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Abstract

The construction sector is predominantly characterized by outdoor work, where workers
are continuously exposed to environmental factors such as air pollution. Air pollutants,
including particulate matter (PM10) and sulfur dioxide (SO2), are well known for their
health impacts, but their potential influence on workplace safety has been underexplored.
According to the World Health Organization, air pollutants kill 7 million people annually
worldwide. This study investigates the association between air pollutant concentrations
and construction site accidents, focusing on whether higher pollution levels are linked
with greater accident risk, and proposes new concentration groups considering the prob-
ability of accidents. This study was carried out in four phases: (i) collection of data;
(ii) classification of data; (iii) probabilistic analysis of air pollutant concentration and acci-
dents; and (iv) clustering of air pollutant concentration groups. As a result, it was identified
that the probability of accident occurrence increased with the increase in SO2 and PM10

concentration. Thus, SO2 and PM10 significantly impact construction accidents based on
their concentration changes. The new groups of SO2 and PM10 have been developed based
on accident probability, and these groups can be utilized to assess the accident risk level of
construction sites based on air pollutant concentration.

Keywords: air pollutants; construction accidents; relative probability; hierarchical
clustering; K-means clustering; construction safety management

1. Introduction
Unlike the indoor nature of manufacturing, construction is primarily carried out out-

doors, exposing workers to environmental factors such as climate and air pollution [1–5].
Air pollutants, including particulate matter (PM10), ozone (O3), nitrogen dioxide (NO2),
sulfur dioxide (SO2), and carbon monoxide (CO), adversely affect human health, caus-
ing respiratory, cardiovascular, and neurological conditions [6–8]. PM10 possesses small
particles and is easily absorbed into the respiratory tract, thereby adversely affecting the
human body [9,10]. The consequences of PM10 on the human body can affect the airways,
lungs, cardiovascular system, and brain, causing asthma, respiratory and cardiovascular
diseases. In addition, the World Health Organization (WHO) reported that 7 million people
died earlier than life expectancy due to fine dust in 2014, and the International Institute
of Cancer (IARC) classified fine dust as the first group of carcinogens directly correlated
with cancer in October 2013 [11]. O3 increases the incidence of airway inflammation, hy-
persensitivity, and lung disease [12,13]. NO2 is highly toxic; thus, long-term exposure to
low concentrations increases the incidence of bronchitis, gastroenteritis, decreased blood
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sugar, and Parkinson’s disease [14–16]. SO2 stimulates the respiratory tract and increases
the incidence of respiratory diseases [17,18]. CO adversely affects the human body in the
form of fatigue, angina pectoris, visual impairment, and brain function deterioration and
may lead to death in severe cases [19,20]. Beyond health concerns, recent studies have
highlighted that air pollution may also impair worker cognition, focus, and physical en-
durance, factors that are closely tied to accident risk. The UK Health and Safety Executive
(HSE), for instance, consistently reports that the construction industry accounts for a high
proportion of workplace accidents, with falls from height, being struck by moving objects,
and exposure to hazardous substances among the leading causes. In 2024/25, construction
recorded 35 fatal injuries, representing nearly one-quarter of all workplace fatalities in
Great Britain [21]. These statistics underscore the vulnerability of construction workers to
environmental and situational risks, including air quality. Several researchers have begun
exploring the link between ambient air quality and workplace safety. For example, Lavy
et al., 2022 demonstrated a causal relationship between air pollution and increased accident
rates among construction workers [22]. Similarly, Cabral et al. (2024) provided robust
evidence that higher concentrations of PM10, NO2, and other pollutants elevate the risk of
occupational injuries, particularly in high-risk sectors like construction [23].

Various studies have separately evaluated the impact of each air pollutant, and there
have been studies that integrated air pollutants into a single index for evaluation. Xu et al.
(2023) proposed a safety prediction system for outdoor work using multi-layer fuzzy logic
to ensure the safety of construction workers [24]. Yet, many of these studies are either
simulation-based or do not quantify the probability of actual accidents. While the literature
on economics and public health has progressed toward understanding these environmental
risk factors, these approaches often lack construction-specific applications or actionable
concentration thresholds. Most focus on health impacts or productivity loss rather than
direct accident probabilities.

However, there is a relatively small number of studies that have analyzed the corre-
lation between air pollutants and accidents. Furthermore, there has been little research
conducted to quantitatively investigate the influence of air pollutants at construction sites
on accidents experienced by workers [25,26].

