Green Recycling and Long-Term Immobilization of Disposable Medical Masks for Enhanced Mechanical Performance of Self-Compacting Recycled Concrete
Abstract
1. Introduction
2. Experimental Preparation
2.1. Materials
2.1.1. Recycled Disposable Medical DMFM Fiber
2.1.2. Cementitious Materials and Aggregates
2.1.3. Specimen Design
2.2. Test Procedures
2.2.1. Mechanical Performance Test
2.2.2. X-CT, SEM Analysis
3. Short-Term Performance Results and Analysis
3.1. Fiber Effect on the Axial Compressive Strength
3.2. Fiber Effect on the Axial Failure Mode
3.3. Axial Compressive Stress–Strain Results
3.4. Stress–Strain Modeling
- ac—descending branch shape coefficient;
- Esec—secant modulus;
- Ec—elastic modulus;
- r—RCA replacement ratio (%);
- fb—DMFM fiber volume fraction (%).
4. Microstructure Analysis and Fiber Immobilization Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
C&D | Construction and Demolition (waste) |
COVID-19 | Coronavirus Disease 2019 |
CT | Computed Tomography |
DMFM | Discarded Mask Fiber Material |
FA | Fly Ash |
FRSCRAC | Fiber-Reinforced Self-Compacting Recycled Aggregate Concrete |
ITZ | Interfacial Transition Zone |
NCA | Natural Coarse Aggregate |
NFA | Natural Fine Aggregate |
OPC | Ordinary Portland Cement |
PP | Polypropylene |
RAC | Recycled Aggregate Concrete |
RCA | Recycled Coarse Aggregate |
SCC | Self-Compacting Concrete |
SCRAC | Self-Compacting Recycled Aggregate Concrete |
SEM | Scanning Electron Microscopy |
SF | Silica Fume |
W/B | Water-to-Binder Ratio |
X-CT | X-ray Computed Tomography |
References
- Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef]
- Saberian, M.; Li, J.; Kilmartin-Lynch, S.; Boroujeni, M. Repurposing of COVID-19 Single-Use Face Masks for Pavements Base/Subbase. Sci. Total Environ. 2021, 769, 145527. [Google Scholar] [CrossRef] [PubMed]
- Cudjoe, D.; Wang, H.; Zhu, B. Thermochemical Treatment of Daily COVID-19 Single-Use Facemask Waste: Power Generation Potential and Environmental Impact Analysis. Energy 2022, 249, 123707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, W. Sponge effect of aerated concrete on phosphorus adsorption-desorption from agricultural drainage water in rainfall. Soil Water Res. 2020, 15, 220–227. [Google Scholar] [CrossRef]
- Selvaranjan, K.; Navaratnam, S.; Rajeev, P.; Ravintherakumaran, N. Environmental Challenges Induced by Extensive Use of Face Masks during COVID-19: A Review and Potential Solutions. Environ. Chall. 2021, 3, 100039. [Google Scholar] [CrossRef]
- Lyu, L.; Bagchi, M.; Markoglou, N.; An, C.; Peng, H.; Bi, H.; Yang, X.; Sun, H. Towards Environmentally Sustainable Management: A Review on the Generation, Degradation, and Recycling of Polypropylene Face Mask Waste. J. Hazard. Mater. 2024, 461, 132566. [Google Scholar] [CrossRef]
- Ma, J.; Chen, F.; Xu, H.; Jiang, H.; Liu, J.; Li, P.; Chen, C.C.; Pan, K. Face Masks as a Source of Nanoplastics and Microplastics in the Environment: Quantification, Characterization, and Potential for Bioaccumulation. Environ. Pollut. 2021, 288, 117748. [Google Scholar] [CrossRef]
- Sun, S.; Yuan, Y.; Chen, R.; Xu, X.; Zhang, D. Kinetic, Thermodynamic and Chemical Reaction Analyses of Typical Surgical Face Mask Waste Pyrolysis. Therm. Sci. Eng. Prog. 2021, 26, 101135. [Google Scholar] [CrossRef]
