Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Asphalt Mixture Design and Production
2.3. Test Methods
2.3.1. Bulk Density and Air Voids Content
2.3.2. Water Sensitivity
2.3.3. Rolling Resistance (Energy Loss Test)
2.3.4. Resistance to Rutting
2.3.5. Low Temperature Cracking
2.3.6. Resistance to Fatigue
3. Results and Discussion
3.1. Bulk Density and Air Voids Content
3.2. Water Sensitivity
3.3. Rolling Resistance (Energy Loss Test)
3.4. Resistance to Rutting
3.5. Low Temperature Cracking (TSRST)
3.6. Resistance to Resistance
4. Conclusions
- All tested asphalt mixtures achieved satisfactory compaction and air voids content. Dense-graded asphalt concrete (AC) mixtures typically displayed higher bulk density (2.370–2.406 Mg/m3) and lower air voids (2.2–3.3), reflecting efficient aggregate packing, while stone mastic asphalt (SMA) mixtures showed greater air voids (2.3–3.5) and slightly lower densities (2.324–2.360 Mg/m3), in line with their gap-graded design and higher binder content. The use of RAP dd not notably affect compaction or volume, supporting recycled materials’ suitability.
- All AC and SMA mixtures, irrespective of RAP present, exhibited strong mechanical performance, with indirect tensile strength ratio above 90% and meeting the requirements for water sensitivity. SMA mixtures, with and without RAP, generally showed about 1.7 times higher resistance to rutting than AC mixtures, attributable to their optimized aggregate skeletons. The incorporation of RAP in SMA mixtures resulted in improved resistance to rutting but reduced resistance to fatigue due to increased mixture stiffness. In contrast, RAP addition in AC mixtures, produced inconsistent effects on resistance to fatigue and tended to reduce resistance to rutting. These findings underscore the importance of carefully balancing asphalt mixtures with RAP depending on the targeted performance properties and mixture type.
- All mixtures demonstrated effective resistance to low-temperature cracking, with critical cracking temperatures ranging from −36.0 °C to −32.8 °C, indicating suitability for cold climate applications. Mixtures with higher failure stress generally showed greater resistance to thermal cracking. The incorporation of RAP did not accelerate the embrittlement of asphalt specimens.
- All mixtures demonstrated low rolling resistance (coefficients of energy loss varied from 0.0060 to 0.0064), thereby facilitating the design of pavements that contribute to lower energy consumption and reduced environmental impact. The incorporation of RAP and the application of WMA additive did not adversely affect the functional performance of the developed mixtures.
- The results highlight that asphalt mixture design approaches incorporating RAP and WMA additive, can produce asphalt mixtures with balanced physical, mechanical, and functional properties. These tendencies support the transition to sustainable, durable, and climate-neutral road infrastructure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commision Climate Change—Driving Forces. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Climate_change_-_driving_forces#General_overview (accessed on 7 July 2025).