Through a review of the existing literature, it was found that there have been studies
analyzing the correlation between PM10 and accidents among air pollutants. Wan et al.
(2020) suggested that both PM10 and PM2.5 are associated with an increase in traffic acci-
dents [27]. However, they did not establish the mechanism or causality between traffic
accidents and air pollution [27]. Particularly, Vega-Calderón et al. (2021) conducted a signif-
icant study revealing that as the concentrations of PM10 and NO2 increase, more accidents
tend to occur [28]. Nonetheless, they did not provide quantitative accident probability,
posing a limitation in their research.

Previous studies on construction safety and the factors affecting accidents in the con-
struction industry were focused on weather, worker carelessness, neglect of management,
inappropriate work methods, and high-risk work. The environmental context, specifically
air quality, has been underexplored despite its relevance. However, this study aims to
evaluate the quantitative risk only for air pollutants (O3, SO2, NO2, PM10, CO) that have
been actively studied from a health perspective.

Therefore, the objective of this study is to quantitatively assess the relationship between
air pollutant concentration levels and accident probabilities at construction sites. It further
aims to develop new pollutant concentration groupings based on accident risks rather than
health-based thresholds. By doing so, this research bridges the gap between public health,
environmental economics, and construction safety, offering practical guidelines for accident
risk management using environmental data.
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2. Literature Review
2.1. Health Impacts of Air Pollution on the General Population

Air pollution is a major public health concern, with numerous studies documenting
its adverse effects. Yang et al. (2009) explored the link between air pollutants and oxida-
tive stress, concluding that prolonged exposure contributes to various chronic conditions,
including respiratory and cardiovascular diseases [29]. Kampa et al. (2008) reviewed the im-
pacts of various pollutants, such as CO, SO2, NOx, VOCs, O3, PM2.5, and PM10, on asthma,
lung cancer, and cardiovascular morbidity [30]. Kumar et al. (2018) conducted a health
risk assessment of air pollutants along transport corridors in Delhi, India, demonstrating
elevated mortality and morbidity due to localized exposure [31]. Yu et al. (2016) used satel-
lite data to quantify health risks from multiple pollutants in China [32]. Chen et al. (2017)
demonstrated that high temperatures amplify PM10’s impact on mortality [33], while Con-
tiero et al. (2019) confirmed this synergy in cardiovascular-related emergency visits [34].
Gu et al. (2017) explored the combined effects of PM10 and NO2 on mortality, revealing
higher risks from co-exposure [35]. Cothern et al. (2023) examined worker exposure to
silica dust in construction, highlighting control measures to mitigate health risks [36].
Ghorani-Azam et al. (2016) provided a comprehensive review of pollutant toxicity, sources,
and health impacts, with prevention strategies tailored for high-exposure areas [37].

2.2. Air Pollution Exposure and Health Risks Among Industrial and Construction Workers

Occupational exposure to pollutants poses significant health and safety risks, partic-
ularly in construction and industrial settings. Bauleo et al. (2019) evaluated long-term
pollutant exposure and mortality among workers in an industrial zone [38]. Cui et al. (2020)
measured VOC emissions in asphalt pavement construction and assessed their health
implications [39]. Cavallari et al. (2007) observed reduced heart rate variability among
boilermaker construction workers exposed to PM2.5 [40]. Tovalin et al. (2006) showed
a direct link between outdoor occupational exposure to pollutants and DNA damage in
workers [41]. Singh et al. (2016) explored the effect of heat and PAH exposure on renal
health among kitchen workers [42]. In construction-specific contexts [42], Tong et al. (2018)
applied Monte Carlo simulations to assess uncertainty in dust-induced occupational health
risks [43], and Sekhavati and Yengejeh (2023) demonstrated that particulate matter at
construction sites significantly affects worker health [44]. Sarkar et al. (2023) estimated
long-term health burdens from dust exposure on construction sites in India [45]. Maesano
et al. (2020) investigated mortality reductions associated with decreased PM10 levels due to
traffic restrictions in Paris, illustrating how urban policies can mitigate health impacts [46].
Reviews by Cheriyan and Choi (2020) and Khamraev et al. (2021) emphasized the need for
industry-specific risk frameworks to manage occupational exposure [47,48].

Beyond health risks, recent economic research has linked air pollution to workplace
accidents. Lavy et al. (2022) investigated the causal effect of air pollution on accidents
in construction sites in Israel, identifying a statistically significant link between pollutant
levels and workplace injuries [22]. Palma et al. (2024) confirmed similar results for Italy,
using panel regression models to show that increases in PM and O3 concentrations raise
workplace accident rates [49]. Cabral and Dillender (2024) focused on wildfire smoke and
general air pollution in the United States, showing negative effects on both health and
worker safety [23].

