Quantitative Assessment of Air Pollutants and Construction Accidents: Developing Risk-Based Concentration Groups
Abstract
1. Introduction
2. Literature Review
2.1. Health Impacts of Air Pollution on the General Population
2.2. Air Pollution Exposure and Health Risks Among Industrial and Construction Workers
2.3. Construction Accidents and Environmental Influences
2.4. Research Gap and Contribution
3. Materials and Methods
3.1. Collection of Data
3.2. Classification of Data
3.3. Probabilistic Analysis of Air Pollutant Concentration and Accident
3.4. Clustering of Air Pollutant Concentration Group
- Hierarchical clustering was used to determine the optimal number of accident-risk groups. The elbow method was applied to the sum of squared errors (SSE) curve, identifying the point where additional clusters provided diminishing improvements in model fit.
- K-means clustering was subsequently performed using this optimal cluster number. This step grouped bins with similar relative probability values into new concentration groups that represent distinct accident-risk levels.
3.4.1. Hierarchical Clustering
3.4.2. K-Means Clustering
3.4.3. Statistical Verification
4. Results
4.1. Frequency Analysis Between Accidents and Air Pollution Concentration
4.2. Relative Probability Between Accidents and Air Pollution Concentration
4.3. New Concentration Groups Based on Relative Probability
4.4. Statistical Verification of New Concentration Group
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheriyan, D.; Hyun, K.Y.; Jaegoo, H.; Choi, J.-h. Assessing the Distributional Characteristics of PM10, PM2.5, and PM1 Exposure Profile Produced and Propagated from a Construction Activity. J. Clean. Prod. 2020, 276, 124335. [Google Scholar] [CrossRef]
- Chen, T.; Cao, Z. Construction Safety: An Analysis of the Cross-Influence of Economic, Construction, and Accident Death Factors. Environ. Sci. Pollut. Res. 2021, 28, 65243–65254. [Google Scholar] [CrossRef]
- Kumi, L.; Jeong, J.; Jeong, J. Assessing Dust Emissions, Health Impacts, and Accident Risks in Prefabricated and Conventional Construction: A Comprehensive Comparative Study. Buildings 2023, 13, 2305. [Google Scholar] [CrossRef]
- Kumi, L.; Jeong, J.; Jeong, J.; Lee, J. Empirical Analysis of Dust Health Impacts on Construction Workers Considering Work Types. Buildings 2022, 12, 1137. [Google Scholar] [CrossRef]
- Onubi, H.O.; Yusof, N.; Hassan, A.S.; Bahdad, A.A.S. Analyzing the Mediating Effect of Economic Performance on the Relationship between Green Construction Practices and Health and Safety Performance in Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 36598–36610. [Google Scholar] [CrossRef]
- Xiao, D.; Li, B.; Cheng, S. The Effect of Subway Development on Air Pollution: Evidence from China. J. Clean. Prod. 2020, 275, 124149. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, Q.; Feng, K.; Zhang, L. The Characteristics of PM Emissions from Construction Sites during the Earthwork and Foundation Stages: An Empirical Study Evidence. Environ. Sci. Pollut. Res. 2023, 30, 62716–62732. [Google Scholar] [CrossRef]
- Lu, F.; Xu, D.; Cheng, Y.; Dong, S.; Guo, C.; Jiang, X.; Zheng, X. Systematic Review and Meta-Analysis of the Adverse Health Effects of Ambient PM2.5 and PM10 Pollution in the Chinese Population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, B.; Guo, X.; Chen, R.; Kan, H. Investigating the Geographical Heterogeneity in PM10-Mortality Associations in the China Air Pollution and Health Effects Study (CAPES): A Potential Role of Indoor Exposure to PM10 of Outdoor Origin. Atmos. Environ. 2013, 75, 217–223. [Google Scholar] [CrossRef]
- World Health Organization (WHO) WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 20 May 2025).