- European Environment Agency. Sustainability of Europe’s Mobility Systems; European Environment Agency: Copenhagen, Denmark, 2024. [Google Scholar]
- Andersen, L.G.; Larsen, J.K.; Fraser, E.S.; Schmidt, B.; Dyre, J.C. Rolling Resistance Measurement and Model Development. J. Transp. Eng. 2015, 141, 04014075. [Google Scholar] [CrossRef]
- Świeczko-Żurek, B.; Ronowski, G.; Ejsmont, J. Tyre Rolling Resistance and Its Influence on Fuel Consumption. Combust. Engines 2017, 168, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Trupia, L.; Parry, T.; Neves, L.C.; Lo Presti, D. Rolling Resistance Contribution to a Road Pavement Life Cycle Carbon Footprint Analysis. Int. J. Life Cycle Assess. 2017, 22, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lee, I.-S.; Kendall, A.; Harvey, J.; Lee, E.-B.; Kim, C. Life Cycle Energy Consumption and GHG Emission from Pavement Rehabilitation with Different Rolling Resistance. J. Clean. Prod. 2012, 33, 86–96. [Google Scholar] [CrossRef]
- Sohaney, R.C.; Otto Rasmussen, R. Pavement Texture Evaluation and Relationships to Rolling Resistanc e at MnROAD; MN/RC 2013-16 2; Minnesota Department of Transportation: Saint Paul, MN, USA, 2013. [Google Scholar]
- Haider, M.; Conter, M.; Green, M.; Schmidt, B.; Sandberg, U. Status of the EU-Project ROSANNE. Transp. Res. Procedia 2016, 14, 2946–2955. [Google Scholar] [CrossRef]
- Nielsen, N.R.; Chatti, K.; Nielsen, C.P.; Zaabar, I.; Hjorth, P.G.; Hecksher, T. Method for Direct Measurement of Structural Rolling Resistance for Heavy Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 371–380. [Google Scholar] [CrossRef]
- Ydrefors, L.; Hjort, M.; Kharrazi, S.; Jerrelind, J.; Stensson Trigell, A. Rolling Resistance and Its Relation to Operating Conditions: A Literature Review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2931–2948. [Google Scholar] [CrossRef]
- Carlson, A.; Vieira, T. The Effect of Water and Snow on the Road Surface on Rolling Resistance. VTI Rapport 971 A; VTI: Linköping, Sweden, 2021. [Google Scholar]
- Sun, Z.; Premarathna, W.A.A.S.; Anupam, K.; Kasbergen, C.; Erkens, S.M.J.G. A State-of-the-Art Review on Rolling Resistance of Asphalt Pavements and Its Environmental Impact. Constr. Build. Mater. 2024, 411, 133589. [Google Scholar] [CrossRef]
- Pettinari, M.; Lund-Jensen, B.B.; Schmidt, B. Low Rolling Resistance Pavements in Denmark. In Proceedings of the 6th Eurasphalt & Eurobitume Congress, Prague, Czech Republic, 1–3 June 2016; Czech Technical University in Prague: Prague, Czech Republic, 2016. [Google Scholar]
- Pettinari, M.; Schmidt, B. Development and Implementation of Low Rolling Resistance Pavement in Denmark. Asf. y Paviment 2017, VII, 43–49. [Google Scholar]
- Mookhoek, S.D.; van Kanten-Roos, W.; Bijleveld, F. Making Roads Resistance Energy Efficient by Reducing Rolling; TNO: Hague, The Netherlands, 2017. [Google Scholar]
- Scottish Road Research Board. The Effect of Rolling Resistance on Carbon Emissions; Scottish Road Research Board: Edinburgh, Scottish, 2024. [Google Scholar]