2.3. Construction Accidents and Environmental Influences

Although traditional construction safety research emphasizes causes such as worker
behavior, equipment hazards, and management practices, fewer studies have examined
how environmental conditions, particularly air quality, influence accidents. For example,
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Vega-Calderón et al. (2021) reported that elevated PM10 and NO2 concentrations were
associated with increased occupational accidents in Madrid [28]. Similarly, Wan et al. (2020)
demonstrated that traffic accidents increased with air pollution exposure, suggesting that
impaired cognition and reduced visibility may extend to construction settings [27]. More
recently, Lee et al. (2023) applied a relative probability model to quantify the effect of
particulate matter on construction accidents, showing that accident probability rises with
higher PM levels [26]. These studies highlight an emerging but underdeveloped research
area that connects environmental exposures with construction safety outcomes.

2.4. Research Gap and Contribution

While air pollution’s health impacts are well documented, limited research has ex-
amined how pollutant concentrations influence construction accident risk. Health science
studies focus on morbidity and mortality, while recent economic analyses link pollution
to macro-level workplace productivity and accident rates. However, these approaches do
not provide actionable risk classification models for construction safety management. This
study addresses this gap by: (1) Providing a sector-specific quantitative analysis of accident
probability in relation to pollutant concentrations. (2) Developing a relative probability-
based risk evaluation model tailored to construction environments. (3) Proposing new
pollutant concentration groups based on accident data rather than health-based criteria,
offering practical thresholds for construction safety management.

3. Materials and Methods
As shown in Figure 1, the study is conducted as follows: (i) Collection of data; (ii)

classification of data; (iii) probabilistic analysis of air pollutant concentration and accident;
and (iv) clustering of air pollutant concentration groups.

3.1. Collection of Data

A retrospective study was conducted to examine the relationship between air pollu-
tants (PM10, SO2) and construction accidents in South Korea over 13 years (2007–2019). A
total of 214,538 construction accident cases were obtained from the Korea Occupational
Safety and Health Agency [50]. Concurrently, air pollutant concentration data (PM10, O3,
NO2, SO2, CO) were sourced from the Korea Environment Corporation (K-eco) [51]. All
pollutant data were measured by observation equipment installed at fixed monitoring
stations distributed across 494 districts in South Korea, and pollutant concentrations were
recorded at hourly intervals.

To ensure spatial and temporal accuracy, each accident case was matched to the nearest
monitoring station based on administrative district codes. If multiple stations existed in
a district, the station with the smallest Euclidean distance to the accident location was
selected. Temporally, hourly pollutant data were aligned with the accident timestamp.
In cases where hourly data were missing, daily averages from the nearest station were
substituted. This ensured that every accident was assigned pollutant concentration values
reflective of the actual exposure conditions.

Considering the working hours of construction workers, the analysis focused on
accidents occurring between 07:00 and 19:00, accounting for 98% of total cases. This
restriction excluded non-occupational exposures such as commuting-related or underlying
health issues. Ultimately, this study analyzed 209,833 disaster cases during standard
working hours to maintain occupational relevance. The study quantified the effects of air
pollutants on construction accidents while controlling for non-occupational exposures. The
focus on working hours ensures that concentration data correspond to times when workers
were likely present on site, enhancing the validity of the findings. Table S1 (Supplementary



Buildings 2025, 15, 3305 5 of 19

Materials) provides the detailed frequency distribution of accidents by time, confirming
the exclusion of cases outside standard working hours.

 
Figure 1. Summary of research process.
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3.2. Classification of Data

Currently, WHO manages air pollutants by setting numerical guideline values and
interim targets for concentrations of PM2.5, PM10, O3, NO2, SO2, and CO in relation to health
impacts [11]. Importantly, WHO does not classify pollutants into qualitative categories such
as “Good,” “Moderate,” or “Unhealthy.” Such descriptive labels originate from Air Quality
Index (AQI) systems, including those established by the Korea Environment Corporation
(K-eco) [51]. These systems translate numerical pollutant concentrations into qualitative
descriptors for public communication (e.g., “Good,” “Moderate,” “Unhealthy for sensitive
groups,” “Unhealthy,” “Very unhealthy,” and “Hazardous”).

In this study, we adopted the numerical thresholds from the WHO Global Air Quality
Guidelines [11] to define concentration breakpoints, while using AQI-style descriptors
solely for interpretability. Table S2 summarizes the concentration intervals applied in this
study. Based on these ranges, the distribution of accidents was classified: [11] PM10 is
“Good” to “Very unhealthy,” O3 is “Good” to “Unhealthy,” NO2 is “Good” to “Unhealthy
for sensitive people,” and SO2 and CO were collected in the “Good” group range.

