Experimental and Analytical Study on Rectangular Concrete Confined with Glass Chopped Strand Mats Under Axial Load
Abstract
1. Introduction
2. Experimental Programme
2.1. Specimens Details
2.2. Material Properties
2.3. Preparation of Specimens
2.4. Test Setup and Instrumentation
3. Experimental Results
3.1. Failure Modes
3.2. Stress vs. Strain Curves
3.3. Peak Strength and Corresponding Strain
3.4. Effect of Unconfined Compressive Strength on Peak Strength and Strain
3.5. Post Peak Modulus
3.6. Comparison of Experimental and ACI-Predicted Elastic Modulus
4. Analytical Modelling
4.1. Estimating the Confinement Pressure
4.2. Expression for Peak Strength
4.3. Expression for Strain at Peak Strength
4.4. Expression for Post-Peak Modulus (Z)
4.5. Comparison of Predicted and Experimental Response
5. Conclusions
- Significant enhancement in strength and ductility was observed with the application of GCSM, particularly in low-strength concrete. An up to 34% gain in peak strength and an over 60% improvement in strain were achieved in the most confined low-strength specimens.
- The effectiveness of GCSM confinement decreases with increasing unconfined concrete strength. High-strength specimens showed modest gains in normalized performance due to limited lateral expansion.
- Post-peak behaviour improved with higher confinement ratios, as indicated by a reduction in the absolute value of the post-peak modulus. This demonstrates enhanced energy dissipation and delay in brittle failure.
- Normalized peak strength and strain correlated positively with the confinement ratio, confirming its reliability as a confinement performance indicator across all strength groups.
- Elastic modulus values estimated using ACI 318 closely matched the experimental values, especially for low- and medium-strength specimens, supporting the validity of ACI-based preliminary assessments for GCSM-confined concrete.
- Analytical models were developed for predicting peak strength, peak strain, and post-peak modulus of GCSM-confined rectangular specimens. The models showed excellent predictive accuracy, with R2 values exceeding 0.98, and were validated against experimental stress vs. strain curves. Overall, the study affirms the potential of GCSM as a practical and economical retrofitting material for structural applications. Its ease of application, cost-effectiveness, and favourable mechanical performance make it a promising solution for strengthening existing infrastructure, particularly in resource-constrained environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teng, J.G.; Yu, T.; Fernando, D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012, 78, 131–143. [Google Scholar] [CrossRef]
- Yooprasertchai, E.; Saingam, P.; Hussain, Q.; Khan, K.; Ejaz, A.; Suparp, S. Development of stress-strain models for glass fiber reinforced polymer composites confined sustainable concrete made with natural and recycled aggregates. Constr. Build. Mater. 2024, 416, 135097. [Google Scholar] [CrossRef]
- Sengun, K.; Arslan, G. Performance of RC Beams Strengthened in Flexure and Shear with CFRP and GFRP. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 48, 117–130. [Google Scholar] [CrossRef]
- Mohanraj, R.; Senthilkumar, S.; Padmapoorani, P. Mechanical Properties of Rc Beams with Afrp Sheets Under A Sustained Load. Mater. Technol. 2022, 56, 365–372. [Google Scholar] [CrossRef]
- Lee, H.K.; Cheong, S.H.; Ha, S.K.; Lee, C.G. Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Compos. Struct. 2011, 93, 911–922. [Google Scholar] [CrossRef]
- Khalifa, A.; Nanni, C. Improving shear capacity of existing RC T-section beams using CFRP composites. Cem. Concr. Compos. 2000, 22, 165–174. [Google Scholar] [CrossRef]
- Joyklad, P.; Saingam, P.; Ali, N.; Ejaz, A.; Hussain, Q.; Khan, K.; Chaiyasarn, K. Low-cost fiber chopped strand mat composites for compressive stress and strain enhancement of concrete made with brick waste aggregates. Polymers 2022, 14, 4714. [Google Scholar] [CrossRef]