- Mattinzioli, T.; Sol-Sánchez, M.; Jiménez del Barco Carrión, A.; Moreno-Navarro, F.; Rubio-Gámez, M.d.C.; Martínez, G. Analysis of the GHG Savings and Cost-Effectiveness of Asphalt Pavement Climate Mitigation Strategies. J. Clean. Prod. 2021, 320, 128768. [Google Scholar] [CrossRef]
- Riekstins, A.; Haritonovs, V.; Straupe, V.; Izaks, R.; Merijs-Meri, R.; Zicans, J. Comparative Environmental and Economic Assessment of a Road Pavement Containing Multiple Sustainable Materials and Technologies. Constr. Build. Mater. 2024, 432, 136522. [Google Scholar] [CrossRef]
- Wu, S.; Bhatt, B.; Kenney, C. Towards Carbon Neutrality: A Comprehensive Review of Sustainable Materials for Asphalt Pavement. Road Mater. Pavement Des. 2024, 629, 1–30. [Google Scholar] [CrossRef]
- Wang, D.; Riccardi, C.; Jafari, B.; Cannone Falchetto, A.; Wistuba, M.P. Investigation on the Effect of High Amount of Re-Recycled RAP with Warm Mix Asphalt (WMA) Technology. Constr. Build. Mater. 2021, 312, 125395. [Google Scholar] [CrossRef]
- Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content. Materials 2021, 14, 3793. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, A.; Behnood, A.; Nowruzi, A.; Haghshenas, H. Performance Evaluation of Asphalt Mixtures Containing Warm Mix Asphalt (WMA) Additives and Reclaimed Asphalt Pavement (RAP). Constr. Build. Mater. 2021, 268, 121200. [Google Scholar] [CrossRef]
- Ferrotti, G.; Mancinelli, E.; Passerini, G.; Canestrari, F. Comparison of Energy and Environmental Performance between Warm and Hot Mix Asphalt Concrete Production: A Case Study. Constr. Build. Mater. 2024, 418, 135453. [Google Scholar] [CrossRef]
- Mallick, R.B.; Bergendahl, J. A Laboratory Study on CO2 Emission from Asphalt Binder and Its Reduction with the Use of Warm Mix Asphalt. Int. J. Sustain. Eng. 2009, 2, 275–283. [Google Scholar] [CrossRef]
- Cheraghian, G.; Cannone Falchetto, A.; You, Z.; Chen, S.; Kim, Y.S.; Westerhoff, J.; Moon, K.H.; Wistuba, M.P. Warm Mix Asphalt Technology: An up to Date Review. J. Clean. Prod. 2020, 268, 122128. [Google Scholar] [CrossRef]
- Wu, S.; Tahri, O.; Shen, S.; Zhang, W.; Muhunthan, B. Environmental Impact Evaluation and Long-Term Rutting Resistance Performance of Warm Mix Asphalt Technologies. J. Clean. Prod. 2021, 278, 123938. [Google Scholar] [CrossRef]
- Bizarro, D.E.G.; Steinmann, Z.; Nieuwenhuijse, I.; Keijzer, E.; Hauck, M. Potential Carbon Footprint Reduction for Reclaimed Asphalt Pavement Innovations: LCA Methodology, Best Available Technology, and Near-Future Reduction Potential. Sustainability 2021, 13, 1382. [Google Scholar] [CrossRef]
- Pouget, S.; Marsac, P.; Pedraza, A.; Sauzéat, C.; Di Benedetto, H.; Gaudefroy, V.; Boulangé, L.; Pévère, A.; Mouillet, V. Advanced Characterisation of Multi-Recycled Warm Asphalt Pavement (MRWAP) with High Content of Recycled Asphalt Pavement. Road Mater. Pavement Des. 2023, 24, 388–409. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Jiao, Y.; Mo, L.; Tan, Y.; Wang, D.; Liang, M. Effect of WMA-RAP Technology on Pavement Performance of Asphalt Mixture: A State-of-the-Art Review. J. Clean. Prod. 2020, 266, 121704. [Google Scholar] [CrossRef]