3.3. Probabilistic Analysis of Air Pollutant Concentration and Accident

The exposed period of air pollutant concentration levels per functional unit is varied.
And it is hard to evaluate the probability of accident occurrence per concentration level
directly. Thus, the relative probability by concentration was calculated using accident data
and air pollutant concentration data for 13 years [14]. Previous studies have mentioned
that risk should be evaluated considering the frequency and probabilistic aspects. For this
reason, this study calculated the relative quantitative thought probability by considering
not only the frequency but also the probability aspect through the relative probability
calculation [52]. Consequently, in this study, the relative probability was calculated using
Equations (1)–(3) [14]. This helps quantitatively calculate the probability of accidents
occurring owing to air pollutant concentration in the construction industry.

AR =
∑n

i=1 Aair pollutants

∑n
i=1 A

(1)

PR =
Nair pollutants

∑n
i=1 Xi

(2)

RP =
AR
PR

(3)

where AR (Accident Ratio) refers to the proportion of accidents that occurred under a given
air pollutant concentration. It is calculated by dividing the number of accidents occurring
at a specific concentration level (Aair pollutants) by the total number of accidents across all
levels (A). PR (Period Ratio) represents the proportion of time that a specific pollutant
concentration level was observed. It is the number of time periods with that pollutant
concentration (Nair pollutants) divided by the total number of observation periods (Xi). RP
(Relative Probability) is the ratio of the accident occurrence rate (AR) to the period ratio
(PR). It measures whether the likelihood of accidents is higher or lower than expected based
on how frequently the concentration occurs [14].

In the above way, the baseline probability, defined as numerical number 1, can be
set through relative probability analysis. And this baseline means the average probability
of accident occurrence at the whole concentration level for each air pollutant. This is
because the relative probability is calculated through calculations between ratios rather
than conventional frequency analysis. If the relative probability value of the air pollutant
concentration is less than 1, the accident probability of the concentration is lower than the
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average accident probability. Conversely, if the relative probability value of the concentra-
tion exceeds 1, it indicates that the accident probability of the concentration is higher than
the average accident probability [14].

3.4. Clustering of Air Pollutant Concentration Group

In this study, the relative accident probability associated with air pollutant concentra-
tions was first calculated through the relative probability framework, which normalizes
accident counts by the frequency of pollutant exposure. These values were then used to
develop a novel concentration group classification focused on construction safety manage-
ment rather than health-based guidelines.

To operationalize this process, the continuous concentration data for each pollutant
were first divided into bins. For PM10, bin intervals were constructed using WHO guideline
breakpoints (e.g., 20, 40, 50 µg/m3), extended to cover the observed concentration range.
For SO2, equal-interval binning was applied within the observed distribution to ensure
sufficient sample size in each bin. For every bin, we computed accident frequency, period
ratio, and relative probability, as defined in Equations (1)–(3).

The resulting set of relative probability values was then subjected to a two-step clus-
tering approach:

1. Hierarchical clustering was used to determine the optimal number of accident-risk
groups. The elbow method was applied to the sum of squared errors (SSE) curve,
identifying the point where additional clusters provided diminishing improvements
in model fit.

2. K-means clustering was subsequently performed using this optimal cluster number.
This step grouped bins with similar relative probability values into new concentration
groups that represent distinct accident-risk levels.

Finally, statistical verification ensured that the derived groups were meaningfully dis-
tinct. For SO2, we applied t-tests to compare mean relative probabilities across groups. For
PM10, we employed ANOVA with Welch’s correction due to unequal variances, followed
by Games–Howell post hoc tests to confirm significant differences between groups.

3.4.1. Hierarchical Clustering

This study examined the relationship between air pollutants and accidents that tran-
spire within construction sites and presented a newly modified concentration group that
differs from the existing WHO concentration group for air pollutants that have a significant
impact on accidents. At this time, the analysis was conducted through K-means clustering.
K-average clustering has a limitation in which the user calculates the cluster quantity by
individual judgment. However, in this study, the number of clusters was determined using
elbow points to calculate the ideal number of clusters through K-means clustering [53].

Elbow points were identified using hierarchical clustering. Hierarchical cluster anal-
ysis is a method of reducing the number of clusters by combining clusters with high
similarity or close distance among several clusters. In this case, the elbow point can be
identified by examining the point at which the sum of squared errors (SSE) is minimized.
The SSE can be computed using Equation (4) provided below [54].

SSE = ∑n
i=1 ∑x∈ci

dist(x, ci)
2 (4)

where SSE is the sum of squared error, x is the set of observations, and ci is the center of
each cluster [54].
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3.4.2. K-Means Clustering

K-means clustering was performed based on the number of clusters determined using
hierarchical clustering and the elbow method. K-means clustering enables the classification
of data into k clusters. It is a clustering technique that selects a specific random point to set
the center point of the cluster and selects the point closest to the center [55].

