of risk factors for distributed agile projects. Inf. Softw. Technol. 2015, 58, 373–387. [Google Scholar] [CrossRef]
- Hogan, D.R.; Stevens, G.A.; Hosseinpoor, A.R.; Boerma, T. Monitoring universal health coverage within the Sustainable Development Goals: Development and baseline data for an index of essential health services. Lancet Glob. Health 2018, 6, e152–e168. [Google Scholar] [CrossRef] [PubMed]
- Dziadosz, A.; Rejment, M. Risk Analysis in Construction Project—Chosen Methods. In Procedia Engineering; Elsevier: Amsterdam, The Netherlands, 2015; pp. 258–265. [Google Scholar] [CrossRef]
- Ihuah, P.W.; Kakulu, I.I.; Eaton, D. A review of Critical Project Management Success Factors (CPMSF) for sustainable social housing in Nigeria. Int. J. Sustain. Built Environ. 2014, 3, 62–71. [Google Scholar] [CrossRef]
- Khanzadi, M.; Sheikhkhoshkar, M.; Banihashemi, S. BIM applications toward key performance indicators of construction projects in Iran. Int. J. Constr. Manag. 2020, 20, 305–320. [Google Scholar] [CrossRef]
- Marzouk, M.; Azab, S.; Metawie, M. BIM-based approach for optimizing life cycle costs of sustainable buildings. J. Clean. Prod. 2018, 188, 226–2018. [Google Scholar] [CrossRef]
- Ahern, J.; Cilliers, S.; Niemelä, J. The concept of ecosystem services in adaptive urban planning and design: A framework for supporting innovation. Landsc. Urban. Plan. 2014, 125, 254–259. [Google Scholar] [CrossRef]
- Shortall, R.; Davidsdottir, B.; Axelsson, G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renew. Sustain. Energy Rev. 2015, 44, 391–406. [Google Scholar] [CrossRef]
- Akadiri, P.O.; Chinyio, E.A.; Olomolaiye, P.O. Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings 2012, 2, 126–152. [Google Scholar] [CrossRef]
- Shurrab, J.; Hussain, M.; Khan, M. Green and sustainable practices in the construction industry: A confirmatory factor analysis approach. Eng. Constr. Archit. Manag. 2019, 26, 1063–1086. [Google Scholar] [CrossRef]
- Ngacho, C.; Das, D. A performance evaluation framework of construction projects: Insights from literature. Int. J. Proj. Organ. Manag. 2015, 7, 151. [Google Scholar] [CrossRef]
- Memon, A.H.; Rahman, I.A.; Zainun, N.Y.; Karim, A.T.A. Web-based Risk Assessment Technique for Time and Cost Overrun (WRATTCO)—A Framework. Procedia Soc. Behav. Sci. 2014, 129, 178–185. [Google Scholar] [CrossRef]
- Zimmermann, M.; Keiler, M. International Frameworks for Disaster Risk Reduction: Useful Guidance for Sustainable Mountain Development. Mt. Res. Dev. 2015, 35, 195–202. [Google Scholar] [CrossRef]
- Guray, T.S.; Kismet, B. VR and AR in construction management research: Bibliometric and descriptive analyses. Smart Sustain. Built Environ. 2022, 12, 635–659. [Google Scholar] [CrossRef]
- Bibri, S.E. A methodological framework for futures studies: Integrating normative backcasting approaches and descriptive case study design for strategic data-driven smart sustainable city planning. Energy Inform. 2020, 3, 31. [Google Scholar] [CrossRef]
- Gan, X.; Zuo, J.; Ye, K.; Skitmore, M.; Xiong, B. Why sustainable construction? Why not? An owner’s perspective. Habitat Int. 2015, 47, 61–68. [Google Scholar] [CrossRef]
- Malaysia, U.K.; Ogunde, A.O.; Olaolu, O.; Afolabi, A.; Owolabi, J.; Ojelabi, R. Challenges Confronting Construction Project Management System for Sustainable Construction in Developing Countries: Professionals Perspectives (a Case Study of Nigeria). 2017. Available online: http://spaj.ukm.my/jsb/index.php/jbp/index (accessed on 5 September 2025).