- Cui, J.; Qi, M.; Zhang, Z.; Gao, S.; Xu, N.; Wang, X.; Chen, G. Disposal and Resource Utilization of Waste Masks: A Review. Environ. Sci. Pollut. Res. 2023, 30, 19683–19704. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.; Lee, W.; Nam, C. Superhydrophobic Polypropylene Sorbent Derived from Discarded Face Masks: A Highly Efficient Adsorbent for Oil Spill Sorbent. Chemosphere 2022, 303, 135186. [Google Scholar] [CrossRef]
- Pradhan, S.; Tiwari, B.R.; Kumar, S.; Barai, S.V. Comparative LCA of Recycled and Natural Aggregate Concrete Using Particle Packing Method and Conventional Method of Design Mix. J. Clean. Prod. 2019, 228, 679–691. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Y.; Lu, Y.; Ji, C.; Lin, C.; Yao, L.; Pu, Z.; de Brito, J. Prediction of properties of recycled aggregate concrete using machine learning models: A critical review. J. Build. Eng. 2024, 90, 109516. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, S.; Xiao, J.; Singh, A.; Xu, J.; Fang, H. Mechanical behavior of glass fiber-reinforced polymer timber-steel tube-concrete composite columns under axial compression. Struct. Concr. 2023, 24, 1296–1312. [Google Scholar] [CrossRef]
- Liao, G.; Xu, L.; Zhang, F.; Wang, D. A novel carbon-negative mortar: Mechanical properties, microstructure, and carbon emissions. Constr. Build. Mater. 2025, 492, 143089. [Google Scholar] [CrossRef]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Fresh-State Performance of Recycled Aggregate Concrete: A Review. Constr. Build. Mater. 2018, 178, 19–31. [Google Scholar] [CrossRef]
- Arun, A.; Chekravarty, D.; Murali, K. Comparative Analysis on Natural and Recycled Coarse Aggregate Concrete. Mater. Today Proc. 2021, 46, 8837–8841. [Google Scholar] [CrossRef]
- Barhmaiah, B.; Priyanka, M.L.; Padmakar, M. Strength Analysis and Validation of Recycled Aggregate Concrete. Mater. Today Proc. 2021, 37, 2312–2317. [Google Scholar] [CrossRef]
- Huang, Y.; He, X.; Sun, H.; Sun, Y.; Wang, Q. Effects of Coral, Recycled and Natural Coarse Aggregates on the Mechanical Properties of Concrete. Constr. Build. Mater. 2018, 192, 330–347. [Google Scholar] [CrossRef]
- Zhou, B.; Zhou, H.; Yoshioka, H.; Noguchi, T.; Wang, K.; Sun, B.; Cai, G.; Guo, Y.; Wang, D.; Zhao, W. Mechanical and microstructure evolution of 3D printed concrete interlayer at elevated temperatures. J. Build. Eng. 2025, 107, 112706. [Google Scholar] [CrossRef]
- Suryawanshi, S.; Singh, B.; Bhargava, P. Equation for Stress–Strain Relationship of Recycled Aggregate Concrete in Axial Compression. Mag. Concr. Res. 2018, 70, 163–171. [Google Scholar] [CrossRef]
- Grdic, Z.J.; Toplicic-Curcic, G.A.; Despotovic, I.M.; Ristic, N.S. Properties of Self-Compacting Concrete Prepared with Coarse Recycled Concrete Aggregate. Constr. Build. Mater. 2010, 24, 1129–1133. [Google Scholar] [CrossRef]
- Singh, A.; Duan, Z.; Xiao, J.; Liu, Q. Incorporating Recycled Aggregates in Self-Compacting Concrete: A Review. J. Sustain. Cem. Based Mater. 2020, 9, 165–189. [Google Scholar] [CrossRef]
- Nadour, Y.; Bouziadi, F.; Hamrat, M.; Boulekbache, B.; Amziane, S.; Haddi, A.; Labed, A. Short- and Long-Term Properties of Self-Compacting Concrete Containing Recycled Coarse Aggregate under Different Curing Temperatures: Experimental and Numerical Study. Mater. Struct. 2023, 56, 83. [Google Scholar] [CrossRef]
- Wani, T.A.; Ganesh, S. Study on Fresh Properties, Mechanical Properties and Microstructure Behavior of Fiber Reinforced Self Compacting Concrete: A Review. Mater. Today Proc. 2022, 62, 6663–6670. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Z.; Wang, D. Working and mechanical properties of waste glass fiber reinforced self-compacting recycled concrete. Constr. Build. Mater. 2024, 439, 137172. [Google Scholar] [CrossRef]