- Jung, S.; Kang, H.; Sung, S.; Hong, T. Health Risk Assessment for Occupants as a Decision-Making Tool to Quantify the Environmental Effects of Particulate Matter in Construction Projects. Build. Environ. 2019, 161, 106267. [Google Scholar] [CrossRef]
- Karimi, A.; Shirmardi, M.; Hadei, M.; Birgani, Y.T.; Neisi, A.; Takdastan, A.; Goudarzi, G. Concentrations and Health Effects of Short- and Long-Term Exposure to PM2.5, NO2, and O3 in Ambient Air of Ahvaz City, Iran (2014–2017). Ecotoxicol. Environ. Saf. 2019, 180, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Jeong, J.; Lee, M.; Jeong, J.; Lee, J. Establishment of Outdoor Thermal Comfort Index Groups for Quantifying Climate Impact on Construction Accidents. Sustain. Cities Soc. 2023, 91, 104431. [Google Scholar] [CrossRef]
- Weinmayr, G.; Romeo, E.; De Sario, M.; Weiland, S.K.; Forastiere, F. Short-Term Effects of PM10 and NO2 on Respiratory Health among Children with Asthma or Asthma-like Symptoms: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2010, 118, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Kilbo Edlund, K.; Kisiel, M.A.; Asker, C.; Segersson, D.; Bennet, C.; Spanne, M.; Gustafsson, S.; Lindvall, J.; Eneroth, K.; Tondel, M.; et al. High-Resolution Dispersion Modelling of PM2.5, PM10, NOx and NO2 Exposure in Metropolitan Areas in Sweden 2000–2018–Large Health Gains Due to Decreased Population Exposure. Air Qual. Atmos. Health 2024, 17, 1661–1675. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, W.; Li, Z.; Si, Y.; Wang, J.; Chen, L.; Wei, C.; Lin, H.; Deng, F.; Guo, X.; et al. Short-Term Exposure to Ambient Air Pollution and Risk of Daily Hospital Admissions for Anxiety in China: A Multicity Study. J. Hazard. Mater. 2022, 424, 127535. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Ahn, J.W.; Kim, K.H.; Son, Y.S. Historic and Futuristic Review of Electron Beam Technology for the Treatment of SO2 and NOx in Flue Gas. Chem. Eng. J. 2019, 355, 351–366. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Hopke, P.K.; Ferrante, M.; De Marco, A.; Sicard, P.; Oliveri Conti, G.; Goudarzi, G.; Basiri, H.; Mohammadi, M.J.; et al. Acute Myocardial Infarction and COPD Attributed to Ambient SO2 in Iran. Environ. Res. 2017, 156, 683–687. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- HSE Work-Related Fatal Injuries in Great Britain. Available online: https://www.hse.gov.uk/statistics/fatals-overview.htm (accessed on 2 September 2025).
- Lavy, V.; Rachkovski, G.; Yoresh, O. Heads Up: Does Air Pollution Cause Workplace Accidents; NBER: Cambridge, MA, USA, 2022. [Google Scholar]
- Cabral, M.; Dillender, M. Air Pollution, Wildfire Smoke, and Worker Health; NBER: Cambridge, MA, USA, 2024. [Google Scholar]
- Xu, R.; Kim, B.W.; Moe, S.J.S.; Khan, A.N.; Kim, K.; Kim, D.H. Predictive Worker Safety Assessment through On-Site Correspondence Using Multi-Layer Fuzzy Logic in Outdoor Construction Environments. Heliyon 2023, 9, e19408. [Google Scholar] [CrossRef]
- Lee, M.; Jeong, J.; Jeong, J.; Lee, J. Exploring Fatalities and Injuries in Construction by Considering Thermal Comfort Using Uncertainty and Relative Importance Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5573. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Jeong, J.; Kim, D. Evaluation of the Effect of Particulate Matter on Construction Accidents Using Relative Probability. Sci. Rep. 2023, 13, 18045. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Li, Y.; Liu, C.; Li, Z. Is Traffic Accident Related to Air Pollution? A Case Report from an Island of Taihu Lake, China. Atmos. Pollut. Res. 2020, 11, 1028–1033. [Google Scholar] [CrossRef]
- Vega-Calderón, L.; Almendra, R.; Fdez-Arroyabe, P.; Zarrabeitia, M.T.; Santurtún, A. Air Pollution and Occupational Accidents in the Community of Madrid, Spain. Int. J. Biometeorol. 2021, 65, 429–436. [Google Scholar] [CrossRef]
- Yang, W.; Omaye, S.T. Air Pollutants, Oxidative Stress and Human Health. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 674, 45–54. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, R.K. Human Health Risk Assessment of Major Air Pollutants at Transport Corridors of Delhi, India. J. Transp. Health 2018, 10, 132–143. [Google Scholar] [CrossRef]
