An Audio Augmented Reality Navigation System for Blind and Visually Impaired People Integrating BIM and Computer Vision
Abstract
1. Introduction
2. Scientific Background
2.1. User Tracking
2.2. Reference Path Planning
2.3. Directional Guidance Delivery
3. Methodology
3.1. Custom Cloud Platform Component
3.2. Google Cloud Platform Component
3.3. AAR Navigation Assistant Component
4. System Implementation
4.1. Custom Cloud Platform Implementation
4.2. AAR Navigation Assistant Implementation
5. Experiment and Result Discussions
5.1. Experiment Design
- -
- The proposed system aligns with the category of EOAs, whose primary function is to support users in path planning and directional guidance, rather than obstacle avoidance or detection. This distinguishes it from ETAs, which are designed to assist users in safely exploring their surroundings by detecting obstacles.
- -
- The reference path is computed prior to the start of the navigation and the environment remains static throughout the traversal, with no new obstacles appearing during navigation.
- -
- The starting point is the same for all the path planning tests, since the user launches the assistant in the same position outdoors.
- -
- The destination point, on the other hand, corresponding to the geometric center of the classroom assumed as a destination, varies according to it. As a result, the shortest path connecting the user and the destinations is returned and applied as reference paths by the assistant to provide turn-by-turn audio instructions to the user during navigation tasks.
- -
- The existence of at least a path connecting the starting and the destination points is a prerequisite for the execution of both the path planning and the navigation tests. Hence, the existence of no paths is considered as a failure of the system.
- Reach the defined starting point.
- Launch the developed navigation assistant application by a manual tap or vocally using the Google assistant (e.g., “Hey Google, open the AAR navigation assistant”).
- Provide an audio request for path planning (e.g., “Please, provide the directions to reach (name of the room)”).
- Frame the surroundings area with the smartphone camera.
- Start the navigation following turn-by-turn audio instructions provided by the assistant until reaching the destination. The application collects user positions during navigation and measures time elapsed to reach the destination.
5.2. Evaluation Metrics
5.3. Result Discussion
5.3.1. Path Planning Tests
5.3.2. Navigation Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
References
- Zafar, S.; Asif, M.; Bin Ahmad, M.; Ghazal, T.M.; Faiz, T.; Ahmad, M.; Khan, M.A. Assistive Devices Analysis for Visually Impaired Persons: A Review on Taxonomy. IEEE Access 2022, 10, 13354–13366. [Google Scholar] [CrossRef]
- Messaoudi, M.D.; Menelas, B.A.J.; Mcheick, H. Review of Navigation Assistive Tools and Technologies for the Visually Impaired. Sensors 2022, 22, 7888. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, B.; Shrestha, R.; Sandnes, F.E. Tools and Technologies for Blind and Visually Impaired Navigation Support: A Review. IETE Tech. Rev. 2022, 39, 3–18. [Google Scholar] [CrossRef]
- García-Pereira, I.; Casanova-Salas, P.; Gimeno, J.; Morillo, P.; Reiners, D. Cross-Device Augmented Reality Annotations Method for Asynchronous Collaboration in Unprepared Environments. Information 2021, 12, 519. [Google Scholar] [CrossRef]
- Abidi, M.H.; Noor Siddiquee, A.; Alkhalefah, H.; Srivastava, V. A Comprehensive Review of Navigation Systems for Visually Impaired Individuals. Heliyon 2024, 10, e31825. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.J. Recent Advancements in Indoor Electronic Travel Aids for the Blind or Visually Impaired: A Comprehensive Review of Technologies and Implementations. Univers. Access Inf. Soc. 2024, 24, 173–193. [Google Scholar] [CrossRef]
- Fernando, N.; McMeekin, D.A.; Murray, I. Route Planning Methods in Indoor Navigation Tools for Vision Impaired Persons: A Systematic Review. Disabil. Rehabil. Assist. Technol. 2023, 18, 763–782. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.Y.; Ho, Y.L. NFC Label Tagging Smartphone Application for the Blind and Visually Impaired in IoT. In Information Science and Applications, Lecture Notes in Electrical Engineering; Kim, H., Kim, K.J., Park, S., Eds.; Springer: Singapore, 2021; pp. 305–315. [Google Scholar]
- Bendanillo, B.J.B.; Orteza, V.J.P.; Palad, J.P.B.; Samonte, M.J.C. Sight-Man: A Smart Infrared Technology That Guides the Visually Impaired. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2020; pp. 61–65. [Google Scholar]