- Jeevetha, T.; VijayaShanthy, S.; Sivakumar, A.; Singh, N.B. Evaluation on Strength Parameters of Self-Compacting Concrete Incorporated with Carbon and Glass Fibres. Mater. Today Proc. 2021, 45, 708–712. [Google Scholar] [CrossRef]
- Altalabani, D.; Bzeni, D.K.H.; Linsel, S. Mechanical Properties and Load Deflection Relationship of Polypropylene Fiber Reinforced Self-Compacting Lightweight Concrete. Constr. Build. Mater. 2020, 252, 119084. [Google Scholar] [CrossRef]
- Nouri, Y.; Ghanbari, M.A.; Fakharian, P. An integrated optimization and ANOVA approach for reinforcing concrete beams with glass fiber polymer. Decis. Anal. J. 2024, 11, 100479. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The Influence of Fiber Type and Length on the Cracking Resistance, Durability and Pore Structure of Face Slab Concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- Ramesh, R.B.; Mirza, O.; Kang, W. Mechanical Properties of Steel Fiber Reinforced Recycled Aggregate Concrete. Struct. Concr. 2019, 20, 745–755. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R.; Mindess, S. Developing Crack Resistant SFRC Overlay Materials for Repair Applications. In Proceedings of the NSF Conference, Bergamo, Italy, 20–22 September 2004. [Google Scholar]
- Lee, S.-C.; Oh, J.-H.; Cho, J.-Y. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers. Materials 2015, 8, 1442–1458. [Google Scholar] [CrossRef]
- Peled, A.; Jones, J.; Shah, S.P. Effect of Matrix Modification on Durability of Glass Fiber Reinforced Cement Composites. Mater. Struct. 2005, 38, 163–171. [Google Scholar] [CrossRef]
- Kilmartin-Lynch, S.; Saberian, M.; Li, J.; Roychand, R.; Zhang, G. Preliminary Evaluation of the Feasibility of Using Polypropylene Fibres from COVID-19 Single-Use Face Masks to Improve the Mechanical Properties of Concrete. J. Clean. Prod. 2021, 296, 126460. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Lim, C. Effective Recycling of Disposable Medical Face Masks for Sustainable Green Concrete via a New Fiber Hybridization Technique. Constr. Build. Mater. 2022, 344, 128245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Wang, D. Mechanical Behavior of Self-Compacting Recycled Concrete Reinforced with Recycled Disposable Medical Mask Fiber. Constr. Build. Mater. 2024, 429, 136314. [Google Scholar] [CrossRef]
- Chen, L.; Nouri, Y.; Allahyarsharahi, N.; Naderpour, H.; Eidgahee, D.R.; Fakharian, P. Optimizing Compressive Strength Prediction in Eco-Friendly Recycled Concrete via Artificial Intelligence Models. Multiscale Multidiscip. Model. Exp. Des. 2025, 8, 24. [Google Scholar] [CrossRef]
- Hamzavi, I.H.; Lyons, A.B.; Kohli, I.; Narla, S.; Parks-Miller, A.; Gelfand, J.M.; Lim, H.W.; Ozog, D.M. Ultraviolet Germicidal Irradiation: Possible Method for Respirator Disinfection to Facilitate Reuse During the COVID-19 Pandemic. J. Am. Acad. Dermatol. 2020, 82, 1511–1512. [Google Scholar] [CrossRef]
- Yang, H.; Hu, J.; Li, P.; Zhang, C. Ultraviolet Germicidal Irradiation for Filtering Facepiece Respirators Disinfection to Facilitate Reuse During COVID-19 Pandemic: A Review. Photodiagnosis Photodyn. Ther. 2020, 31, 101943. [Google Scholar] [CrossRef]
- ASTM/C33M; Standard Specification for Concrete Aggregates. American Society for Testing: Montgomery, PA, USA, 2023.