This study reclassified the concentration group for air pollutants that affect construc-
tion accidents through K-means clustering. The criterion for the new concentration group is
the relative probability value calculated to quantitatively evaluate the correlation between
air pollutants and accidents in construction.

3.4.3. Statistical Verification

The t-test is a parametric statistical method that compares the means between two
groups [56]. It is a testing method based on an estimated analysis or standard deviation of
a sample representing a population. Its value is obtained by dividing the mean between
two groups by the standard error based on the statistical t-value used in the t-test [57]. The
analysis of variance (ANOVA) is a statistical technique employed to identify significant
differences between the means of three or more independent groups. At this time, if there
is a difference between the means of the group, a post-test must be conducted to determine
how much difference there is between which groups [58]. To perform the ANOVA, it is
necessary to determine whether the data to be analyzed are of equal variance based on
Levene’s test for equivalence of variances. In this case, if data are heterogeneous, the
difference in the means between each group should be verified using Welch’s test [59].

In the case of post hoc analysis about equal variance, the difference in the mean of
each group can be confirmed using the Scheffe and Duncan tests. If heteroscedasticity is
confirmed using Levene’s test for equality of variances, the distinction in the mean of each
group can be verified by employing the Games-Howell statistic [59].

In this study, t-test and ANOVA were performed to confirm whether the air pollutants
group classified using K-means clustering was a statistically significant group. In the case
of the ANOVA, it was confirmed that the variance was heterogeneous by checking the equal
variance of the collected data; therefore, Welch’s test was used. For post hoc analysis, the
difference in the means between each group was confirmed using the Games–Howell test.

Hypotheses of the study:

Hypothesis 1. Higher concentrations of SO2 and PM10 are associated with a statistically significant
increase in construction accident probability.

Hypothesis 2. Accident-oriented pollutant concentration groups derived from clustering differ
meaningfully from WHO health-based groups and provide more relevant thresholds for construction
site safety management.

4. Results
4.1. Frequency Analysis Between Accidents and Air Pollution Concentration

The frequency of accidents by concentration level for each air pollutant (SO2, CO,
O3, NO2, PM10) over a 13-year period was analyzed (Figures 2 and 3, with Figures S1–S3
in the Supplementary Materials). Each figure displays pollutant concentration (x-axis),
accident count (y-axis), and frequency of concentration occurrence as an auxiliary axis. The
histogram is the number of accidents according to concentration, and the average number
of accidents is presented as a gray horizon. Finally, groups designated by the WHO are
indicated by color: “Green” as “Good,” “Yellow” as “Moderate,” “Orange” as “Unhealthy
for sensitive groups,” “Red” as “Unhealthy,” and “Purple” as “Very unhealthy” group.
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Figure 2. Frequency analysis of accidents to SO2 concentration and its WHO’s classification.

 

Figure 3. Frequency analysis of accidents to PM10 concentration and its WHO’s classification.

The frequency analysis results are as follows.
First, in the case of SO2, all the disasters occurred in the “Good” group of the WHO.

The highest accident concentration was 0.003 ppm (35,664 cases), and the average SO2
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concentration in Korea was 0.002 ppm [51]. That is, the highest concentration in the con-
struction industry over the past 13 years was found to be around the average concentration.
As a result of analyzing the frequency of appearance for 13 years based on the concentration
of SO2, the value of 0.003 ppm (3,211,180 days) emerged the most, just like the frequency
of accidents.

Second, for CO (Figure S1), all accidents also fell within the WHO “Good” range.
Most accidents (38,441 cases) occurred at 0.4 ppm, which also had the highest observation
frequency (3,428,571 days). This aligns with Korea’s average of 0.5 ppm [51].

Third, for O3 (Figure S2), accidents spanned from “Good” to “Unhealthy” levels. The
most frequent and accident-prone concentration was 0.003 ppm (5771 cases), though the
national average was higher at 0.023 ppm [51].

Fourth, for NO2 (Figure S3), accidents occurred between “Good” and “Unhealthy for
sensitive groups.” Most accidents (8326 cases) were recorded at 0.011 ppm, while 0.010 ppm
was the most frequently observed level (604,550 days), both lower than the national average
of 0.028 ppm [51].

Finally, based on the analysis of the accidental data of PM10, accidents were distributed
from “Good” to “Very unhealthy” groups. The most accidents occurred at 32 µg/m3

(3721 cases).

4.2. Relative Probability Between Accidents and Air Pollution Concentration

While frequency analysis provides basic trends, it does not quantify accident risk.
Thus, this study employed relative probability analysis to normalize accident rates by
pollutant exposure frequency. Results for CO, NO2, and O3 showed no clear trend and are
provided in Supplementary Figures (Figures S4–S6). SO2 and PM10 results are shown in
Figures 4 and 5.