- Thansirichaisree, P.; Mohamad, H.; Zhou, M.; Ejaz, A.; Saingam, P.; Hussain, Q.; Suparp, S. Behavior of shallow concrete beams strengthened using low-cost GCSM and mechanical anchors. AIMS Mater. Sci. 2024, 11, 858–881. [Google Scholar] [CrossRef]
- Lam, A.P.; Lalin, Q.H. Shear strengthening of RC deep beams using glass chopped strand mat (GCSM). Eng. J. Res. Dev. 2014, 25, 25–33. [Google Scholar] [CrossRef]
- Lam, A.Q.; Khan, A. Pimanmas, A. Shear strengthening of RC deep beams using glass chopped strand mat (GCSM) composite. Case Stud. Constr. Mater. 2022, 16, e01018. [Google Scholar] [CrossRef]
- Alhilli, H.H.; Al-Farttoosi, M.H. Shear performance of reinforced concrete t beams strengthened by carbon fiber-reinforced polymer bars. Civ. Eng. J. 2023, 9, 10. [Google Scholar] [CrossRef]
- Fathalla, E.; Mihaylov, B. Shear behaviour of deep beams strengthened with high-strength fiber reinforced concrete jackets. Eng. Struct. 2025, 325, 119404. [Google Scholar] [CrossRef]
- Chole, A.; Tembhurne, A.; Bawanthade, H.; Bhadade, H.; Ali Khan, S. Kumar Shaw, Strengthening of reinforced concrete beams by using FRPs-An overview. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Zhou, H.; Fernando, D.; Nguyen, V.T.; Dai, J.-G. The bond behaviour of CFRP-to-concrete bonded joints under fatigue cyclic loading: An experimental study. Constr. Build. Mater. 2021, 273, 121674. [Google Scholar] [CrossRef]
- Zhang, Z.; Hsu, C.-T.T.; Moren, J. Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymer Laminates. J. Compos. Constr. 2004, 8, 403–414. [Google Scholar] [CrossRef]
- Chen, G.M.; Teng, J.G.; Chen, J.F. Shear strength model for FRP-strengthened RC beams with adverse FRP-steel interaction, Ascelibrary. J. Compos. Constr. 2013, 17, 50–66. [Google Scholar] [CrossRef]
- Galal, K.; Arafa, A.; Ghobarah, A. Retrofit of RC square short columns. Eng. Struct. 2005, 27, 801–813. [Google Scholar] [CrossRef]
- Bank, L.C.; Arora, D. Analysis of RC beams strengthened with mechanically fastened FRP (MF-FRP) strips. Compos. Struct. 2007, 79, 180–191. [Google Scholar] [CrossRef]
- Al-Tameemi, H.; Akın, E. Improving the efficiency of FRP-Confined square concrete column by rounding the sharp edges and circularizing the flat sides. Structures 2022, 45, 1762–1773. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Smith, S.; Yu, T. Size effect on axial stress-strain behavior of CFRP-confined square concrete columns. Constr. Build. Mater. 2016, 118, 116–126. [Google Scholar] [CrossRef]
- Rodsin, K.; Hussain, Q.; Parichatprecha, R. Monotonic and cyclic axial compressive responses of concrete specimens externally confined with different types of FRP composites: Experimental and analytical investigations. Phys. Scr. 2023, 98, 105932. [Google Scholar] [CrossRef]
- Cui, E.; Jiang, S.; Wang, J.; Zeng, X. Bond behavior of CFRP-concrete bonding interface considering degradation of epoxy primer under wet-dry cycles. Constr. Build. Mater. 2021, 292, 123286. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Yang, J.-Q.; Huang, F.; Feng, P. Axial compressive and seismic performance of GFRP wrapped square RC columns with different scales. J. Build. Eng. 2022, 62, 105342. [Google Scholar] [CrossRef]
- de Diego, A.; Martínez, S.; Castro, V.J.; Echevarría, L.; Barroso, F.J.; Gutiérrez, J.P. Experimental investigation on the compressive behaviour of FRP-confined rectangular concrete columns. Arch. Civ. Mech. Eng. 2022, 22, 131. [Google Scholar] [CrossRef]
- Liao, J.; Zeng, J.-J.; Gong, Q.-M.; Quach, W.-M.; Gao, W.-Y.; Zhang, L. Design-oriented stress-strain model for FRP-confined ultra-high performance concrete (UHPC). Constr. Build. Mater. 2022, 318, 126200. [Google Scholar] [CrossRef]
- ASTM C 33/C 33–08 i (2009); International, Standard Specification for Concrete Aggregates. ASTM: West Conshohocken, PA, USA, 2009.