- El Sharkawy, S.A.; Wahdan, A.H.; Galal, S.A. Utilisation of Warm-Mix Asphalt Technology to Improve Bituminous Mixtures Containing Reclaimed Asphalt Pavement. Road Mater. Pavement Des. 2017, 18, 477–506. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Shu, X.; Woods, M. Comparative Evaluation of Warm Mix Asphalt Containing High Percentages of Reclaimed Asphalt Pavement. Constr. Build. Mater. 2013, 44, 92–100. [Google Scholar] [CrossRef]
- Guo, N.; You, Z.; Tan, Y.; Zhao, Y. Performance Evaluation of Warm Mix Asphalt Containing Reclaimed Asphalt Mixtures. Int. J. Pavement Eng. 2017, 18, 981–989. [Google Scholar] [CrossRef]
- Ejsmont, J.; Owczarzak, W. Engineering Method of Tire Rolling Resistance Evaluation. Measurement 2019, 145, 144–149. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I. Laboratory Evaluation of Hot-Mix Asphalt Containing Construction and Demolition Waste. Constr. Build. Mater. 2013, 43, 497–505. [Google Scholar] [CrossRef]
- Škulteckė, J.; Vaitkus, A.; Šernas, O. Laboratory Investigation on the Use of Wood Waste Fibres in SMA Mixtures. Constr. Build. Mater. 2023, 400, 132727. [Google Scholar] [CrossRef]
- Sandberg, U.; Jerzy, E. Tyre/Road Noise. Reference Book; INFORMEX: Kisa, Sweden, 2002; ISBN 9163126109/9789163126109. [Google Scholar]
Property | Standard | 8–11 | 5–8 | 2–5 |
---|---|---|---|---|
Flakiness index FI | EN 933-3 | 20 | 20 | 20 |
Shape index SI | EN 933-4 | 20 | 20 | 20 |
Los Angeles coefficient LA | EN 1097-2 | 20 | 20 | 20 |
Polished stone value PSV | EN 1097-8 | 50 | 50 | 50 |
Percentage of crushed particles C | EN 933-5 | C100/0 | C100/0 | C100/0 |
Sieve, mm | 0.063 | 0.125 | 0.25 | 0.5 | 1.0 | 2.0 | 4.0 | 5.6 | 8.0 | 11.2 | 16.0 |
Passing, % | 12.8 | 16.1 | 20.1 | 24.0 | 28.4 | 34.7 | 44.3 | 55.6 | 77.1 | 98.8 | 100.0 |
Property | Standard | PMB 45/80-65 | Limits | RAP |
---|---|---|---|---|
Penetration, dmm | EN 1426 | 58.0 | 45–80 | 41.0 |
Softening point, °C | EN 1427 | 81.0 | ≥65.0 | 61.0 |
Recovery R3.2, % | EN 16659 | 90.3 | - | 31.7 |
Non-recoverable creep compliance Jnr3.2, kPa−1 | EN 16659 | 0.158 | - | 0.476 |
Property | Value |
---|---|
Aspect at 25 °C | viscous liquid |
Flash Point | ≥105 °C |
Density at 25 °C | 0.95 ÷ 1.05 g/c |
Viscosity at 25 °C | 150 ÷ 250 cP |
Recommended proportion | 0.2–0.5% of binder mass |
Property | Value |
---|---|
Average fibre thickness, µm | ≤50 |
Average fibre length, µm | ≥500 |
Moisture content, % | ≤7 |
Density, kg/m3 | ≤100 |
Recommended proportion | 0.2–0.6% of asphalt mixture mass |
Property | Value |
---|---|
Acidity index | ~8 mgKOH/g |
Density | 960–1000 kg/m3 |
Recommended proportion | 0.2–0.7% of binder mass |
Asphalt Mixture | Binder Content, % | Bulk Density (Mg/m3) | Max Density (Mg/m3) | Air Voids (%) |
---|---|---|---|---|
AC 11 VS_1 | 6.0 | 2.406 | 2.462 | 2.3 |
AC 11 VS_1 | 6.3 | 2.420 | 2.464 | 1.8 |
AC 11 VS_1 | 6.6 | 2.431 | 2.466 | 1.4 |
AC 11 VS_2 | 6.0 | 2394 | 2.456 | 2.5 |
AC 11 VS_2 | 6,3 | 2.407 | 2.456 | 2.0 |