 

Figure 4. Relative probability analysis of accidents to SO2 concentration and its WHO’s classification.
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Figure 5. Relative probability analysis of accidents to PM10 concentration and its WHO’s classification.

For instance, it was identified that the largest number of accidents was found at
0.003 ppm of SO2 (36,664 cases). However, the analysis revealed that analyzing the relative
probability of SO2, the relative probability value at 0.003 ppm of SO2 was 0.92 only, which
was the lowest in the total concentration range.

As shown in Figure 4 about SO2, it was verified that the relative probability had
been increased according to the concentration level rise. The relative probability value
was higher than the baseline probability of 1 from 0.007 ppm and above. Additionally,
0.013 ppm was the highest probability of accidents attributed to SO2. The R2 value of the
regression analysis was 0.84.

As shown in Figure 5 about PM10, the analysis of the quantitative accident probability
through relative probability revealed a positive association between the concentration and
the corresponding relative accident probability, either. For instance, the largest number
of accidents was found at 32 µg/m3, as shown in Figure 3, upon the frequency analysis;
however, 123 µg/m3 was the highest probability of accidents attributed to PM10, and
the relative probability at this concentration level was 1.50. This means that the accident
probability is 1.5 times higher than the average level at 123 µg/m3 of PM10.

4.3. New Concentration Groups Based on Relative Probability

This study reclassified concentration groups for air pollutants associated with con-
struction accidents. The rationale for creating new groupings is that the World Health
Organization (WHO) thresholds are designed for public health protection, focusing on
morbidity and mortality outcomes. These health-oriented categories may not capture the
probability of acute, short-term workplace accidents. In contrast, our accident-oriented
groups are derived from relative probability analysis and clustering, which identify con-
centration levels most strongly associated with accident risk on construction sites. Thus,
the new groups provide site managers with safety-relevant thresholds rather than general
health guidelines.
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Two clustering methods were used: hierarchical clustering to identify elbow points,
and K-means clustering to determine optimal group numbers for SO2 and PM10, which
exhibited high correlation with accident probability (Figures S7 and S8). The elbow point
was defined as the point where the reduction in the sum of squared errors (SSE) sharply
decreases [54]. Elbow point results for CO and NO2 are provided in the Supplementary
Materials (Figures S9 and S10).

Table S3 lists the number of groups classified by the WHO on the human health aspect
and the developed groups on the accident aspect in terms of SO2 and PM10, respectively.
As a result, SO2 and PM10 were presented in two and three groups to classify the accident
impact of their concentration level, respectively.

K-means clustering was performed through elbow point analysis to confirm the
new concentration group of SO2 and PM10. Figures 6 and 7 show the newly suggested
concentration groups of SO2 and PM10, respectively.

 

Figure 6. New concentration group of SO2 using the relative probability of accidents.

For each graph, the x-axis denotes the concentration of air pollutants, while the y-axis
represents the relative probability value. Histogram refers to the relative probability of SO2

and PM10 by concentration. Green, yellow, and primary colors mean group 1, group 2, and
group 3 for each. Baseline 1 of relative probability is indicated by a black horizontal line.

First, the newly modified concentration groups of SO2 presented in this study
were identified and two groups were presented. The concentration range of group 1
is 0.001–0.007 ppm, and the concentration range of group 2 is 0.008–0.013 ppm. The aver-
age relative probability of SO2 is 0.99 for group 1 and 1.15 for group 2. In terms of accident
probability, the value of group 1 was lower than the baseline score of 1. Therefore, based
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on the same period, the accident probability was below the average accident probability,
and the value of group 2 was greater than 1, indicating a higher probability of an accident.

 

Figure 7. New concentration group of PM10 using the relative probability of accidents.

The results of verifying the proposed concentration group by newly modifying it
according to the relative probability of PM10 are as follows. It was presented in three
concentration groups, with each group being assigned a specific concentration range of
1 µg/m3 to 40 µg/m3 for Group 1, 41 µg/m3 to 81 µg/m3 for Group 2, and 82 µg/m3

to 123 µg/m3 for Group 3. The average of the relative probabilities for each group is as
follows. Based on the same period, group 1 was 0.87, group 2 was 1.10, and group 3 was
1.21. The group with lower than the average accident probability was 1 and the higher
group was 2 and 3.

4.4. Statistical Verification of New Concentration Group

To verify the effectiveness of the newly proposed concentration groups for SO2 and
PM10, statistical tests were conducted. Additional results for CO and NO2 are available in
Tables S4 and S5.