- ASTM D3039/D3039M-08; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2008. [CrossRef]
- ASTM C 39 04 (2001) 1–5; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2014.
- Popovics, S. A numerical approach to the complete stress-strain curve of concrete. Cem. Concr. Res. 1973, 3, 583–599. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Moshiri, N.; Mortazavi, N. Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP. Mater. Struct. Constr. 2015, 48, 107–122. [Google Scholar] [CrossRef]
- Minafò, G.; Papia, M. Concrete softening effects on the axial capacity of RC jacketed circular columns. Eng. Struct. 2016, 128, 215–224. [Google Scholar] [CrossRef]
Group | Specimen ID | Confinement Type | Number of Layers | Concrete Type | No of Specimens |
---|---|---|---|---|---|
1 | LS-CON | - | 0 | LS | 2 |
LS-2GCSM | GCSM | 2 | LS | 2 | |
LS-3GCSM | GCSM | 3 | LS | 2 | |
LS-4GCSM | GCSM | 4 | LS | 2 | |
2 | MS-CON | - | 0 | MS | 2 |
MS-2GCSM | GCSM | 2 | MS | 2 | |
MS-3GCSM | GCSM | 3 | MS | 2 | |
MS-4GCSM | GCSM | 4 | MS | 2 | |
3 | HS-CON | - | 0 | HS | 2 |
HS-2GCSM | GCSM | 2 | HS | 2 | |
HS-3GCSM | GCSM | 3 | HS | 2 | |
HS-4GCSM | GCSM | 4 | HS | 2 |
Mixed Ingredients (kg/m3) | Low Strength (20 MPa) | Medium Strength (30 MPa) | High Strength (40 MPa) |
---|---|---|---|
Cement | 250 | 370 | 420 |
Fine aggregates | 730 | 675 | 610 |
Natural coarse aggregates | 610 | 550 | 520 |
Water | 320 | 300 | 250 |
Group | Specimen ID | Peak Stress (MPa) | Increase in Stress (%) | Corresponding Strain (mm/mm) | Increase in Strain (%) |
---|---|---|---|---|---|
1 | LS-CON | 20.05 | - | 0.0018 | - |
LS-2GCSM | 24.67 | 23.04 | 0.0031 | 72.22 | |
LS-3GCSM | 27.00 | 34.66 | 0.0037 | 105.56 | |
LS-4GCSM | 30.50 | 52.12 | 0.0047 | 161.11 | |
2 | MS-CON | 36.76 | - | 0.0018 | - |
MS-2GCSM | 42.00 | 14.25 | 0.0025 | 25.00 | |
MS-3GCSM | 45.00 | 22.42 | 0.0029 | 45.00 | |
MS-4GCSM | 49.00 | 33.30 | 0.0033 | 65.00 | |
3 | HS-CON | 40.10 | - | 0.0018 | - |
HS-2GCSM | 44.00 | 9.73 | 0.0022 | 22.22 | |
HS-3GCSM | 47.00 | 17.21 | 0.0026 | 44.44 | |
HS-4GCSM | 51.50 | 28.43 | 0.0029 | 61.11 |
Sample ID | Group No | fco (MPa) | Confinement Ratio | fcc (MPa) | fcc/fco | eco | ecc | ecc/eco | Z (MPa) |
---|---|---|---|---|---|---|---|---|---|
LS-2GCSM | 1 | 20 | 0.05397 | 24.67 | 1.23350 | 0.0018 | 0.0031 | 1.7222 | −7574.41 |
LS-3GCSM | 20 | 0.08096 | 27 | 1.35000 | 0.0018 | 0.0037 | 2.0556 | −5960.67 | |
LS-4GCSM | 20 | 0.10794 | 30.5 | 1.52500 | 0.0018 | 0.0047 | 2.6111 | −4608.32 | |
MS-2GCSM | 2 | 36.76 | 0.02936 | 42 | 1.14255 | 0.0018 | 0.0025 | 1.3889 | −16,588.62 |
MS-3GCSM | 36.76 | 0.04405 | 45 | 1.22416 | 0.0018 | 0.0029 | 1.6111 | −12,215.29 | |
MS-4GCSM | 36.76 | 0.05873 | 49 | 1.33297 | 0.0018 | 0.0033 | 1.8333 | −8646.44 | |
HS-2GCSM | 3 | 40.1 | 0.02692 | 44 | 1.09726 | 0.0018 | 0.0022 | 1.2222 | −19,288.36 |