- Nduka, D.O.; Ogunsanmi, O.E. Stakeholders Perception of Factors Determining the Adoptability of Green Building Practices in Construction Projects in Nigeria. 2015. Available online: https://www.iiste.org/Journals/index.php/JEES/article/view/19479 (accessed on 5 September 2025).
- Xu, Y.; Chan, A.P.C.; Xia, B.; Qian, Q.K.; Liu, Y.; Peng, Y. Critical risk factors affecting the implementation of PPP waste-to-energy projects in China. Appl. Energy 2015, 158, 403–411. [Google Scholar] [CrossRef]
- Ameyaw, E.E.; Chan, A.P.C. Risk ranking and analysis in PPP water supply infrastructure projects. Facilities 2015, 33, 428–453. [Google Scholar] [CrossRef]
- Bröchner, J.; Haugen, T.; Lindkvist, C. Shaping tomorrow’s facilities management. Facilities 2019, 37, 366–380. [Google Scholar] [CrossRef]
- Hwang, B.G.; Zhao, X.; Tan, L.L.G. Green building projects: Schedule performance, influential factors and solutions. Eng. Constr. Archit. Manag. 2015, 22, 327–346. [Google Scholar] [CrossRef]
- Ouache, R.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. An integrated fire risk management framework for smart-green multi-unit residential buildings: Assessment of combustibility, extinguishing strategies, and impact prediction. J. Build. Eng. 2025, 109, 112975. [Google Scholar] [CrossRef]
- Luo, L.Z.; Mao, C.; Shen, L.Y.; Li, Z.D. Risk factors affecting practitioners’ attitudes toward the implementation of an industrialized building system a case study from China. Eng. Constr. Archit. Manag. 2015, 22, 622–643. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O.; Gifford, L.; Kavvada, A.; Jarvis, I. No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework. Remote Sens. Environ. 2019, 235, 111470. [Google Scholar] [CrossRef]
- Zgheib, R.; Conchon, E.; Bastide, R. Engineering IoT healthcare applications: Towards a semantic data driven sustainable architecture. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Berlin/Heidelberg, Germany, 2017; pp. 407–418. [Google Scholar] [CrossRef]
- Shan, M.; Hwang, B.G.; Zhu, L. A global review of sustainable construction project financing: Policies, practices, and research efforts. Sustainability 2017, 9, 2347. [Google Scholar] [CrossRef]
- Job, H.; Becken, S.; Lane, B. Protected Areas in a neoliberal world and the role of tourism in supporting conservation and sustainable development: An assessment of strategic planning, zoning, impact monitoring, and tourism management at natural World Heritage Sites. J. Sustain. Tour. 2017, 25, 1697–1718. [Google Scholar] [CrossRef]
Research Focus | Methodology | Study Location | No. of GB Risks Identified | Reference |
---|---|---|---|---|
Risk identification and evaluation for green residential construction projects | Literature review and survey | Singapore | 42 | [19] |
Risk assessment and identification in commercial green building projects | Literature review, interviews, and survey | Singapore | 29 | [19] |
Risk identification and provision of mitigation measures for green retrofit projects | Survey and interview | Singapore | 20 | [20] |
Creation of a Model for Risk Assessment in Green Building Initiatives | Survey | Singapore | 28 | [21] |