Table 1 presents the t-test results for SO2. The mean relative probability was 0.99
for Group 1 and 1.15 for Group 2, with a statistically significant difference (p = 0.000).
This confirms that the two SO2 groups differ meaningfully in terms of accident risk. The
results indicate that construction sites operating under SO2 concentrations in Group 2
(0.008–0.013 ppm) have on average, a 16% higher accident probability compared to sites in
Group 1 (0.001–0.007 ppm). This statistically significant difference suggests that the revised
grouping captures a meaningful stratification of accident risk based on pollutant levels,
which is not reflected in traditional health-oriented classifications.

Table 2 shows the ANOVA results for PM10. The mean relative probabilities were 0.87
(Group 1), 1.10 (Group 2), and 1.21 (Group 3). Levene’s and Welch’s tests indicate significant
variance among the groups (p < 0.001). This finding reveals a clear trend where accident
risk increases progressively with PM10 concentration. The 39% increase in relative accident
probability from Group 1 (1–40 µg/m3) to Group 3 (82–123 µg/m3) highlights the utility
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of the new classification in identifying elevated risk zones that are not distinguishable
through WHO health thresholds.

Table 1. t-test results of the new SO2 concentration group.

Variable Group Cases of
Samples (n)

Average (Relative
Probability)

Standard
Deviation t p

SO2
1 7 0.99 0.03 −7.17 0.0002 6 1.15 0.05

Table 2. The results of ANOVA for the new PM10 concentration group.

Variable Group Cases of
Samples (n)

Average (Relative
Probability)

Levene’s
Test Levene’s p Welch’s

Test Welch’s p

PM10

1 41 0.87
7.14 0.001 49.21 0.0002 42 1.10

3 43 1.21

Table 3 displays the post hoc Games–Howell test, confirming significant differences
between all PM10 group pairs (p < 0.001). These results validate that the newly devel-
oped PM10 classification effectively distinguishes levels of accident risk. The statistical
separation between each group pair further reinforces the robustness of the clustering
approach, confirming that each new group represents a unique accident risk profile. Such
stratification can serve as a basis for threshold-based interventions on construction sites,
such as activity rescheduling or mandatory protective measures when pollutant levels enter
higher-risk bands.

Table 3. Results of Games Howell for post-analysis of new PM10 concentration group.

Group 1 2 3

1 - 0.000 0.000
2 - 0.000
3 -

5. Discussion
The frequency analysis revealed that most accidents occurred at pollutant concen-

trations with the highest observation frequency. This suggests that accident frequency
may be influenced more by exposure duration than by pollutant intensity. However, such
frequency-based interpretation alone cannot capture the true risk associated with different
concentration levels.

To address this limitation, this study employed relative probability as a metric to
assess accident risk adjusted for the frequency of pollutant exposure. Table 4 summarizes
the regression results, clustering, and statistical significance of RP-based analysis for five
pollutants: O3, SO2, NO2, PM10, and CO.

This approach is consistent with prior literature that emphasizes the inadequacy of
raw frequency data in environmental health and safety analysis. For example, Jeong
and Jeong (2022) similarly utilized a relative probability framework to assess fatality
risk in construction, highlighting its value in normalizing risk indicators across uneven
exposure distributions [52].

SO2 and PM10 demonstrated strong relationships with accident probability, with
R2 values exceeding 0.8. Based on this, two SO2 groups and three PM10 groups were
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defined using clustering, and their statistical significance was confirmed through t-tests
and ANOVA. These findings suggest that SO2 and PM10 concentrations are relevant risk
indicators for construction site accidents and should be monitored accordingly.

Table 4. The summary of accident impact of air pollutants using relative probability.

Classification Regression
Results

Number of
Clustering

Mean Difference
Between Groups Significance Result

SO2 0.8388 2 There is a difference Significant New Concentration Group
ProposalPM10 0.8289 3 There is a difference Significant

CO 0.4354 2 There is a difference Significant A new concentration group
could not be suggested due to

the low R2 value
NO2 0.2456 2 There is a difference Significant

O3 0.0832 4 No difference not significant There was no correlation with
the accident

Our findings align with the results of Cabral and Dillender (2024), who demonstrated
that elevated PM concentrations increased occupational injury rates, particularly in high-
risk outdoor jobs [23]. Similarly, Lavy et al. (2022) found that increased air pollution levels
significantly raised accident incidence among construction workers, attributing this to
impaired cognitive function and reduced physical stamina [22]. These studies corroborate
our conclusion that PM10, in particular, has a strong link to safety outcomes.

In contrast to health-based studies that often aggregate pollutants into single in-
dices (e.g., AQI), our study provides pollutant-specific insights that are directly linked to
safety outcomes. Xu et al. (2023) proposed a fuzzy-logic based system for predicting site
safety under outdoor conditions, but it lacked concentration-level thresholds for actionable
decision-making [24]. In comparison, our method introduces practical concentration ranges
derived from statistical clustering, providing safety practitioners with threshold-based
monitoring criteria.