HS-3GCSM | 40.1 | 0.04038 | 47 | 1.17207 | 0.0018 | 0.0026 | 1.4444 | −15,010.37 | |
HS-4GCSM | 40.1 | 0.05384 | 51.5 | 1.28429 | 0.0018 | 0.0029 | 1.6111 | −12,096.68 |
Sample ID | fco (MPa) | Confinement Ratio | fcc (MPa) | Experimental Elastic Modulus (MPa) | ACI 318 Elastic Modulus (MPa) | Error (%) |
---|---|---|---|---|---|---|
LS-2GCSM | 20 | 0.05397 | 24.67 | 23,123.003 | 23,344.385 | −0.95 |
LS-3GCSM | 20 | 0.08096 | 27 | 24,352.332 | 24,421.916 | −0.28 |
LS-4GCSM | 20 | 0.10794 | 30.5 | 24,292.305 | 25,742.960 | −5.64 |
MS-2GCSM | 36.76 | 0.02936 | 42 | 28,636.721 | 27,053.101 | 5.85 |
MS-3GCSM | 36.76 | 0.04405 | 45 | 29,587.853 | 30,094.684 | −1.68 |
MS-4GCSM | 36.76 | 0.05873 | 49 | 30,540.569 | 31,176.273 | −2.04 |
HS-2GCSM | 40.1 | 0.02692 | 44 | 28,976.920 | 30,819.961 | −5.98 |
HS-3GCSM | 40.1 | 0.04038 | 47 | 29,018.495 | 31,528.558 | −7.96 |
HS-4GCSM | 40.1 | 0.05384 | 51.5 | 29,397.877 | 32,562.555 | −9.72 |
Symbol | Definition | Unit |
---|---|---|
fco | Unconfined compressive strength of concrete | MPa |
fcc | Confined compressive strength of concrete | MPa |
εco | Strain at unconfined compressive strength | - |
εcc | Strain at confined compressive strength | - |
Ec | Elastic modulus of concrete | MPa |
k | Curve shape parameter in Popovics model | - |
fl | Effective lateral confinement pressure | MPa |
fr | Tensile strength of confinement material | MPa |
t | Total thickness of confinement layers | mm |
b, h | Width and height of specimen cross-section | mm |
ρ | Confinement efficiency factor | - |
D | Equivalent diagonal dimension | mm |
Rc | Corner radius | mm |
A | Effective confined area | mm2 |
Z | Post-peak modulus | MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaimahawan, P.; Shaingchin, S.; Sua-Iam, G.; Chatveera, B.; Hussain, Q.; Ahmad, A. Experimental and Analytical Study on Rectangular Concrete Confined with Glass Chopped Strand Mats Under Axial Load. Buildings 2025, 15, 3204. https://doi.org/10.3390/buildings15173204
Chaimahawan P, Shaingchin S, Sua-Iam G, Chatveera B, Hussain Q, Ahmad A. Experimental and Analytical Study on Rectangular Concrete Confined with Glass Chopped Strand Mats Under Axial Load. Buildings. 2025; 15(17):3204. https://doi.org/10.3390/buildings15173204
Chicago/Turabian StyleChaimahawan, Preeda, Somboon Shaingchin, Gritsada Sua-Iam, Burachat Chatveera, Qudeer Hussain, and Afaq Ahmad. 2025. "Experimental and Analytical Study on Rectangular Concrete Confined with Glass Chopped Strand Mats Under Axial Load" Buildings 15, no. 17: 3204. https://doi.org/10.3390/buildings15173204
APA StyleChaimahawan, P., Shaingchin, S., Sua-Iam, G., Chatveera, B., Hussain, Q., & Ahmad, A. (2025). Experimental and Analytical Study on Rectangular Concrete Confined with Glass Chopped Strand Mats Under Axial Load. Buildings, 15(17), 3204. https://doi.org/10.3390/buildings15173204