Risk assessment in green building initiatives from a sustainability perspective | Literature review and survey | China | 19 | [22] |
Identification and assessment of risks in environmentally friendly construction projects | Literature review and survey | United Arab Emirates | 30 | [23] |
Conducting risk assessment for green retrofit projects and developing a system to address potential hazards | Survey | Sri Lanka | 10 | [24] |
Determining the financial incentives and risk factors associated with green building construction | Survey | Malaysia | 10 | [25] |
Risk assessment in the supply chain for green buildings and creation of management plans | Survey | Australia | 40 | [10] |
Analysing the interconnections between risks in green construction projects, considering the various stages of the project, and the different risk factors involved | Literature Review and Survey | - | 22 | [26] |
They are identifying construction dangers and their impact on costs in LEED-certified projects. | Survey | - | 13 | [27] |
Recognising material-related hazards in environmentally friendly structures | Literature review and survey | - | 25 | [28] |
Analysing stakeholder-related risks through the development of a Social Network Analysis (SNA) model | Case study | - | 42 | [29] |
Scale | Cronbach’s Alpha | No. of Items |
---|---|---|
A ranking of 42 risk factors’ importance | 0.921 | 42 |
Percentage of Participants’ Respondents | RSI | Mean | SD | Rank | |||
---|---|---|---|---|---|---|---|
Factors | Minimal Significance (%) (Extremely Low + Low) | Moderately Important (%) (Medium) | Elevated Significance (%) (High + Extremely High) | ||||
F-08 | 5.45 | 34.55 | 60.00 | 0.85 | 3.75 | 0.84 | 1 |
F-05 | 14.55 | 21.82 | 63.64 | 0.84 | 3.69 | 1.07 | 2 |
F-02 | 10.91 | 27.27 | 61.82 | 0.84 | 3.67 | 0.88 | 3 |
F-07 | 14.55 | 30.91 | 54.55 | 0.83 | 3.64 | 1.01 | 4 |
F-09 | 9.09 | 29.09 | 61.82 | 0.81 | 3.64 | 0.8 | 5 |
F-03 | 14.55 | 29.09 | 56.36 | 0.80 | 3.56 | 1.03 | 6 |
F-06 | 10.91 | 43.64 | 45.45 | 0.79 | 3.53 | 1.09 | 7 |
F-04 | 9.09 | 45.45 | 45.45 | 0.78 | 3.49 | 0.84 | 8 |
F-01 | 12.73 | 41.82 | 45.45 | 0.78 | 3.45 | 0.94 | 9 |
F-10 | 20.00 | 30.91 | 49.09 | 0.77 | 3.4 | 1.05 | 10 |
F-23 | 21.82 | 25.45 | 52.73 | 0.77 | 3.38 | 0.97 | 11 |
F-29 | 23.64 | 21.82 | 54.55 | 0.76 | 3.36 | 1.08 | 12 |
F-22 | 21.82 | 30.91 | 47.27 | 0.75 | 3.35 | 1.04 | 13 |
F-12 | 21.82 | 36.36 | 41.82 | 0.73 | 3.27 | 1.06 | 14 |
F-33 | 27.27 | 27.27 | 45.45 | 0.73 | 3.27 | 1.22 | 15 |
F-16 | 29.09 | 29.09 | 41.82 | 0.73 | 3.25 | 1.17 | 16 |
F-24 | 29.09 | 23.64 | 47.27 | 0.72 | 3.22 | 1.08 | 17 |
F-11 | 27.27 | 38.18 | 34.55 | 0.72 | 3.2 | 1.04 | 18 |
F-18 | 25.45 | 32.73 | 41.82 | 0.71 | 3.2 | 1.15 | 19 |
F-27 | 29.09 | 29.09 | 41.82 | 0.71 | 3.2 | 1.06 | 20 |
F-30 | 29.09 | 30.91 | 40.00 | 0.70 | 3.2 | 1.03 | 21 |
F-32 | 29.09 | 30.91 | 40.00 | 0.70 | 3.18 | 1 | 22 |
F-37 | 23.64 | 38.18 | 38.18 | 0.70 | 3.18 | 1.02 | 23 |
F-17 | 27.27 | 36.36 | 36.36 | 0.70 | 3.16 | 1.09 | 24 |
F-31 | 23.64 | 41.82 | 34.55 | 0.70 | 3.15 | 0.89 | 25 |
F-13 | 29.09 | 36.36 | 34.55 | 0.69 | 3.09 | 1.09 | 26 |
F-34 | 30.91 | 34.55 | 34.55 | 0.68 | 3.07 | 1.00 | 27 |
F-35 | 29.09 | 30.91 | 40.00 | 0.68 | 3.07 | 0.96 | 28 |