- Yu, T.; Wang, W.; Ciren, P.; Zhu, Y. Assessment of Human Health Impact from Exposure to Multiple Air Pollutants in China Based on Satellite Observations. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 542–553. [Google Scholar] [CrossRef]
- Chen, F.; Fan, Z.; Qiao, Z.; Cui, Y.; Zhang, M.; Zhao, X.; Li, X. Does Temperature Modify the Effect of PM10 on Mortality? A Systematic Review and Meta-Analysis. Environ. Pollut. 2017, 224, 326–335. [Google Scholar] [CrossRef]
- Contiero, P.; Boffi, R.; Tagliabue, G.; Scaburri, A.; Tittarelli, A.; Bertoldi, M.; Borgini, A.; Favia, I.; Ruprecht, A.A.; Maiorino, A.; et al. A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy. Int. J. Environ. Res. Public Health 2019, 16, 4627. [Google Scholar] [CrossRef]
- Gu, Y.; Lin, H.; Liu, T.; Xiao, J.; Zeng, W.; Li, Z.; Lv, X.; Ma, W. The Interaction between Ambient PM10 and NO2 on Mortality in Guangzhou, China. Int. J. Environ. Res. Public Health 2017, 14, 1381. [Google Scholar] [CrossRef]
- Cothern, E.J.; Brazile, W.J.; Autenrieth, D.A. The Evaluation of Worker Exposure to Airborne Silica Dust During Five OSHA Table I Construction Tasks. Ann. Work Expo. Health 2023, 67, 572–583. [Google Scholar] [CrossRef]
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of Air Pollution on Human Health and Practical Measures for Prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef]
- Bauleo, L.; Bucci, S.; Antonucci, C.; Sozzi, R.; Davoli, M.; Forastiere, F.; Ancona, C. Long-Term Exposure to Air Pollutants from Multiple Sources and Mortality in an Industrial Area: A Cohort Study. Occup. Environ. Med. 2019, 76, 48–57. [Google Scholar] [CrossRef]
- Cui, P.; Schito, G.; Cui, Q. VOC Emissions from Asphalt Pavement and Health Risks to Construction Workers. J. Clean. Prod. 2020, 244, 118757. [Google Scholar] [CrossRef]
- Cavallari, J.M.; Eisen, E.A.; Chen, J.-C.; Fang, S.C.; Dobson, C.B.; Schwartz, J.; Christiani, D.C. Night Heart Rate Variability and Particulate Exposures among Boilermaker Construction Workers. Environ. Health Perspect. 2007, 115, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Tovalin, H.; Valverde, M.; Morandi, M.T.; Blanco, S.; Whitehead, L.; Rojas, E. DNA Damage in Outdoor Workers Occupationally Exposed to Environmental Air Pollutants. Occup. Environ. Med. 2006, 63, 230–236. [Google Scholar] [CrossRef]
- Singh, A.; Kamal, R.; Mudiam, M.K.R.; Gupta, M.K.; Satyanarayana, G.N.V.; Bihari, V.; Shukla, N.; Khan, A.H.; Kesavachandran, C.N. Heat and PAHs Emissions in Indoor Kitchen Air and Its Impact on Kidney Dysfunctions among Kitchen Workers in Lucknow, North India. PLoS ONE 2016, 11, e0148641. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Cheng, M.; Zhang, L.; Liu, M.; Yang, X.; Li, X.; Yin, W. The Construction Dust-Induced Occupational Health Risk Using Monte-Carlo Simulation. J. Clean. Prod. 2018, 184, 598–608. [Google Scholar] [CrossRef]
- Sekhavati, E.; Yengejeh, R.J. Particulate Matter Exposure in Construction Sites Is Associated with Health Effects in Workers. Front. Public Health 2023, 11, 1130620. [Google Scholar] [CrossRef]
- Sarkar, A.; Thakur, B.; Gupta, A. Particulate Pollution at Construction Sites of Kolkata and Associated Health Burden for Exposed Construction Workers. Urban Clim. 2023, 52, 101750. [Google Scholar] [CrossRef]
- Maesano, C.N.; Morel, G.; Matynia, A.; Ratsombath, P.; Bonnety, J.; Legros, G.; Da Costa, P.; Prud’homme, J.; Annesi-Maesano, I. Impacts on Human Mortality Due to Reductions in PM10 Concentrations through Different Traffic Scenarios in Paris, France. Sci. Total Environ. 2020, 698, 134257. [Google Scholar] [CrossRef] [PubMed]
- Cheriyan, D.; Choi, J.-h. A Review of Research on Particulate Matter Pollution in the Construction Industry. J. Clean. Prod. 2020, 254, 120077. [Google Scholar] [CrossRef]
- Khamraev, K.; Cheriyan, D.; Choi, J.-h. A Review on Health Risk Assessment of PM in the Construction Industry–Current Situation and Future Directions. Sci. Total Environ. 2021, 758, 143716. [Google Scholar] [CrossRef]
- Palma, A.; Depalo, D.; Curci, G. The Dirtier You Breathe, the Less Safe You Are. The Effect of Air Pollution on Work Accidents. 2024, CEIS Working Paper No. 554. [CrossRef]
- KOSHA Analysis of Industrial Accident Causes in 2010. Available online: https://www.kosha.or.kr/kosha/data/gokneJeahea.do (accessed on 20 May 2025).