- Zhang, H.; Wang, Y.; Lehman, D.E.; Geng, Y.; Kuder, K. Time-Dependent Drying Shrinkage Model for Concrete with Coarse and Fine Recycled Aggregate. Cem. Concr. Compos. 2020, 105, 103426. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for Design of Concrete Structures. The Ministry of Housing and Urban-Rural Development of the People’s Republic of China and the General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) of the People’s Republic of China: Beijing, China, 2010.
- Tang, Y.; Xiao, J.; Zhang, H.; Duan, Z.; Xia, B. Mechanical Properties and Uniaxial Compressive Stress-Strain Behavior of Fully Recycled Aggregate Concrete. Constr. Build. Mater. 2022, 323, 126546. [Google Scholar] [CrossRef]
- Chen, A.; Han, X.; Chen, M.; Wang, X.; Wang, Z.; Guo, T. Mechanical and Stress-Strain Behavior of Basalt Fiber Reinforced Rubberized Recycled Coarse Aggregate Concrete. Constr. Build. Mater. 2020, 260, 119888. [Google Scholar] [CrossRef]
Reference | Research Object | Parameter Selection Range | Research Contents | |||
---|---|---|---|---|---|---|
RCA | RFA | RP | FC | |||
Arun et al. [16] | Ordinary concrete | 0–100% | / | / | / | Workability, Compressive strength, Splitting tensile strength, Flexural strength, Acid resistance |
Barhmaiah et al. [17] | Ordinary concrete | 0–100% | / | Fly ash 0–35% to replace cement | / | Compressive strength, Flexural strength |
Huang et al. [18] | Ordinary concrete | 0–100% | / | / | / | Compressive strength, Elastic modulus, Poisson’s ratio, Stress–strain curve, Crack propagation, Failure modes |
Grdic et al. [21] | Self-compacting concrete (SCC) | 0–100% | / | / | / | Workability, Compressive strength, Splitting tensile strength, Flexural strength, Acid resistance. |
Jeevetha et al. [26] | Self-compacting concrete (SCC) | / | / | Micro silica 5%, 10% to replace cement | 0.2–0.8% | Compressive strength, Splitting tensile strength, Flexural strength |
Altalabani et al. [27] | Self-compacting concrete (SCC) | / | / | / | 0.22–0.66% | Compressive strength, Elastic modulus, Splitting tensile strength, Impact resistance, Flexural strength, Toughness index |
Ahmed and Lim [35] | Ordinary concrete | 50% | / | FA + GGBFS 20% to replace cement | 0–0.5% | Compressive strength, Splitting tensile strength, Flexural strength, Density, Ultrasonic pulse velocity (UPV), Water absorption |
Zhang et al. [36] | Self-compacting concrete (SCC) | 0–100% | / | FA + SF to replace cement | 0–0.3% | Workability, Compressive strength, Splitting tensile strength, Flexural strength, Elastic modulus, Pore structure (X-ray CT), Microstructure (SEM/EDS) |