F-19 | 34.55 | 29.09 | 36.36 | 0.68 | 3.05 | 1.13 | 29 |
F-26 | 38.18 | 21.82 | 40.00 | 0.68 | 3.04 | 1.14 | 30 |
F-14 | 25.45 | 43.64 | 30.91 | 0.67 | 3.02 | 1.06 | 31 |
F-15 | 30.91 | 32.73 | 36.36 | 0.67 | 3.02 | 1.11 | 32 |
F-38 | 41.82 | 14.55 | 43.64 | 0.67 | 3.02 | 1.33 | 33 |
F-39 | 30.91 | 38.18 | 30.91 | 0.67 | 3.02 | 1.16 | 34 |
F-25 | 29.09 | 43.64 | 27.27 | 0.67 | 3.00 | 0.86 | 35 |
F-28 | 34.55 | 29.09 | 36.36 | 0.66 | 3.00 | 1.16 | 36 |
F-36 | 32.73 | 38.18 | 29.09 | 0.65 | 2.93 | 0.86 | 37 |
F-21 | 34.55 | 38.18 | 27.27 | 0.64 | 2.91 | 1.01 | 38 |
F-40 | 40.00 | 30.91 | 29.09 | 0.63 | 2.82 | 1.06 | 39 |
F-20 | 41.82 | 30.91 | 27.27 | 0.62 | 2.80 | 1.13 | 40 |
F-41 | 49.09 | 27.27 | 23.64 | 0.61 | 2.65 | 1.25 | 41 |
F-42 | 47.27 | 23.64 | 29.09 | 0.58 | 2.65 | 1.17 | 42 |
Factors | t | Mean Difference | 95% The Difference’s Confidence Interval | Significance (2-Tailed) | |
---|---|---|---|---|---|
Lower | Higher | ||||
F-01 | 3.589 | 0.45 | 0.20 | 0.71 | 0.001 |
F-02 | 5.650 | 0.67 | 0.43 | 0.91 | 0.000 |
F-03 | 4.050 | 0.56 | 0.28 | 0.84 | 0.000 |
F-04 | 4.355 | 0.49 | 0.26 | 0.72 | 0.000 |
F-05 | 4.792 | 0.69 | 0.40 | 0.98 | 0.000 |
F-06 | 3.600 | 0.53 | 0.23 | 0.82 | 0.001 |
F-07 | 4.688 | 0.64 | 0.36 | 0.91 | 0.000 |
F-08 | 6.553 | 0.75 | 0.52 | 0.97 | 0.000 |
F-09 | 5.885 | 0.64 | 0.42 | 0.85 | 0.000 |
F-10 | 2.833 | 0.40 | 0.12 | 0.68 | 0.006 |
F-11 | 1.421 | 0.20 | −0.08 | 0.48 | 0.161 |
F-12 | 1.904 | 0.27 | −0.01 | 0.56 | 0.062 |
F-13 | 0.617 | 0.09 | −0.20 | 0.39 | 0.540 |
F-14 | 0.127 | 0.02 | −0.27 | 0.31 | 0.900 |
F-15 | 0.121 | 0.02 | −0.28 | 0.32 | 0.904 |
F-16 | 1.608 | 0.26 | −0.06 | 0.57 | 0.114 |
F-17 | 1.119 | 0.16 | −0.13 | 0.46 | 0.268 |
F-18 | 1.295 | 0.20 | −0.11 | 0.51 | 0.201 |
F-19 | 0.358 | 0.06 | −0.25 | 0.36 | 0.722 |
F-20 | −1.314 | −0.20 | −0.51 | 0.11 | 0.194 |
F-21 | −0.671 | −0.09 | −0.36 | 0.18 | 0.505 |
F-22 | 2.463 | 0.35 | 0.06 | 0.63 | 0.017 |
F-23 | 2.914 | 0.38 | 0.12 | 0.64 | 0.005 |
F-24 | 1.494 | 0.22 | −0.07 | 0.51 | 0.141 |
F-25 | 0.000 | 0.00 | −0.23 | 0.23 | 1.000 |
F-26 | 0.237 | 0.04 | −0.27 | 0.34 | 0.814 |
F-27 | 1.398 | 0.20 | −0.09 | 0.49 | 0.168 |
F-28 | 0.000 | 0.00 | −0.31 | 0.31 | 1.000 |
F-29 | 2.502 | 0.36 | 0.07 | 0.66 | 0.015 |
F-30 | 1.446 | 0.20 | −0.08 | 0.48 | 0.154 |
F-31 | 1.211 | 0.15 | −0.10 | 0.39 | 0.231 |
F-32 | 1.346 | 0.18 | −0.09 | 0.45 | 0.184 |
F-33 | 1.652 | 0.27 | −0.06 | 0.60 | 0.104 |
F-34 | 0.541 | 0.07 | −0.20 | 0.34 | 0.591 |
F-35 | 0.562 | 0.07 | −0.19 | 0.33 | 0.576 |
F-36 | −0.629 | −0.07 | −0.30 | 0.16 | 0.532 |
F-37 | 1.322 | 0.18 | −0.09 | 0.46 | 0.192 |
F-38 | 0.102 | 0.02 | −0.34 | 0.38 | 0.919 |
F-39 | 0.116 | 0.02 | −0.30 | 0.33 | 0.908 |
F-40 | −1.277 | −0.18 | −0.47 | 0.10 | 0.207 |
F-41 | −2.049 | −0.35 | −0.68 | −0.01 | 0.045 |
F-42 | −2.182 | −0.35 | −0.66 | −0.03 | 0.033 |
Independent Variable | Dependent Variable | Mean Rank | Hypothesis Test Statistic | p-Value (2-Sided) | Correlation Coefficient | p-Value (2-Sided) |
---|---|---|---|---|---|---|
F-01 | Academic | 15.98 | 98.50 | 0.201 | 0.223 | 0.206 |
Project manager | 20.29 | |||||
F-02 | Academic | 16.41 | 108.00 | 0.353 | 0.162 | 0.36 |
Project manager | 19.50 | |||||