In contrast, CO and NO2 had lower R2 values, indicating weak correlations with
accident probability. Although clustering and statistical tests showed differences between
groups, the explanatory power was insufficient to propose new groupings. The detailed
results are provided in the Supplementary Materials (Figures S9–S13). For O3, no mean-
ingful relationship with accident probability was observed, and no new classification
was warranted.

These pollutant-specific disparities highlight the need to move beyond generalized air
quality models when assessing occupational risk in construction. For instance, while some
studies, such as Wan et al. (2020), linked PM concentrations with increased traffic accidents,
they lacked sector-specific applicability and did not address confounding exposure times
or industrial contexts [27]. Our RP-based method enhances this by contextualizing the
exposure within construction site work hours.

Importantly, the new SO2 and PM10 concentration groups proposed in this study have
clear practical applications. Safety managers and environmental health officers can use
these risk-based thresholds to implement proactive mitigation strategies. For example,
if air pollutant levels reach Group 2 for SO2 or Group 3 for PM10, site supervisors may
opt to delay high-risk tasks, enhance personal protective equipment (PPE) requirements,
or increase break frequency to reduce fatigue and exposure. These thresholds can also
inform automated alert systems integrated with real-time monitoring equipment on-site,
triggering immediate risk notifications or work schedule adjustments. In this way, the
proposed groupings serve not only as analytical classifications but as functional decision-
making tools for real-time safety risk management.
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This study identifies SO2 and PM10 as critical air pollutants influencing construction
safety and proposes actionable concentration thresholds based on accident probability,
offering a novel perspective for environmental risk management on construction sites.

6. Conclusions
This study introduced a relative probability framework to quantitatively assess how

air pollutant concentrations are associated with construction accident risk. While the World
Health Organization (WHO) classifies air quality based on health effects, this study pro-
posed a new classification scheme focused on accident probability to enhance construction
safety management.

This study was carried out as follows: (i) collection of data; (ii) classification of data;
(iii) probabilistic analysis of air pollutant concentration and accident; and (iv) clustering of
air pollutant concentration groups.

Key findings are as follows:
First, among the five pollutants analyzed (SO2, CO, O3, NO2, PM10), only SO2 and

PM10 showed a strong positive correlation with accident probability, with R2 values ex-
ceeding 0.8. Higher concentrations of SO2 and PM10 were associated with significantly
increased accident risk on construction sites.

Second, new concentration groups were proposed based on accident data rather
than health thresholds. SO2 was categorized into two groups and PM10 into three, with
each showing statistically significant differences in accident probability. These groups
were validated using t-tests and ANOVA, confirming their effectiveness for practical
safety monitoring.

This study contributes to the field by presenting a quantitative method to examine
associations between air quality and construction safety. It offers actionable thresholds
for risk management and fills a gap between environmental health research and site-level
safety planning.

Limitations include the inability to control for potential confounding factors such as
weather conditions, seasonal variations, and co-pollutant effects. These factors may influ-
ence both pollutant levels and accident risk, and their omission may affect the robustness
of the associations observed. Future research should incorporate multivariate approaches
or stratified analyses to disentangle these effects and strengthen causal inference. In addi-
tion, case studies or field-based validation could provide more detailed insight into how
environmental and contextual variables interact with accident risk.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/buildings15183305/s1: Figure S1: Frequency analysis of accidents to
CO concentration and its WHO’s classification title; Figure S2: Frequency analysis of accidents to
O3 concentration and its WHO’s classification; Figure S3: Frequency analysis of accidents to NO2

concentration and its WHO’s classification; Figure S4: Relative probability analysis of accidents to CO
concentration and its WHO’s classification; Figure S5: Relative probability analysis of accidents to No2

concentration and its WHO’s classification; Figure S6: Relative probability analysis of accidents to O3

concentration and its WHO’s classification; Figure S7: Elbow point analysis about SO2; Figure S8:
Elbow point analysis about PM10; Figure S9: Elbow point analysis about CO; Figure S10: Elbow point
analysis about NO2; Figure S11: New concentration group of CO using relative probability of accident;
Figure S12: New concentration group of NO2 using relative probability of accident; Figure S13: New
concentration group of O3 using relative probability of accident; Table S1: Frequency of accidents by
time; Table S2: Air pollutant WHO criteria and concentration ranges were collected for this study;
Table S3: Existing WHO groups and newly proposed groups of air pollutants; Table S4: t-test results
of the new CO concentration group; Table S5: t-test results of the new NO2 concentration group.
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