AC 11 VS_2 | 6,6 | 2.420 | 2.457 | 1.5 |
AC 11VS_1R | 6.0 | 2.387 | 2.440 | 2.2 |
AC 11VS_1R | 6.3 | 2.398 | 2.439 | 1.7 |
AC 11VS_1R | 6.6 | 2.408 | 2.441 | 1.4 |
AC 11VS_2 R | 6.0 | 2.370 | 2.450 | 3.3 |
AC 11VS_2 R | 6.3 | 2.380 | 2.452 | 2.9 |
AC 11VS_2 R | 6.6 | 2.398 | 2.453 | 2.2 |
SMA 8 S_1 | 7.1 | 2.337 | 2.416 | 3.3 |
SMA 8 S_1 | 7.4 | 2.349 | 2.419 | 2.9 |
SMA 8 S_1 | 7.7 | 2.364 | 2.418 | 2.3 |
SMA 8 S_2 | 7.1 | 2.340 | 2.414 | 3.1 |
SMA 8 S_2 | 7.4 | 2.352 | 2.415 | 2.6 |
SMA 8 S_2 | 7.7 | 2.363 | 2.417 | 2.2 |
SMA 8 S_3 | 7.1 | 2.324 | 2.407 | 3.5 |
SMA 8 S_3 | 7.4 | 2.335 | 2.407 | 3.0 |
SMA 8 S_3 | 7.7 | 2.347 | 2.412 | 2.7 |
SMA 8 S_1 R | 7.1 | 2.360 | 2.418 | 2.4 |
SMA 8 S_1 R | 7.4 | 2.375 | 2.420 | 1.9 |
SMA 8 S_1 R | 7.7 | 2.381 | 2.419 | 1.6 |
SMA 8 S_2 R | 7.1 | 2.356 | 2.412 | 2.3 |
SMA 8 S_2 R | 7.4 | 2.364 | 2.413 | 2.0 |
SMA 8 S_2 R | 7.7 | 2.379 | 2.415 | 1.5 |
SMA 8 S_3 R | 7.1 | 2.336 | 2.407 | 3.0 |
SMA 8 S_3 R | 7.4 | 2.351 | 2.409 | 2.4 |
SMA 8 S_3 R | 7.7 | 2.361 | 2.410 | 2.0 |
Component | Asphalt Mixture | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AC | SMA | |||||||||
11VS_1 | 11VS_2 | 11VS_1R | 11VS_2 R | 8S_1 | 8S_2 | 8S_3 | 8S_1R | 8S_2R | 8S_3R | |
Granite fr. 8–11, % | 23.50 | 9.40 | 21.62 | 7.52 | - | - | - | - | - | - |
Granite fr. 5–8, % | 9.40 | 14.10 | 3.76 | 9.40 | 64.09 | 48.30 | 29.72 | 55.73 | 39.94 | 21.36 |
Granite fr. 2–5, % | 20.68 | 29.14 | 16.92 | 28.20 | 4.64 | 20.43 | 39.01 | 4.64 | 20.43 | 39.01 |
Granite fr. 0–2, % | 38.54 | 40.42 | 36.66 | 33.84 | 17.37 | 17.37 | 17.37 | 11.80 | 11.80 | 11.80 |
Mineral filler, % | 1.88 | 0.94 | 0.94 | 0.94 | 6.50 | 6.50 | 6.50 | 6.50 | 6.50 | 6.5 |
RAP, % | - | - | 14.10 | 14.10 | - | - | - | 13.93 | 13.93 | 13.93 |
Cellulose *, % | - | - | - | - | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
WMA additive **, % | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Adhesive agent *, % | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
PMB 45/80-65, % | 6.0 | 6.0 | 5.1 | 5.1 | 7.1 | 7.1 | 7.1 | 6.2 | 6.2 | 6.2 |
Binder from RAP, % | - | - | 0.9 | 0.9 | - | - | - | 0.9 | 0.9 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škulteckė, J.; Šernas, O.; Čygas, D.; Kravcovas, I.; Žalimienė, L.; Mickevič, R. Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies. Buildings 2025, 15, 3203. https://doi.org/10.3390/buildings15173203
Škulteckė J, Šernas O, Čygas D, Kravcovas I, Žalimienė L, Mickevič R. Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies. Buildings. 2025; 15(17):3203. https://doi.org/10.3390/buildings15173203
Chicago/Turabian StyleŠkulteckė, Judita, Ovidijus Šernas, Donatas Čygas, Igoris Kravcovas, Laura Žalimienė, and Rafal Mickevič. 2025. "Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies" Buildings 15, no. 17: 3203. https://doi.org/10.3390/buildings15173203
APA StyleŠkulteckė, J., Šernas, O., Čygas, D., Kravcovas, I., Žalimienė, L., & Mickevič, R. (2025). Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies. Buildings, 15(17), 3203. https://doi.org/10.3390/buildings15173203