F-03 | Academic | 20.32 | 70.00 | 0.018 | −0.412 * | 0.015 |
Project manager | 12.33 | |||||
F-04 | Academic | 18.57 | 108.50 | 0.374 | −0.155 | 0.383 |
Project manager | 15.54 | |||||
F-05 | Academic | 18.48 | 110.50 | 0.407 | −0.144 | 0.416 |
Project manager | 15.71 | |||||
F-06 | Academic | 18.93 | 100.50 | 0.224 | −0.211 | 0.23 |
Project manager | 14.88 | |||||
F-07 | Academic | 19.86 | 80.00 | 0.052 | −0.339 * | 0.05 |
Project manager | 13.17 | |||||
F-08 | Academic | 20.61 | 63.50 | 0.009 | −0.455 ** | 0.007 |
Project manager | 11.79 | |||||
F-09 | Academic | 19.09 | 97.00 | 0.162 | −0.243 | 0.165 |
Project manager | 14.58 | |||||
F-10 | Academic | 18.27 | 115.00 | 0.523 | −0.111 | 0.532 |
Project manager | 16.08 | |||||
F-11 | Academic | 17.23 | 126.00 | 0.823 | 0.039 | 0.827 |
Project manager | 18.00 | |||||
F-12 | Academic | 17.45 | 131.00 | 0.97 | 0.007 | 0.971 |
Project manager | 17.58 | |||||
F-13 | Academic | 17.25 | 126.50 | 0.838 | 0.036 | 0.842 |
Project manager | 17.96 | |||||
F-14 | Academic | 19.07 | 97.50 | 0.196 | −0.225 | 0.201 |
Project manager | 14.63 | |||||
F-15 | Academic | 17.32 | 128.00 | 0.88 | 0.026 | 0.883 |
Project manager | 17.83 | |||||
F-16 | Academic | 20.16 | 73.50 | 0.031 | −0.376 * | 0.028 |
Project manager | 12.63 | |||||
F-17 | Academic | 17.95 | 122.00 | 0.709 | −0.065 | 0.715 |
Project manager | 16.67 | |||||
F-18 | Academic | 18.20 | 116.50 | 0.563 | −0.101 | 0.572 |
Project manager | 16.21 | |||||
F-19 | Academic | 19.43 | 89.50 | 0.113 | −0.276 | 0.115 |
Project manager | 13.96 | |||||
F-20 | Academic | 20.45 | 67.00 | 0.015 | −0.425 * | 0.012 |
Project manager | 12.08 | |||||
F-21 | Academic | 19.30 | 92.50 | 0.138 | −0.258 | 0.141 |
Project manager | 14.21 | |||||
F-22 | Academic | 18.32 | 114.00 | 0.499 | −0.118 | 0.507 |
Project manager | 16.00 | |||||
F-23 | Academic | 17.18 | 125.00 | 0.79 | 0.046 | 0.794 |
Project manager | 18.08 | |||||
F-24 | Academic | 17.66 | 128.50 | 0.897 | −0.023 | 0.899 |
Project manager | 17.21 | |||||
F-25 | Academic | 18.55 | 109.00 | 0.381 | −0.153 | 0.389 |
Project manager | 15.58 | |||||
F-26 | Academic | 19.14 | 96.00 | 0.179 | −0.234 | 0.183 |
Project manager | 14.50 | |||||
F-27 | Academician | 19.32 | 92.00 | 0.134 | −0.261 | 0.136 |
Project manager | 14.17 | |||||
F-28 | Academician | 17.68 | 128.00 | 0.882 | −0.026 | 0.884 |
Project manager | 17.17 | |||||
F-29 | Academician | 19.89 | 79.50 | 0.046 | −0.348 * | 0.044 |
Project manager | 13.13 | |||||
F-30 | Academician | 20.64 | 63.00 | 0.009 | −0.452 ** | 0.007 |
Project manager | 11.75 | |||||
F-31 | Academician | 17.64 | 129.00 | 0.909 | −0.02 | 0.911 |
Project manager | 17.25 | |||||
F-32 | Academician | 20.80 | 59.50 | 0.007 | −0.474 ** | 0.005 |
Project manager | 11.46 | |||||
F-33 | Academician | 17.09 | 123.00 | 0.738 | 0.058 | 0.744 |
Project manager | 18.25 | |||||
F-34 | Academician | 18.16 | 117.50 | 0.584 | −0.095 | 0.592 |
Project manager | 16.29 | |||||
F-35 | Academician | 17.34 | 128.50 | 0.895 | 0.023 | 0.897 |
Project manager | 17.79 | |||||
F-36 | Academician | 19.09 | 97.00 | 0.18 | −0.234 | 0.184 |
Project manager | 14.58 | |||||
F-37 | Academician | 19.52 | 87.50 | 0.09 | −0.295 | 0.091 |