- Yamashita, A.; Sato, K.; Matsubayashi, K. Pedestrian Navigation System for Visually Impaired People Using HoloLens and RFID. In Proceedings of the 2017 Conference on Technologies and Applications of Artificial Intelligence (TAAI), Taipei, Taiwan, 1–3 December 2017. [Google Scholar]
- Martinez-Sala, A.S.; Losilla, F.; Sánchez-Aarnoutse, J.C.; García-Haro, J. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People. Sensors 2015, 15, 32168–32187. [Google Scholar] [CrossRef] [PubMed]
- Narupiyakul, L.; Sanghlao, S.; Yimwadsana, B. An Indoor Navigation System for the Visually Impaired Based on RSS Lateration and RF Fingerprint. In Smart Homes and Health Telematics, Designing a Better Future: Urban Assisted Living; Springer International Publishing AG: Cham, Switzerland, 2018. [Google Scholar]
- Ahmetovic, D.; Gleason, C.; Ruan, C.; Kitani, K.; Takagi, H.; Asakawa, C. NavCog: A Navigational Cognitive Assistant for the Blind. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, Florence, Italy, 6–9 October 2016; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 90–99. [Google Scholar]
- Chaccour, K.; Badr, G. Novel Indoor Navigation System for Visually Impaired and Blind People. In Proceedings of the 2015 International Conference on Applied Research in Computer Science and Engineering (ICAR), Beiriut, Lebanon, 8–9 October 2015. [Google Scholar]
- Bai, J.; Lian, S.; Liu, Z.; Wang, K.; Liu, D. Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Trans. Consum. Electron. 2018, 64, 136–143. [Google Scholar] [CrossRef]
- Croce, D.; Giarré, L.; Pascucci, F.; Tinnirello, I.; Galioto, G.E.; Garlisi, D.; Lo Valvo, A. An Indoor and Outdoor Navigation System for Visually Impaired People. IEEE Access 2019, 7, 170406–170418. [Google Scholar] [CrossRef]
- Jonas, S.M.; Sirazitdinova, E.; Lensen, J.; Kochanov, D.; Mayzek, H.; De Heus, T.; Houben, R.; Slijp, H.; Deserno, T.M. IMAGO: Image-Guided Navigation for Visually Impaired People. J. Ambient. Intell. Smart Environ. 2015, 7, 679–692. [Google Scholar] [CrossRef]
- Schönberger, J.L.; Frahm, J.-M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks. arXiv 2019, arXiv:1911.11763. [Google Scholar]
- Lindenberger, P.; Sarlin, P.-E.; Pollefeys, M. LightGlue: Local Feature Matching at Light Speed. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023. [Google Scholar]
- Zhang, X.; Yao, X.; Zhu, Y.; Hu, F. An ARCore Based User Centric Assistive Navigation System for Visually Impaired People. Appl. Sci. 2019, 9, 989. [Google Scholar] [CrossRef]
- Google for Developers Build Global-Scale, Immersive, Location-Based AR Experiences with the ARCore Geospatial API. Available online: https://developers.google.com/ar/develop/geospatial (accessed on 31 July 2024).
- Reinhardt, T. Using Global Localization to Improve Navigation. Available online: https://research.google/blog/using-global-localization-to-improve-navigation/ (accessed on 31 July 2024).
- Bai, J.; Su, G.; Liu, D.; Fu, Z. A Cloud and Vision-Based Navigation System Used for Blind People. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2017; Volume Part F128531. [Google Scholar]
- Lee, Y.H.; Medioni, G. RGB-D Camera Based Wearable Navigation System for the Visually Impaired. Comput. Vis. Image Underst. 2016, 149, 3–20. [Google Scholar] [CrossRef]
- ISO 16739-1:2024; Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries. International Organization for Standardization: Geneva, Switzerland, 2024.
- Vaccarini, M.; Spegni, F.; Giretti, A.; Pirani, M.; Carbonari, A. Interoperable Mixed Reality for Facility Management: A Cyber-Physical Perspective. J. Inf. Technol. Constr. 2023, 29, 573–595. [Google Scholar] [CrossRef]
- Yang, J.; Barde, A.; Billinghurst, M. Audio Augmented Reality: A Systematic Review of Technologies, Applications, and Future Research Directions. AES J. Audio Eng. Soc. 2022, 70, 788–809. [Google Scholar] [CrossRef]
- Messi, L.; Corneli, A.; Spegni, F.; Binni, L.; Vaccarini, M. Infrastructure-Free Localization System for Augmented Reality Registration in Indoor Environments: A First Accuracy Assessment. In Proceedings of the 2024 IEEE International Workshop on Metrology for Living Environment, Chania, Greece, 12–14 June 2024. [Google Scholar]
- Messi, L.; Spegni, F.; Vaccarini, M.; Corneli, A.; Binni, L. Seamless Augmented Reality Registration Supporting Facility Management Operations in Unprepared Environments. J. Inf. Technol. Constr. 2024, 29, 1156–1180. [Google Scholar] [CrossRef]
- Hung, N.; Rego, F.; Quintas, J.; Cruz, J.; Jacinto, M.; Souto, D.; Potes, A.; Sebastiao, L.; Pascoal, A. A Review of Path Following Control Strategies for Autonomous Robotic Vehicles: Theory, Simulations, and Experiments. J. Field Robot. 2023, 40, 747–779. [Google Scholar] [CrossRef]
- Google for Developers ARCore API Reference. Available online: https://developers.google.com/ar/reference (accessed on 31 July 2024).