This study | Self-compacting concrete (SCC) | 0–100% | / | FA + SF 20% to replace cement | 0–0.3% | Compressive strength, Stress–strain curve, Failure mode, Shrinkage model, Pore structure (X-CT), Microstructure (SEM/EDS) |
Specimen No. | W/B | Water | Additional Water | OPC | FA | SF | NCA | RCA | Sand | PCE (‰) | DMFM Fiber | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(V%) | Length/cm | |||||||||||
FRSCRAC0-P0-a | 0.43 | 214 | 0 | 321.3 | 148.3 | 24.7 | 800 | 0 | 792 | 0.3 | 0 | / |
FRSCRAC50-P0-a | 0.43 | 214 | 23 | 321.3 | 148.3 | 24.7 | 400 | 400 | 792 | 0.3 | 0 | / |
FRSCRAC100-P0-a | 0.43 | 214 | 47 | 321.3 | 148.3 | 24.7 | 0 | 800 | 792 | 0.3 | 0 | / |
FRSCRAC0-P0.2-a | 0.43 | 214 | 0 | 321.3 | 148.3 | 24.7 | 800 | 0 | 792 | 0.3 | 0.2 | 2 |
FRSCRAC50-P0.2-a | 0.43 | 214 | 23 | 321.3 | 148.3 | 24.7 | 400 | 400 | 792 | 0.3 | 0.2 | 2 |
FRSCRAC100-P0.2-a | 0.43 | 214 | 47 | 321.3 | 148.3 | 24.7 | 0 | 800 | 792 | 0.3 | 0.2 | 2 |
FRSCRAC50-P0.1-a | 0.43 | 214 | 23 | 321.3 | 148.3 | 24.7 | 400 | 400 | 792 | 0.3 | 0.1 | 2 |
FRSCRAC50-P0.3-a | 0.43 | 214 | 23 | 321.3 | 148.3 | 24.7 | 400 | 400 | 792 | 0.3 | 0.3 | 2 |
FRSCRAC50-P0.2-b | 0.43 | 214 | 23 | 321.3 | 148.3 | 24.7 | 400 | 400 | 792 | 0.3 | 0.2 | 3 |
FRSCRAC50-P0.2-c | 0.43 | 214 | 23 | 321.3 | 148.3 | 24.7 | 400 | 400 | 792 | 0.3 | 0.2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Xu, Z.; Lv, Z.; Wang, D.; Li, X.; Zhang, L.; Sun, B.; Sun, C. Green Recycling and Long-Term Immobilization of Disposable Medical Masks for Enhanced Mechanical Performance of Self-Compacting Recycled Concrete. Buildings 2025, 15, 3286. https://doi.org/10.3390/buildings15183286
Zhang F, Xu Z, Lv Z, Wang D, Li X, Zhang L, Sun B, Sun C. Green Recycling and Long-Term Immobilization of Disposable Medical Masks for Enhanced Mechanical Performance of Self-Compacting Recycled Concrete. Buildings. 2025; 15(18):3286. https://doi.org/10.3390/buildings15183286
Chicago/Turabian StyleZhang, Fubin, Zhenshuo Xu, Zhenyuan Lv, Dianchao Wang, Xiulian Li, Lingfeng Zhang, Bochao Sun, and Chang Sun. 2025. "Green Recycling and Long-Term Immobilization of Disposable Medical Masks for Enhanced Mechanical Performance of Self-Compacting Recycled Concrete" Buildings 15, no. 18: 3286. https://doi.org/10.3390/buildings15183286
APA StyleZhang, F., Xu, Z., Lv, Z., Wang, D., Li, X., Zhang, L., Sun, B., & Sun, C. (2025). Green Recycling and Long-Term Immobilization of Disposable Medical Masks for Enhanced Mechanical Performance of Self-Compacting Recycled Concrete. Buildings, 15(18), 3286. https://doi.org/10.3390/buildings15183286