Project manager | 13.79 | |||||
F-38 | Academician | 19.48 | 88.50 | 0.108 | −0.28 | 0.109 |
Project manager | 13.88 | |||||
F-39 | Academician | 19.70 | 83.50 | 0.071 | −0.314 | 0.071 |
Project manager | 13.46 | |||||
F-40 | Academician | 18.50 | 110.00 | 0.414 | −0.142 | 0.422 |
Project manager | 15.67 | |||||
F-41 | Academician | 19.41 | 90.00 | 0.119 | −0.272 | 0.12 |
Project manager | 14.00 | |||||
F-42 | Academician | 17.00 | 121.00 | 0.683 | 0.071 | 0.689 |
Project manager | 18.42 |
No. | Mitigation Measures | Frequency | Percentage |
---|---|---|---|
1 | Collaborating with a skilled group of experts who meet certification requirements | 5 | 7.9% |
2 | Offering project practitioners and stakeholders ongoing education, training, and knowledge-sharing programmes | 4 | 6.3% |
3 | Choosing naive and untrustworthy designs and construction technical solutions should be avoided in favour of careful project planning and design. | 4 | 6.3% |
4 | Increasing project stakeholders’ and end users’ involvement in green building construction projects | 4 | 6.3% |
5 | Choose sustainable, long-lasting, and environmentally friendly building materials. | 3 | 4.8% |
6 | Analyse the project’s distinctive features, including its location, design, materials, and technologies, as part of a thorough risk assessment to find possible hazards and their possible effects. | 3 | 4.8% |
7 | Improved oversight and management | 2 | 3.2% |
8 | Strong Supply Chain Administration | 2 | 3.2% |
9 | Making certain that the necessary permissions, approvals, and regulatory compliance are carefully examined and accepted | 2 | 3.2% |
10 | Establish Clear Communication and Enhance Communication by fostering a collaborative workplace with a well-defined goal. | 2 | 3.2% |
11 | Collaborating with seasoned and reliable individuals, including contractors who have won contracts in the past and have a history of successfully finishing projects | 2 | 3.2% |
12 | The government ought to offer financial incentives for the construction of green buildings. | 2 | 3.2% |
13 | Raising awareness of the GBCP culture through formal education and professional associations | 2 | 3.2% |
14 | Making use of prefabrication methods for materials in a controlled setting | 1 | 1.6% |
15 | Putting into practice a responsible waste management plan and policy | 1 | 1.6% |
16 | Integrated Design Process (IDP) and Integrated Project Delivery (IPD) methodologies | 1 | 1.6% |
17 | Enhancing productivity, driving demand, and ensuring customer security | 1 | 1.6% |
18 | Enforce stringent quality control procedures | 1 | 1.6% |
19 | Adopt agile project management practices | 1 | 1.6% |
20 | Optimise the allocation of tasks and responsibilities | 1 | 1.6% |
21 | Conduct thorough technology assessments | 1 | 1.6% |
22 | Implement approaches that balance social, economic, and environmental factors throughout the entire project lifecycle | 1 | 1.6% |
23 | Recognise the differences in risks between traditional construction projects and those associated with green building development | 1 | 1.6% |
24 | Perform Life Cycle Cost Analysis | 1 | 1.6% |
25 | Conduct safety constructability studies at each phase of the design process to mitigate safety risks | 1 | 1.6% |