- Docker Inc. Docker. Available online: https://www.docker.com/ (accessed on 12 August 2024).
- Sarlin, P.-E.; Cadena, C.; Siegwart, R.; Dymczyk, M. From Coarse to Fine: Robust Hierarchical Localization at Large Scale. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- OpenCV. Perspective-n-Point (PnP) Pose Computation. Available online: https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html (accessed on 22 December 2023).
- Naticchia, B.; Messi, L.; Carbonari, A. BIM-Based Holonic System for Real-Time Pathfinding in Building Emergency Scenario. In Proceedings of the 2019 European Conference for Computing in Construction, Chania, Greece, 10–12 July 2019; Volume 1, pp. 117–124. [Google Scholar]
- Unity Technologies. Unity GlTFast Documentation. Available online: https://docs.unity3d.com/Packages/com.unity.cloud.gltfast@6.10/manual/index.html (accessed on 24 January 2025).
- Granberg, A. A * Pathfinding Project Pro. Available online: https://arongranberg.com/astar/docs/ (accessed on 27 November 2021).
- Altundas, S. OpenAI-Unity. Available online: https://github.com/srcnalt/OpenAI-Unity (accessed on 11 March 2025).
- Unity Technologies. Speech-to-Text API. Available online: https://www.assemblyai.com/products/speech-to-text (accessed on 24 March 2025).
- Unity Technologies. Audio Spatializer SDK. Available online: https://docs.unity3d.com/Manual/AudioSpatializerSDK.html (accessed on 30 July 2024).
- Tao, Y.; Both, A.; Silveira, R.I.; Buchin, K.; Sijben, S.; Purves, R.S.; Laube, P.; Peng, D.; Toohey, K.; Duckham, M. A Comparative Analysis of Trajectory Similarity Measures. GIscience Remote Sens. 2021, 58, 643–669. [Google Scholar] [CrossRef]
- Curvesimilarities Curvesimilarities. Available online: https://github.com/JSS95/curvesimilarities (accessed on 2 August 2024).
- Tapp, K. Differential Geometry of Curves and Surfaces; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
Correction Angle Ranges | Directions |
---|---|
Turn left | |
Turn slightly left | |
Go ahead | |
Turn slightly right | |
Turn right |
Pseudocode | Description |
---|---|
Main() | Initialize the path follower |
{ | |
LoadRoute() | Load the reference path |
PlayMessageInFrontOfCamera(“welcome to the navigation assistant”) | Play a welcome message (1-m-away in front of the camera) |
UpdateNavigationAssistant() | Start/update the computation of the correction angle |
} | |
UpdateNavigationAssistant() | Start/update the computation of the correction angle |
{ | |
if (userTracked) | Check if the user is tracked |
PlayMessageInFrontOfCamera(“localization achieved”) | Play a success message (1-m-away in front of the camera) |
correctionAngle = ComputeCorrectionAngle() | Compute the correction angle |
GetDirections(correctionAngle) | Get directions from the correction angle |
else | Otherwise |
PlayMessageInFrontOfCamera(“user localization failed, please turn around to improve”) | Play a warning message (1-m-away in front of the camera) |
} | |
GetDirections(correctionAngle) | Provide navigation directions |
{ | |
assistantMessage = ConvertAngleToText(correctionAngle) | Convert correction angle to text |
if (assistantMessageChanged && elapsedTime > messagePersistance || elapsedTime > repetitionInterval) | Check if the navigation message is changed and/or it is elapsed enough time from last play |
PlayMessageFromPLOS(assistantMessage) | Play navigation message in tracking mode |