- K-eco Operation of National Air Quality Monitoring Network. Available online: https://www.keco.or.kr/en/lay1/S295T324C343/contents.do (accessed on 20 May 2025).
- Jeong, J.; Jeong, J. Quantitative Risk Evaluation of Fatal Incidents in Construction Based on Frequency and Probability Analysis. J. Manag. Eng. 2022, 38, 4021089. [Google Scholar] [CrossRef]
- Jeong, J.; Hong, T.; Ji, C.; Kim, J.; Lee, M.; Jeong, K.; Koo, C. Improvements of the Operational Rating System for Existing Residential Buildings. Appl. Energy 2017, 193, 112–124. [Google Scholar] [CrossRef]
- Pigliautile, I.; Pisello, A.L. Environmental Data Clustering Analysis through Wearable Sensing Techniques: New Bottom-up Process Aimed to Identify Intra-urban Granular Morphologies from Pedestrian Transects. Build. Environ. 2020, 171, 106641. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of Student’s t-Test, Analysis of Variance, and Covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef]
- Kelter, R. A New Bayesian Two-Sample t Test and Solution to the Behrens–Fisher Problem Based on Gaussian Mixture Modelling with Known Allocations. Stat. Biosci. 2022, 14, 380–412. [Google Scholar] [CrossRef]
- Yu, Z.; Guindani, M.; Grieco, S.F.; Chen, L.; Holmes, T.C.; Xu, X. Beyond t Test and ANOVA: Applications of Mixed-Effects Models for More Rigorous Statistical Analysis in Neuroscience Research. Neuron 2022, 110, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Koc Vural, U.; Bagdatli, Z.; Yilmaz, A.E.; Yalçın Çakır, F.; Altundaşar, E.; Gurgan, S. Effects of Charcoal-Based Whitening Toothpastes on Human Enamel in Terms of Color, Surface Roughness, and Microhardness: An in Vitro Study. Clin. Oral. Investig. 2021, 25, 5977–5985. [Google Scholar] [CrossRef] [PubMed]
- Pontes, H.M.; Schivinski, B.; Kannen, C.; Montag, C. The Interplay between Time Spent Gaming and Disordered Gaming: A Large-Scale World-Wide Study. Soc. Sci. Med. 2022, 296, 114721. [Google Scholar] [CrossRef] [PubMed]
Variable | Group | Cases of Samples (n) | Average (Relative Probability) | Standard Deviation | t | p |
---|---|---|---|---|---|---|
SO2 | 1 | 7 | 0.99 | 0.03 | −7.17 | 0.000 |
2 | 6 | 1.15 | 0.05 |
Variable | Group | Cases of Samples (n) | Average (Relative Probability) | Levene’s Test | Levene’s p | Welch’s Test | Welch’s p |
---|---|---|---|---|---|---|---|
PM10 | 1 | 41 | 0.87 | 7.14 | 0.001 | 49.21 | 0.000 |
2 | 42 | 1.10 | |||||
3 | 43 | 1.21 |
Group | 1 | 2 | 3 |
---|---|---|---|
1 | - | 0.000 | 0.000 |
2 | - | 0.000 | |
3 | - |
Classification | Regression Results | Number of Clustering | Mean Difference Between Groups | Significance | Result |
---|---|---|---|---|---|
SO2 | 0.8388 | 2 | There is a difference | Significant | New Concentration Group Proposal |
PM10 | 0.8289 | 3 | There is a difference | Significant | |
CO | 0.4354 | 2 | There is a difference | Significant | A new concentration group could not be suggested due to the low R2 value |
NO2 | 0.2456 | 2 | There is a difference | Significant | |
O3 | 0.0832 | 4 | No difference | not significant | There was no correlation with the accident |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Jeong, J.; Kumi, L. Quantitative Assessment of Air Pollutants and Construction Accidents: Developing Risk-Based Concentration Groups. Buildings 2025, 15, 3305. https://doi.org/10.3390/buildings15183305
Lee M, Jeong J, Kumi L. Quantitative Assessment of Air Pollutants and Construction Accidents: Developing Risk-Based Concentration Groups. Buildings. 2025; 15(18):3305. https://doi.org/10.3390/buildings15183305
Chicago/Turabian StyleLee, Minsu, Jaewook Jeong, and Louis Kumi. 2025. "Quantitative Assessment of Air Pollutants and Construction Accidents: Developing Risk-Based Concentration Groups" Buildings 15, no. 18: 3305. https://doi.org/10.3390/buildings15183305
APA StyleLee, M., Jeong, J., & Kumi, L. (2025). Quantitative Assessment of Air Pollutants and Construction Accidents: Developing Risk-Based Concentration Groups. Buildings, 15(18), 3305. https://doi.org/10.3390/buildings15183305