26 | Offer a payment guarantee for the developer’s project | 1 | 1.6% |
27 | Putting in place a system that charges for testing green materials | 1 | 1.6% |
28 | Improving the construction industry’s digital transformation | 1 | 1.6% |
29 | Sharing, registering, and publicising lessons learned from ongoing initiatives to ensure knowledge management for upcoming ones | 1 | 1.6% |
30 | knowing the company from the viewpoint of the customer. | 1 | 1.6% |
31 | The use of BIM | 1 | 1.6% |
32 | Compile a list of the consequences of identified hazards discussed during field surveys and Focus Group Discussions (FGDs) to obtain more reliable data | 1 | 1.6% |
33 | Localising the standards for green buildings | 1 | 1.6% |
34 | Better development of capacity | 1 | 1.6% |
35 | Including green building practices in routine construction procedures and finished goods | 1 | 1.6% |
36 | An organised strategy for handling conflicting green building certification programmes | 1 | 1.6% |
37 | Identify the project’s highest-risk areas through vulnerability assessments and implement targeted improvements to mitigate potential negative impacts | 1 | 1.6% |
38 | Involve specialists or experts with specific expertise in green building | 1 | 1.6% |
39 | Establish measurable objectives or outcomes for the construction of the project | 1 | 1.6% |
40 | Efficiently communicating the economic benefits of sustainability in green building initiatives | 1 | 1.6% |
41 | Increase the amount of required supervision | 1 | 1.6% |
42 | Make sure that there is adequate fund turnover and sensible fund allocation. | 1 | 1.6% |
43 | Including clear and binding contractual provisions | 1 | 1.6% |
44 | Developing strategies or actions that are specifically tailored to address the hazards | 1 | 1.6% |
45 | Making use of financial resources and regulatory frameworks to advance sustainable behaviours | 1 | 1.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohandes, S.R.; Taiwo, R.; Yussif, A.-M.; Han, T.; Elghaish, F.; Arashpour, M.; Singh, A.K.; Christo, M.S. Risk Assessment and Mitigation Strategies in Green Building Construction Projects: A Global Empirical Study. Buildings 2025, 15, 3485. https://doi.org/10.3390/buildings15193485
Mohandes SR, Taiwo R, Yussif A-M, Han T, Elghaish F, Arashpour M, Singh AK, Christo MS. Risk Assessment and Mitigation Strategies in Green Building Construction Projects: A Global Empirical Study. Buildings. 2025; 15(19):3485. https://doi.org/10.3390/buildings15193485
Chicago/Turabian StyleMohandes, Saeed Reza, Ridwan Taiwo, Abdul-Mugis Yussif, Tong Han, Faris Elghaish, Mehrdad Arashpour, Atul Kumar Singh, and Mary Subaja Christo. 2025. "Risk Assessment and Mitigation Strategies in Green Building Construction Projects: A Global Empirical Study" Buildings 15, no. 19: 3485. https://doi.org/10.3390/buildings15193485
APA StyleMohandes, S. R., Taiwo, R., Yussif, A.-M., Han, T., Elghaish, F., Arashpour, M., Singh, A. K., & Christo, M. S. (2025). Risk Assessment and Mitigation Strategies in Green Building Construction Projects: A Global Empirical Study. Buildings, 15(19), 3485. https://doi.org/10.3390/buildings15193485