} |
Path Planning Test No. | Destination String | Path Length [m] | Computing Time [ms] |
---|---|---|---|
1 | Classroom 140/1 | 138.16 | 11 |
2 | Classroom 140/2 | 126.02 | 11 |
3 | Classroom 140/3 | 123.00 | 12 |
4 | Classroom 140/D3 | 108.20 | 12 |
5 | Classroom 140/4 | 131.87 | 14 |
Navigation Tests in Blindfolded Conditions | ||||
---|---|---|---|---|
Test No. | CFD [m] | ACFD [m] | User Path Length [m] | Duration [s] |
1 | 1.54 | 0.39 | 127.18 | 151.00 |
2 | 1.57 | 0.59 | 126.46 | 213.00 |
3 | 1.61 | 0.40 | 126.63 | 164.00 |
4 | 1.65 | 0.55 | 126.69 | 159.00 |
5 | 1.35 | 0.32 | 125.14 | 214.00 |
6 | 1.28 | 0.41 | 123.79 | 140.00 |
7 | 1.50 | 0.57 | 126.42 | 142.00 |
8 | 1.75 | 0.52 | 124.86 | 147.00 |
9 | 1.45 | 0.48 | 123.91 | 143.00 |
10 | 1.13 | 0.43 | 124.57 | 146.00 |
11 | 1.50 | 0.35 | 124.57 | 135.00 |
12 | 1.34 | 0.35 | 124.77 | 136.00 |
13 | 1.14 | 0.43 | 123.14 | 130.00 |
14 | 1.02 | 0.37 | 124.74 | 134.00 |
15 | 1.72 | 0.53 | 127.62 | 202.00 |
16 | 1.71 | 0.52 | 129.51 | 202.00 |
17 | 1.41 | 0.35 | 128.03 | 189.00 |
18 | 1.62 | 0.29 | 128.26 | 178.00 |
19 | 1.61 | 0.56 | 127.39 | 182.00 |
20 | 1.23 | 0.29 | 126.12 | 184.00 |
Navigation Tests in Sighted Conditions | ||||
---|---|---|---|---|
Test No. | CFD [m] | ACFD [m] | User Path Length [m] | Duration [s] |
1 | 1.56 | 0.47 | 125.60 | 154.00 |
2 | 1.81 | 0.51 | 125.44 | 140.00 |
3 | 2.02 | 0.71 | 126.85 | 133.00 |
4 | 1.47 | 0.43 | 125.48 | 156.00 |
5 | 2.09 | 0.66 | 127.83 | 144.00 |
6 | 1.64 | 0.79 | 126.12 | 144.00 |
7 | 1.45 | 0.47 | 126.51 | 152.00 |
8 | 0.96 | 0.37 | 122.67 | 142.00 |
9 | 1.70 | 0.47 | 122.96 | 154.00 |
10 | 1.02 | 0.41 | 123.91 | 147.00 |
11 | 1.75 | 0.55 | 124.10 | 152.00 |
12 | 1.67 | 0.44 | 123.12 | 158.00 |
13 | 1.65 | 0.51 | 125.74 | 146.00 |
14 | 1.14 | 0.42 | 124.58 | 154.00 |
15 | 1.05 | 0.38 | 125.74 | 156.00 |
16 | 1.04 | 0.37 | 125.17 | 155.00 |
17 | 1.74 | 0.59 | 126.33 | 164.00 |
18 | 2.03 | 0.72 | 127.14 | 160.00 |
19 | 2.12 | 0.63 | 128.07 | 164.00 |
20 | 1.45 | 0.42 | 126.76 | 151.00 |
Navigation Tests in Blindfolded vs. Sighted Conditions | ||||
---|---|---|---|---|
CFD | ACFD | User Path Length | Duration | |
Statistic (W) | 66.00 | 66.50 | 70.00 | 62.50 |
p-value [%] | 14.29 | 16.50 | 20.24 | 12.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messi, L.; Vaccarini, M.; Corneli, A.; Carbonari, A.; Binni, L. An Audio Augmented Reality Navigation System for Blind and Visually Impaired People Integrating BIM and Computer Vision. Buildings 2025, 15, 3252. https://doi.org/10.3390/buildings15183252
Messi L, Vaccarini M, Corneli A, Carbonari A, Binni L. An Audio Augmented Reality Navigation System for Blind and Visually Impaired People Integrating BIM and Computer Vision. Buildings. 2025; 15(18):3252. https://doi.org/10.3390/buildings15183252
Chicago/Turabian StyleMessi, Leonardo, Massimo Vaccarini, Alessandra Corneli, Alessandro Carbonari, and Leonardo Binni. 2025. "An Audio Augmented Reality Navigation System for Blind and Visually Impaired People Integrating BIM and Computer Vision" Buildings 15, no. 18: 3252. https://doi.org/10.3390/buildings15183252
APA StyleMessi, L., Vaccarini, M., Corneli, A., Carbonari, A., & Binni, L. (2025). An Audio Augmented Reality Navigation System for Blind and Visually Impaired People Integrating BIM and Computer Vision. Buildings, 15(18), 3252. https://doi.org/10.3390/buildings15183252